THE COPPER COMPLEXES OF AMINO-ACIDS,
PEPTIDES AND PEPTONES.¹

FIRST PAPER.

BY P. A. KÖBER AND K. SUGIURA.

(From the Harriman Research Laboratory, Roosevelt Hospital, New York City.)

(Received for publication, August 8, 1912.)

INTRODUCTION.

That proteins and their constituents combine with heavy metals to form "complexes" has been known for some time. Among these copper has received the most attention and considerable work has been done on the copper complexes of amino-acids; they have been isolated,² analyzed and studied by chemical and physical methods. On the other hand the complexes of peptides and peptones have received only a superficial and qualitative study. This is not due to the unimportance of peptide copper salts, for the behavior of peptide and peptone copper salts on treatment with an excess of alkali has been and is yet the most reliable test known for protein-like substances. The real reason for this lack of investigation is, without doubt, due first to the difficulty of obtaining peptides and peptones pure, and second to the fact that the copper salts of these substances are not easily crystallized. It is our belief that a quantitative study of these copper salts³ will throw some light on the constitution of proteins and it is therefore our intention to continue from time to time our efforts in this field.

In a previous preliminary communication⁴ one of us showed a

³ The term copper salt, used here and throughout the paper, has reference to a true salt, i.e., the product of the action of amino-acids and protein-like substances in general on cupric hydroxide, oxide or carbonate.
⁴ Kober: this Journal, x, p. 9, 1911.
striking difference between the salts of amino-acids on the one hand, and the salts of peptides and peptones on the other. As stated in the previous paper, "the copper salts of the amino-acids in alkaline solutions, (. . . . contrary to statements in scientific literature,) particularly on warming or on boiling, precipitate copper as the hydroxide, quantitatively. Peptides and peptones, on the other hand, give very little or no hydroxide under the same conditions."

The explanation of this important difference may possibly be due to one or more of the following reasons: (1) A marked difference in the constitution of these salts; (2) A change of constitution brought about by the excess alkali; (3) A change in the form or condition of the copper due to the presence of the protein-like substances, e.g., "colloidal copper."

The fact that peptides do not form copper salts strictly in accordance with the number of free carboxyl groups, as do most of the amino-acids, favors the theory of a difference in the constitution as the cause of their abnormal behavior on treatment with excess alkali. The fact that most copper salts of peptides and peptones change color on treatment with alkali, giving the so-called "biuret color," indicates that a change of structure in these peptides takes place on adding excess alkali. The fact that a similar phenomenon described by Paal and Leuze was explained as a "colloidal process" gives a certain degree of plausibility to the third reason. As will be seen, the data given in the latter part of this paper support the first two explanations, while not many facts support the third.

As Leuchs, conjunctively with Manasse and La Forge, has considerable experimental basis for considering that carbethoxyglycyl-glycine ester and allied compounds have two forms, the lactim and the lactam, we believed at first that the lactim form was the chief cause for the copper not precipitating in alkaline solutions, behaving in this respect like other hydroxy-acids, such

7 Loc. cit.
8 Copper salts in weak alkaline solutions dialyze, but when the alkali is strong, they combine with the membrane and cause difficulties.
as lactic, tartaric, etc.; but owing to the lack of spectrographic data we cannot say whether this really plays a part or not.

As part of our results are at variance with some obtained previously by other investigators, our technique and results will be described and discussed before data are weighed in support of any theory.

TECHNIQUE.

Fischer, Abderhalden, and others prepared the copper salts of amino-acids, peptides and peptones by boiling with cupric oxide. We found that they were formed best at a low temperature, with cupric hydroxide, preferably in an ice mixture. Since some heat of neutralization makes the process an exothermal one, it is not unexpected that the reaction will be complete at a low temperature. A further objection to boiling lies in the fact that a few of these salts have a slight tendency to hydrolyze. Where a reaction can be brought about at a freezing temperature the danger of decomposing unstable peptides is obviously reduced to a minimum.

The form of the copper hydroxide is very important as on standing it is dehydrated with the formation of cupric oxide. That, cupric oxide is slower in its reaction with these peptides can readily be seen from the constitution of the copper salts.

The best conditions for forming these copper salts quantitatively are as follows:

a. For soluble substances.

For every 0.1 gram of amino-acid or peptide 5 cc. of 5 per cent cupric chloride solution are diluted to 150 or 200 cc. with ice-cold distilled water and neutralized with alkali. This can be done most suitably by mixing 100 grams of fine ice with 5 cc. of 5 per cent cupric chloride solution and 100 cc. of distilled water and neutralizing with 10 alkali, using phenolphthalein as an indicator. The neutralized mixture is then filtered, the ice being placed on the filter also in order to keep the precipitated cupric hydroxide cool. The hydroxide is washed once or twice with cold distilled water on the filter paper, removed with the ice to the cooled 10-20 cc. solution of the amino-acid or peptide and stirred for from five to ten minutes.

