THE CHEMISTRY OF GLUCONEOGENESIS.

VII. CONCERNING THE FATE OF PYRUVIC ACID IN METABOLISM.

BY A. I. RINGER.
(From the Department of Physiological Chemistry of the University of Pennsylvania, Philadelphia, Pa.)

(Received for publication, January 27, 1914.)

The fate of pyruvic acid in the animal body has been the subject of considerable discussion in the past two years. P. Mayer administered 7 to 8 grams of pyruvic acid to normal rabbits and found that the animals, when in a good state of nutrition, developed hyperglycaemia and glucosuria, while those that had been starved, and were therefore poor in glycogen content, developed hyperglycaemia only and no glucosuria. In those experiments he found that the urine often contained albumin after pyruvic acid administration, and further found that the administration of 10 to 15 grams brought about fatal intoxication. After pyruvic acid administration, he also found lactic acid in the urine.

In a second communication, which appeared after our work was far advanced, Mayer reported the influence of pyruvic acid on gluconeogenesis of phlorhizinized dogs and rabbits. In none of his experiments was there an increase in the glucose elimination after pyruvic acid administration, while in two experiments on dogs (out of four) there was a very remarkable reduction in the glucose and nitrogen elimination. The kidneys of the dog in experiment 10 were examined microscopically and the following pathological conditions were found: “kalkhaltige Cylinder in den geraden Kanälen der Papille, Trübung und geronnene Massen in den Tubuli contorti, Hämoglobiniederschläge.” He then drew the conclusion that pyruvic acid is a toxic substance, which causes a

1 Aided by a grant from the Rockefeller Institute for Medical Research.
depression in the nitrogen and glucose elimination by decreasing
the permeability of the kidneys. He offered no explanation for
the failure of pyruvic acid to bring about a decrease in the per-
meability of the kidneys in experiments 8 and 9, in which similar
amounts of pyruvic acid were given, without any appreciable change
in the glucose and nitrogen eliminations. In fact, there was a
slight increase in both nitrogen and glucose output in experiment 9.

In a series of experiments reported by us it was found that
pyruvic acid, when given to phlorhizinized dogs per os or subcu-
taneously was not a toxic substance, and that it was glucogenetic.
It is true that the glucogenetic properties of pyruvic acid were not
found to be very constant, but in no case did we get the drop in
nitrogen and sugar output as was observed by Mayer. Simultane-
ously with our communication Dakin and Janney reported the
results of their experiments from which they came to conclusions
very similar to ours. They also found that pyruvic acid was
 gluogenetic, and in no case did they get a drop in the nitrogen
and sugar output similar to that obtained by Mayer. Results
similar to Dakin and Janney's and to ours have since been re-
ported by Cremer.

In three different laboratories experiments with pyruvic acid
showed that it was glucogenetic and non-toxic. Mayer was the
only one who obtained two negative results and two results which
show very plainly that his pyruvic acid contained something that
was toxic and had a peculiar effect upon the kidneys, an effect
which resembles in its microscopical lesion as well as in its func-
tional disturbance, the results that Underhill and Pearce and
Ringer obtained after tartaric acid administration to phlorhizin-
ized and normal dogs.

In his third communication on this subject Mayer denies the
presence of tartaric acid in his pyruvic acid, and suggests that the
difference in our results may be due to polymerization of our pyru-
vic acid during the process of neutralization.

5 Dakin and Janney: ibid., xv, p. 177, 1913.
7 Underhill: this Journal, xii, p. 115, 1912.
This explanation is not valid for two reasons: First, Dakin and Janney10 have shown that polymerized pyruvic acid is non-glucogenic. Second, we have, as Mayer has, observed great care in the process of neutralization. To eliminate all doubt, however, we performed one experiment in which pyruvic acid was administered subcutaneously unneutralized. As is seen from the record of the experiment, it possesses distinct glucogenetic properties, and has no toxic effect on the kidneys.

We therefore still feel convinced that Mayer's results cannot be attributed to pyruvic acid, but to some extraneous influence.