On filtering off the excess cupric hydroxide and washing thoroughly, the solution will contain the copper salts of all the substances. As a rule, the solutions require boiling, to decompose the very appreciable amount

10 Fischer: loc. cit.
of carbamino salts that are formed with CO₂ of the air, and this may be
done before filtering. To ascertain the amount of copper hydroxide dis-
solved, the copper salt may be titrated directly (with 0.04 N Na₂S₂O₃) by
adding 5-10 cc. of glacial acetic acid and 2-4 grams KI. The amount of
carbamino salts formed is increased by the presence of sodium chloride,
whereas alcohol, on the contrary, hinders their formation.

b. For insoluble substances with slightly soluble copper salts.

If the amino-acid or peptide is insoluble, 10-20 cc. of \(\frac{N}{10} \) ammonia are
added to the sample and it is stirred until dissolved. If necessary the
mixture may be heated to hasten solution. After cooling the solution in
an ice mixture, cold cupric hydroxide, made as above, is added and stirred
for from five to ten minutes; 150 cc. of water are then added and the solu-
tion filtered after thorough shaking. The precipitate is washed well with
hot water and the filtrate and wash waters are concentrated. The amount
of copper hydroxide dissolved may be titrated iodimetrically in the usual
way. Controls on this method, using copper hydroxide and 20 cc. of \(\frac{N}{10} \)
ammonia, gave only 0.0003 to 0.0005 gram of copper oxide in the filtrate.

c. For insoluble substances with quite insoluble copper salts.

Where the copper salt crystallizes out and is filtered off with the excess
copper hydroxide, it is necessary to separate the two precipitates.

Very satisfactory reagents for this purpose are the bicarbonates of
sodium and potassium. Using 10 and 20 per cent solutions of KH₃CO₃ we
have obtained the results given below on leucine, tryptophane, cystine,
amino-\(n \)-caproic acid and phenylglycine.

The amino substance is treated as in b, but the excess copper hydroxide,
mixed with the insoluble copper salt, is then treated with 20 cc. of 20 per
cent KH₃CO₃ and washed with small lots of 10 per cent KH₃CO₃ until the
filtrate shows only traces of copper. To determine directly the amount
of copper hydroxide dissolved, the final residue of copper salt is then trans-
ferred with the filter paper to the first filtrate and after being dissolved in
dilute hydrochloric acid is titrated as before.

On page 13 under experimental notes we give a few experiments
on the solubility of these "insoluble" copper salts in various con-
centrations of potassium bicarbonate. In the near future we hope
to give the details of more experiments along these lines, especially
on the determination of amino-acids in the presence of polypeptides.

Boiling directly with copper hydroxide or oxide will result without
doubt in the incomplete formation of copper salts; this fact helps
to explain the unexpected results obtained by Abderhalden and
Hirsch on \(d \)-alanyl-\(l \)-leucyl-isoleucine and its glycyl derivatives
(see page 7).

\(^{13}\) As large amounts of potassium acetate retard the iodimetric titrations
of copper, we neutralize with pure HCl.
SUMMARY OF DATA.

Amino-acid copper salts.

The results with our technique on a-amino-acids confirm the analyses made by previous investigators of isolated copper salts, which have without exception the general formula CuA₂, where A represents one molecule of monobasic a-amino-acid.

A few examples will suffice:

\[
\begin{array}{llllll}
\text{Monobasic amino-acids.} \\
\hline
\text{SUBSTANCES} & \text{METHOD OF PREPARATION} & \text{WEIGHT OF SAMPLE} & \text{CQ IN PIPETTE AFTER ADDING 3 CC. N NAOH AND BOILING} & \text{CQ IN PRECIPITATE AFTER ADDING 0.5 CC N NAOH (CO₂ FREE) AND BOILING} & \text{THEORETICAL WEIGHT CALCULATED FOR TOTAL CQ AS PERCENT} \\
\hline
\text{Glycine} & a & 0.1015 & 0.0000 & 0.0536 & 0.0538 & 99.6 \\
\text{Alanine} & a & 0.1019 & 0.0000 & 0.0453 & 0.0455 & 99.6 \\
\text{Aminobutyric acid} & b & 0.1022 & 0.0004 & 0.0403 & 0.0395 & 102.0 \\
\text{Active valine} & a & 0.0944 & 0.0015 & 0.0301 & 0.0321 & 93.8 \\
\text{Leucine} & c & 0.1010 & 0.0054 & 0.0361 & 0.0307 & 102.6 \\
\text{Normal aminocaproic acid} & c & 0.1003 & 0.0002 & 0.0315 & 0.0305 & 105.7 \\
\text{Isoleucine} & a & 0.1014 & 0.0011 & 0.0307 & 0.0308 & 103.2 \\
\text{Active proline} & a & 0.1018 & 0.0078 & 0.0269 & 0.0352 & 98.6 \\
\text{Phenylalanine} & b & 0.1001 & 0.0000 & 0.0244 & 0.0242 & 100.8 \\
\text{Phenylglycine} & c & 0.1011 & 0.0000 & 0.0280 & 0.0266 & 105.3 \\
\text{Tyrosine} & b & 0.1027 & 0.0007 & 0.0263 & 0.0226 & 116.4 \\
\text{Tryptophane*} & b & 0.1022 & 0.0000 & 0.0183 & 0.0189 & 92.0 \\
\text{Asparagine} & b & 0.1005 & 0.0005 & 0.0308 & 0.0303 & 101.7 \\
\text{Sarcosine hydrochloride†} & a & 0.1002 & 0.0021 & 0.0299 & 0.0315 & 101.6 \\
\text{Lysine picrate‡} & a & 0.1066 & 0.0006 & 0.0097 & 0.0107 & 96.3 \\
\text{Arginine dinitrate} & a & 0.1010 & 0.0011 & 0.0121 & 0.0134 & 98.5 \\
\text{Histidine dihydrochloride§} & a & 0.1000 & 0.0161 & 0.0005 & 0.0175 & 94.9 \\
\hline
\end{array}
\]

* If more than 0.1 gram tryptophane is used, method c must be added to this technique.
† All acid salts, such as hydrochlorides, nitrates, etc., are neutralized with N/10 alkali, using phenolphthalein as an indicator, before treating with copper hydroxide as in method a.
‡ Our thanks are due to Dr. Levene of the Rockefeller Institute for furnishing us with leucine, arginine and lysine.
§ Histidine forms a complex salt, as do the other monobasic amino-acids, and on treatment with excess alkali, changes its color but little. Only on boiling the color changes towards a biuret. It is not a clear color, but smoky, and makes the solution look very dark. Characteristic is the deep red color to which the alkaline solution turns on the addition of acid. We expect to make this a basis for the colorimetric qualitative and quantitative estimation of histidine.
Peptide Copper Complexes

With other amino-acids, whose NH₂ group is in the β-position, Fischer found the formula to be CuA₂, where A is monobasic amino-acid, except (as in the case of isoserine) when an oxy group is in the α-position, where the formula is CuA.

We have obtained the same results with isoserine, using the technique α:

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>WEIGHT OF SAMPLE</th>
<th>CuO IN PRECIPITATE AFTER ADDING 3 CC. N. NAOH (CO₃F) AND BOILING</th>
<th>CuO IN PRECIPITATE AFTER ADDING 3 CC. N. NAOH (CO₃F) AND BOILING</th>
<th>CuO IN PRECIPITATE AFTER ADDING 3 CC. N. NAOH (CO₃F) AND BOILING</th>
<th>THEORETICAL WEIGHT FOR THE SAMPLE</th>
<th>CuO AS PERCENT OF THEORETICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isoserine</td>
<td>grams</td>
<td>grams</td>
<td>grams</td>
<td>grams</td>
<td>grams</td>
<td>grams</td>
</tr>
<tr>
<td>Isoserine</td>
<td>0.1010</td>
<td>0.0299</td>
<td>0.0499</td>
<td>0.0807</td>
<td>0.0765</td>
<td>105.5</td>
</tr>
</tbody>
</table>

According to Fischer, when the amino group is in the γ-, δ-, or ε-position (regardless of an hydroxy group in the α position) no copper salts are formed.

Our results confirm the previous figures on dibasic salts having a general formula CuA, where A is a dibasic acid, such as aspartic, glutaminic, cystinic, etc.

Dibasic amino-acids.

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>METHOD OF PREPARATION</th>
<th>WEIGHT OF SAMPLE</th>
<th>CuO IN PRECIPITATE AFTER ADDING 3 CC. N. NAOH (CO₃F) AND BOILING</th>
<th>CuO IN PRECIPITATE AFTER ADDING 3 CC. N. NAOH (CO₃F) AND BOILING</th>
<th>CuO IN PRECIPITATE AFTER ADDING 3 CC. N. NAOH (CO₃F) AND BOILING</th>
<th>THEORETICAL WEIGHT FOR THE SAMPLE</th>
<th>CuO AS PERCENT OF THEORETICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cystine</td>
<td>c</td>
<td>0.1008</td>
<td>0.0000</td>
<td>0.0331</td>
<td>0.0334</td>
<td>99.1</td>
<td></td>
</tr>
<tr>
<td>Aspartic acid*</td>
<td>a</td>
<td>0.0997</td>
<td>0.0009</td>
<td>0.0579</td>
<td>0.0596</td>
<td>98.6</td>
<td></td>
</tr>
<tr>
<td>Glutaminic acid*</td>
<td>a</td>
<td>0.1025</td>
<td>0.0004</td>
<td>0.0518</td>
<td>0.0554</td>
<td>94.9</td>
<td></td>
</tr>
</tbody>
</table>

*Before boiling the solutions of copper salts are diluted to 150 cc. with water.

Polypeptide copper salts.

Out of a hundred or more polypeptides, Fischer, Abderhalden and their collaborators have analyzed only about eight of the polypeptide copper salts; and these, with three exceptions (nos. VI, VII and VIII) were insoluble and crystallized out. In such cases there can be no doubt as to the purity of the product and the results are confirmed by our work on the more soluble copper peptides. These cases are as follows:

I. (Leucyl-glycine copper)$_2$O + H$_2$O16 or (C$_8$H$_{10}$O$_2$N$_2$Cu)$_2$O + H$_2$O.

Fischer concluded that one molecule of copper hydroxide combined with one molecule of leucyl-glycine and that two molecules of the copper-leucyl-glycine are connected by an oxygen atom. Although we have found one molecule of copper hydroxide to one of leucyl-glycine, we do not believe that an oxygen atom connects two molecules of copper-leucyl-glycine. We have determined the molecular weight of this salt by the cryoscopic method, and find it to have a molecular weight consistent with the formula leucyl-glycine-Cu.

II. (Phenyl-glycine-glycine)$_1$ copper, C$_{16}$H$_{10}$N$_2$O$_5$Cu.

III. (1-Leucyl-l-histidine)$_1$ copper, C$_{12}$H$_{18}$O$_3$N$_4$Cu.

IV. (Alanyl-l-tryptophane)$_1$ copper, C$_{14}$H$_{18}$N$_3$O$_3$Cu.

V. (1-Prolyl-l-phenylalanine)$_1$ copper, C$_{16}$H$_{18}$N$_5$O$_5$Cu + 3H$_2$O.

VI. (d-Alanyl-l-leucyl-isoleucine)$_2$ copper, (C$_{15}$H$_{27}$O$_7$N$_3$)$_2$Cu.

VII. (Glycyl-d-alanyl-l-leucyl-isoleucine)$_2$ copper, (peptide)$_2$Cu.

VIII. (Tri-glycyl-glycine)$_2$ copper, (tetrapeptide)$_2$Cu.

Out of the large number of peptide copper salts examined by Fischer, Abderhalden and ourselves, the last three form an apparent exception to the rule. There are good reasons to believe that

17 Fischer: ibid., p. 195.
20 Ibid.
21 Abderhalden and Hirsch: ibid., xliii, p. 2439.
22 Ibid.
23 Curtius: ibid., xxxvii, p. 1294.
the formulas given for VI, VII and VIII do not represent true copper salts, as the methods used in each case are no guarantee of the complete formation of the salts.

Using the technique described above, we have formed the copper salts of the following peptides, and have found the results to be consistent with the formula, (peptide)$_n$Cu$_1$.

Peptide Copper Complexes

<table>
<thead>
<tr>
<th>Substance</th>
<th>Weight of Sample</th>
<th>CuO in Precipitate</th>
<th>CuO in Precipitate After Boiling</th>
<th>Total CuO</th>
<th>Theoretical Weight Calculated for This Sample</th>
<th>Total CuO as Percent of Theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycyl-glycine</td>
<td>0.1123 grams</td>
<td>0.0536 grams</td>
<td>0.0070 grams</td>
<td>0.0506</td>
<td>0.0616 grams</td>
<td>98.4 percent</td>
</tr>
<tr>
<td>Glycyl-alanine</td>
<td>0.1006 grams</td>
<td>0.0501 grams</td>
<td>0.0049 grams</td>
<td>0.0550</td>
<td>0.0548 grams</td>
<td>100.4 percent</td>
</tr>
<tr>
<td>Glycyl-d-alanine</td>
<td>0.1011 grams</td>
<td>0.0524 grams</td>
<td>0.0026 grams</td>
<td>0.0530</td>
<td>0.0550 grams</td>
<td>96.5 percent</td>
</tr>
<tr>
<td>Glycyl-aminobutyric acid</td>
<td>0.1007 grams</td>
<td>0.0437 grams</td>
<td>0.0030 grams</td>
<td>0.0467</td>
<td>0.0500 grams</td>
<td>93.4 percent</td>
</tr>
<tr>
<td>Glycyl-valine</td>
<td>0.1012 grams</td>
<td>0.0410 grams</td>
<td>0.0062 grams</td>
<td>0.0462</td>
<td>0.0462 grams</td>
<td>100.0 percent</td>
</tr>
<tr>
<td>Glycyl-d-valine</td>
<td>0.1015 grams</td>
<td>0.0390 grams</td>
<td>0.0059 grams</td>
<td>0.0449</td>
<td>0.0464 grams</td>
<td>96.8 percent</td>
</tr>
<tr>
<td>Glycyl-leucine</td>
<td>0.1005 grams</td>
<td>0.0380 grams</td>
<td>0.0022 grams</td>
<td>0.0402</td>
<td>0.0425 grams</td>
<td>94.6 percent</td>
</tr>
<tr>
<td>Glycyl-l-leucine</td>
<td>0.1006 grams</td>
<td>0.0370 grams</td>
<td>0.0036 grams</td>
<td>0.0406</td>
<td>0.0425 grams</td>
<td>95.5 percent</td>
</tr>
<tr>
<td>Glycyl-amino-n-caproic acid</td>
<td>0.0963 grams</td>
<td>0.0377 grams</td>
<td>0.0014 grams</td>
<td>0.0391</td>
<td>0.0407 grams</td>
<td>96.1 percent</td>
</tr>
<tr>
<td>Glycyl-asparagine</td>
<td>0.1028 grams</td>
<td>0.0397 grams</td>
<td>0.0031 grams</td>
<td>0.0428</td>
<td>0.0433 grams</td>
<td>98.8 percent</td>
</tr>
<tr>
<td>Glycyl-phenylglycine</td>
<td>0.1021 grams</td>
<td>0.0355 grams</td>
<td>0.0030 grams</td>
<td>0.0385</td>
<td>0.0390 grams</td>
<td>98.7 percent</td>
</tr>
<tr>
<td>Glycyl-d-phenylglycine</td>
<td>0.1022 grams</td>
<td>0.0358 grams</td>
<td>0.0010 grams</td>
<td>0.0385</td>
<td>0.0391 grams</td>
<td>94.1 percent</td>
</tr>
<tr>
<td>Glycyl-tyrosine</td>
<td>0.0545 grams</td>
<td>0.0142 grams</td>
<td>0.0043 grams</td>
<td>0.0185</td>
<td>0.0181 grams</td>
<td>102.2 percent</td>
</tr>
<tr>
<td>Glycyl-tryptophane</td>
<td>0.1016 grams</td>
<td>0.0257 grams</td>
<td>0.0010 grams</td>
<td>0.0267</td>
<td>0.0310 grams</td>
<td>86.1 percent</td>
</tr>
<tr>
<td>Alanyl-glycine</td>
<td>0.1007 grams</td>
<td>0.0516 grams</td>
<td>0.0032 grams</td>
<td>0.0548</td>
<td>0.0548 grams</td>
<td>100.0 percent</td>
</tr>
<tr>
<td>l-Alanyl-glycine</td>
<td>0.1005 grams</td>
<td>0.0496 grams</td>
<td>0.0054 grams</td>
<td>0.0550</td>
<td>0.0547 grams</td>
<td>100.5 percent</td>
</tr>
<tr>
<td>d-Alanyl-d-alanine</td>
<td>0.1001 grams</td>
<td>0.0465 grams</td>
<td>0.0041 grams</td>
<td>0.0606</td>
<td>0.0497 grams</td>
<td>101.8 percent</td>
</tr>
<tr>
<td>Aminobuteryl-glycine</td>
<td>0.1010 grams</td>
<td>0.0467 grams</td>
<td>0.0045 grams</td>
<td>0.0512</td>
<td>0.0502 grams</td>
<td>102.0 percent</td>
</tr>
<tr>
<td>Valyl-glycine</td>
<td>0.1005 grams</td>
<td>0.0410 grams</td>
<td>0.0059 grams</td>
<td>0.0469</td>
<td>0.0459 grams</td>
<td>102.2 percent</td>
</tr>
<tr>
<td>Leucyl-glycine</td>
<td>0.0901 grams</td>
<td>0.0344 grams</td>
<td>0.0041 grams</td>
<td>0.0385</td>
<td>0.0381 grams</td>
<td>101.0 percent</td>
</tr>
<tr>
<td>Leucyl-leucine</td>
<td>0.1006 grams</td>
<td>0.0288 grams</td>
<td>0.0014 grams</td>
<td>0.0302</td>
<td>0.0328 grams</td>
<td>92.1 percent</td>
</tr>
<tr>
<td>l-Leucyl-d-leucine</td>
<td>0.1004 grams</td>
<td>0.0266 grams</td>
<td>0.0021 grams</td>
<td>0.0287</td>
<td>0.0287 grams</td>
<td>87.8 percent</td>
</tr>
<tr>
<td>d-Leucyl-l-leucine</td>
<td>0.1011 grams</td>
<td>0.0388 grams</td>
<td>0.0003 grams</td>
<td>0.0271</td>
<td>0.0330 grams</td>
<td>82.1 percent</td>
</tr>
<tr>
<td>d-Leucyl-d-leucine</td>
<td>0.1007 grams</td>
<td>0.0294 grams</td>
<td>0.0013 grams</td>
<td>0.3007</td>
<td>0.0328 grams</td>
<td>93.6 percent</td>
</tr>
<tr>
<td>Amino-n-caproic-glycine</td>
<td>0.0664 grams</td>
<td>0.0257 grams</td>
<td>0.0015 grams</td>
<td>0.0272</td>
<td>0.0281 grams</td>
<td>96.8 percent</td>
</tr>
<tr>
<td>Leucyl-asparagine</td>
<td>0.1004 grams</td>
<td>0.0205 grams</td>
<td>0.0010 grams</td>
<td>0.0215</td>
<td>0.0326 grams</td>
<td>66.0 percent</td>
</tr>
</tbody>
</table>
The majority of the peptides used in this study were prepared or collected by the late Dr. Arthur H. Koelker. A small number (four dipeptides and three tripeptides) were made according to Fischer's directions, by Dr. H. Hager and ourselves, in this laboratory. Glycyl-tryptophane was obtained in very pure crystalline form through the kindness of Kalle and Co.
Peptide Copper Complexes

* Tetrapeptides.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Weight of Sample</th>
<th>C$_{\text{Cu}}$ in filtrate after adding 3 cc. of 30% NaOH and boiling</th>
<th>C$_{\text{Cu}}$ in filtrate after adding 3 cc. of 30% NaOH and boiling</th>
<th>Total C$_{\text{Cu}}$</th>
<th>Theoretical weight of C$_{\text{Cu}}$</th>
<th>C$_{\text{Cu}}$ as per cent of total</th>
<th>C$_{\text{Cu}}$ as per cent of theoretical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alanyl-diglycyl-glycine</td>
<td>0.1080</td>
<td>0.0267</td>
<td>0.0017</td>
<td>0.0284</td>
<td>0.0398</td>
<td>86.7</td>
<td>92.2</td>
</tr>
<tr>
<td>Aminobuteryl-diglycyl-glycine</td>
<td>0.1050</td>
<td>0.0260</td>
<td>0.0037</td>
<td>0.0297</td>
<td>0.0305</td>
<td>85.2</td>
<td>94.1</td>
</tr>
<tr>
<td>Leucyl-diglycyl-glycine*</td>
<td>0.1008</td>
<td>0.0239</td>
<td>0.0030</td>
<td>0.0269</td>
<td>0.0265</td>
<td>90.2</td>
<td>101.5</td>
</tr>
<tr>
<td>n-Amino-caproyl-diglycyl-glycine</td>
<td>0.1017</td>
<td>0.0292</td>
<td>0.0058</td>
<td>0.0207</td>
<td>0.0268</td>
<td>75.4</td>
<td>77.2</td>
</tr>
</tbody>
</table>

* Filtered without boiling to decompose carbamino salts.

Using our same technique it was of interest to see the amount of copper hydroxide dissolved by peptones.

Peptones, etc.

<table>
<thead>
<tr>
<th>Substance</th>
<th>Weight of Sample</th>
<th>C$_{\text{Cu}}$ in filtrate after adding 3 cc. of 30% NaOH and boiling</th>
<th>C$_{\text{Cu}}$ in filtrate after adding 3 cc. of 30% NaOH and boiling</th>
<th>Molecular weight calculated from total C$_{\text{Cu}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>"Roche" peptone</td>
<td>0.1110</td>
<td>0.0362</td>
<td>0.0173</td>
<td>186</td>
</tr>
<tr>
<td>"Freptone"</td>
<td>0.1005</td>
<td>0.0064</td>
<td>0.0133</td>
<td>406</td>
</tr>
<tr>
<td>"Merek" peptone</td>
<td>0.1020</td>
<td>0.0044</td>
<td>0.0002</td>
<td>1765</td>
</tr>
<tr>
<td>"Witte's" peptone</td>
<td>0.1025</td>
<td>0.0041</td>
<td>0.0000</td>
<td>1990</td>
</tr>
<tr>
<td>"Witte's" peptone</td>
<td>0.1046</td>
<td>0.0042</td>
<td>0.0000</td>
<td>1982</td>
</tr>
</tbody>
</table>

* This calculation is based on the assumption that one molecule of peptone, as in the case of the peptides, combined with only one molecule of copper hydroxide.

The results on the peptides show unmistakably that one molecule of peptide, whatever number of amino-acids it may contain, combines with only one molecule of copper hydroxide. This interest-
ing fact will no doubt give us an easy method of determining the molecular weights of peptides, provided the copper salts can be separated from the excess copper hydroxide.

The questions that remain to be solved, namely, how are these copper salts formed and what is their structure, will be taken up in a separate paper, in conjunction with the biuret configuration.

SUMMARY.

1. We have developed a technique for making, quantitatively, copper salts of (a) soluble amino-acids and peptides; (b) insoluble amino-acids having soluble copper salts; (c) insoluble amino-acids having insoluble copper salts.

2. We have formed copper salts of twenty-six dipeptides, twenty tripeptides and four tetrapeptides, quantitatively, in solution, and have found the results to be consistent with the formula, (peptide)\textsubscript{1}Cu. This supports the work of Fischer and Abderhalden on five isolated salts.

3. We have found: (a) That on an average 99 per cent of the copper of all amino-acid salts (except that of histidine) is precipitated as oxide when treated with a certain excess of alkali.26 (b) That on an average 6.4 per cent of the copper of dipeptide salts is precipitated as oxide with the same excess of alkali. (c) That on an average 6.3 per cent of the copper of tripeptide27 salts is precipitated as oxide with the same excess of alkali. (d) That on an average 7.3 per cent of the copper of tetrapeptide salts is precipitated as oxide with the same excess of alkali.

Our thanks are due to Dr. Wm. G. Lyle for his encouragement in this work, and for placing at our disposal the excellent collection of peptides and amino-acids belonging to the late Dr. A. H. Koelker, and to Miss Calm M. Hoke for much assistance in preparing this article for publication.

25 Amer. Chem. Journ., Nov., 1912.

26 Using 3-5 cc. \textit{N} CO\textsubscript{2}-free NaOH for every 0.1 gram substance and boiling.

27 Assuming all the substances to be perfectly pure, which of course they are not. It is probable that perfectly pure tri- and tetra-peptides will not precipitate any of the copper of their salts under the conditions given above. We are convinced that impurities will account for most of the precipitation.
EXPERIMENTAL NOTES.

a. Copper oxide as a reagent.

In our first work on copper salts we used black copper oxide obtained in the open market as a reagent, but found that with peptides it reacted too slowly. Then we tried the commercial basic carbonate, and found it more useful, but not quite satisfactory. Freshly prepared copper hydroxide, however, was found not only efficient but almost instantaneous in its reaction at 0°C. The amount of surface is, of course, a factor in the reaction, and therefore a gelatinous precipitate is, other things being equal, preferable to a coarse granular precipitate.

As Fischer and Abderhalden used suspended copper oxide in making their salts, it was necessary to investigate the relative efficiency of this reagent on various amino-acids and peptides when boiled.

The following table gives the results with freshly made copper hydroxide and freshly made copper oxide suspensions on boiling. The latter were made by allowing a suspension of the hydroxide to stand several days in the laboratory, during which time it changed its color from blue to almost black.

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>WEIGHT OF SAMPLE</th>
<th>CuO RESIDUED AFTER 10.5 MIN.</th>
<th>CuO RESIDUED AFTER 20 MIN.</th>
<th>THEORETICAL WEIGHT OF CuO</th>
<th>CuO AS FOUND TO THEORETICAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glycine</td>
<td>0.1011 grams</td>
<td>0.0564 grams</td>
<td>0.0558 grams</td>
<td>0.0536 grams</td>
<td>105.2 per cent</td>
</tr>
<tr>
<td>Glycine</td>
<td>0.1016 grams</td>
<td>0.0562 grams</td>
<td>0.0558 grams</td>
<td>0.0539 grams</td>
<td>103.5 per cent</td>
</tr>
<tr>
<td>Alanine</td>
<td>0.1034 grams</td>
<td>0.0482 grams</td>
<td>0.0472 grams</td>
<td>0.0462 grams</td>
<td>104.3 per cent</td>
</tr>
<tr>
<td>Alanine</td>
<td>0.1021 grams</td>
<td>0.0467 grams</td>
<td>0.0456 grams</td>
<td>0.0451 grams</td>
<td>103.5 per cent</td>
</tr>
<tr>
<td>Alanyl-glycine</td>
<td>0.1013 grams</td>
<td>0.0562 grams</td>
<td>0.0515 grams</td>
<td>0.0547 grams</td>
<td>94.5 per cent</td>
</tr>
<tr>
<td>Alanyl-glycine</td>
<td>0.1001 grams</td>
<td>0.0483 grams</td>
<td>0.0433 grams</td>
<td>0.0429 grams</td>
<td>101.4 per cent</td>
</tr>
<tr>
<td>Leucyl-glycine</td>
<td>0.1023 grams</td>
<td>0.0435 grams</td>
<td>0.0433 grams</td>
<td>0.0435 grams</td>
<td>105.5 per cent</td>
</tr>
<tr>
<td>Leucyl-glycine</td>
<td>0.1015 grams</td>
<td>0.0435 grams</td>
<td>0.0435 grams</td>
<td>0.0435 grams</td>
<td>104.1 per cent</td>
</tr>
<tr>
<td>Alanyl-leucyl-glycine</td>
<td>0.1004 grams</td>
<td>0.0210 grams</td>
<td>0.0208 grams</td>
<td>0.0208 grams</td>
<td>68.2 per cent</td>
</tr>
<tr>
<td>Alanyl-leucyl-glycine</td>
<td>0.1010 grams</td>
<td>0.0137 grams</td>
<td>0.0130 grams</td>
<td>0.0130 grams</td>
<td>44.2 per cent</td>
</tr>
<tr>
<td>Glycy1-leucyl-glycine</td>
<td>0.1011 grams</td>
<td>0.0242 grams</td>
<td>0.0232 grams</td>
<td>0.0232 grams</td>
<td>73.8 per cent</td>
</tr>
<tr>
<td>Glycyl-leucyl-glycine</td>
<td>0.1003 grams</td>
<td>0.0150 grams</td>
<td>0.0153 grams</td>
<td>0.0153 grams</td>
<td>46.2 per cent</td>
</tr>
<tr>
<td>Alanyl-di-glycyl-glycine</td>
<td>0.1003 grams</td>
<td>0.0195 grams</td>
<td>0.0195 grams</td>
<td>0.0195 grams</td>
<td>63.2 per cent</td>
</tr>
</tbody>
</table>
These results show that boiling, while suitable for amino-acids and dipeptides, cannot be used with tri- and tetra-peptides, and will easily account for the abnormal results obtained by Abderhalden and Hirsch. 28

b. Bicarbonates as solvents for copper hydroxide.

When cystine, tryptophane, leucine and other amino-acids, whose copper salts are insoluble, are treated as in method c (see p. 4), the copper salts are found almost wholly 29 in the precipitate, mixed with the excess copper hydroxide.

In order to show the effect of different concentrations of the bicarbonate on the solubility of copper hydroxide and the "insoluble" copper salts, the following preliminary experiments were made.

Pure copper salts of the amino-acids were made as described under c and a small portion (sufficient to leave a slight excess undissolved) was stirred constantly for five minutes in 25 cc. of 5 per cent, 10 per cent and 20 per cent potassium bicarbonate; controls were made on 25 cc. of distilled water. 30

<table>
<thead>
<tr>
<th>SUBSTANCE</th>
<th>CuO dissolved in 25 cc. H2O</th>
<th>CuO dissolved in 25 cc. 5 per cent KHCO3</th>
<th>CuO dissolved in 25 cc. 10 per cent KHCO3</th>
<th>CuO dissolved in 25 cc. 20 per cent KHCO3</th>
<th>CuO dissolved in 25 cc. 20 per cent NaHCO3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Copper hydroxide..........</td>
<td>0.00000</td>
<td>0.0283</td>
<td>0.0580</td>
<td>0.0565</td>
<td>0.1680</td>
</tr>
<tr>
<td>Leucine, copper...........</td>
<td>0.00020</td>
<td>0.0006</td>
<td>0.0008</td>
<td></td>
<td>0.0015</td>
</tr>
<tr>
<td>n-Aminocaproic acid, copper</td>
<td>0.00003</td>
<td>0.0007</td>
<td>0.0016</td>
<td>0.0014</td>
<td>0.0060</td>
</tr>
<tr>
<td>Phenylglycine, copper.....</td>
<td>0.00003</td>
<td>0.0006</td>
<td>0.0012</td>
<td>0.0013</td>
<td>0.0056</td>
</tr>
<tr>
<td>Tryptophane, copper.......</td>
<td>0.00020</td>
<td>0.0004</td>
<td>0.0004</td>
<td>0.0005</td>
<td>0.0007</td>
</tr>
<tr>
<td>Cystine, copper...........</td>
<td>0.00000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0000</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

28 Loc. cit.

29 When less than 0.1 gram of tryptophane is used, the copper salt remains in a supersaturated condition in the filtrate and later crystallizes out.

30 Only one concentration of sodium bicarbonate was used; the potassium bicarbonate, on account of its greater solubility, is preferable.
THE COPPER COMPLEXES OF AMINO-ACIDS, PEPTIDES AND PEPTONES

P. A. Kober and K. Sugiura

Access the most updated version of this article at http://www.jbc.org/content/13/1/1.citation

Alerts:

- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/13/1/1.citation.full.html#ref-list-1