\textit{The fate of pyruvic acid in the animal body.}

In his first communication11 Mayer showed that after the administration of pyruvic acid, \textit{dI-} and \textit{dL-} lactic acid appeared in the urine. Embden and Oppenheimer12 corroborated these findings. They perfused the extirpated surviving liver of dogs with blood to which pyruvic acid as ammonium or sodium salt had been added and found an increase in the lactic acid content of the perfused blood.

In another communication13 Embden and Oppenheimer report their experiments on the influence of pyruvic acid on the formation

\begin{table}
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\textbf{DATE} & \textbf{PERIOD} & \textbf{WEIGHT} & \textbf{NITROGEN} & \textbf{GLUCOSE} & \textbf{D:N} & \textbf{EXTR. GLUCOSE} & \textbf{ACETONE ACID} & \textbf{LACTIC ACID} & \textbf{REMARKS} \\
\textbf{Oct. 1913} & & & & & & & & & \\
\hline
15 & XI & 11.9 & 6.40 & 24.00 & 3.75 & & 0.262 & 1.27 & \\
15 & XII & 6.62 & 27.56 & 4.16 & 4.7 & 0.186 & 0.72 & 8.8 gms. of pyruvic acid dissolved in 3 cc. of olive oil given subcutaneously. \\
16 & XIII & 11.5 & 6.18 & 25.14 & 4.07 & & 0.218 & 0.76 & \\
\hline
\end{tabular}
\caption{Experiment XXXIII. Twelve-hour periods.}
\end{table}

10Dakin and Janney: \textit{loc. cit.}

11P. Mayer: \textit{loc. cit.}

12Emden and Oppenheimer: \textit{Biochem. Zeitschr.}, lv, p. 337, 1913.

13Emden and Oppenheimer: \textit{ibid.}, xlv, p. 190, 1912.
of aceto-acetic acid in the perfused surviving liver of dogs. Twelve experiments were performed. Five gave no increase in aceto-acetic acid, and seven gave a very marked increase. They concluded that pyruvic acid possesses the power of yielding aceto-acetic acid, because of the intermediary formation of acetaldehyde, which undergoes aldol condensation.

From all this, we see that pyruvic acid can give rise to lactic acid on the one hand and to acetaldehyde on the other. In this connection it is important to remember that from Embden's experiments it is evident that acetaldehyde is not always formed from pyruvic acid.

In our experiments we found that in some instances pyruvic acid yielded large quantities of glucose and in others it gave almost negative results. On examining the relationship between the glucose formation and antiketogenesis in our experiments, a remarkable fact is evident: in case of high sugar formation from pyruvic acid, there is a marked depression in the acidosis (experiments XXII, XXIII and XXV); conversely, when there is little sugar formation, there is practically no change in the acidosis. Ringer and Frankel14 have recently shown that when acetaldehyde is administered subcutaneously to phlorhizinized dogs, it possesses the power of causing an increase in the glucose elimination and a decrease in the acidosis.

On correlating all these facts it becomes evident that pyruvic acid possesses its glucogenetic properties because acetaldehyde and lactic acid are formed in its intermediary metabolism.

These two substances cannot possibly arise as a result of the same chemical process, and pyruvic acid must therefore be capable of following several paths of metabolism, as stated in our previous communication. The variable is not the pyruvic acid, but probably factors of equilibrium in the animal organism15 and we believe there must exist a third possibility for the breakdown of pyruvic acid which results in no sugar formation. This would account for the very low sugar formation in experiments XXIV and XXVI of our series.16

14 Ringer and Frankel: this Journal, xvi, p. 563, 1914.
15 Greer, Witzemann and Woodyatt: \textit{ibid.}, xvi, p. 455, 1914.
16 Ringer: \textit{ibid.}, xv, p. 152, 1913.
We may therefore formulate the fate of pyruvic acid in the animal organism by the following scheme.

\[
\begin{align*}
\text{Glucose} & \xrightarrow{\text{Reduction}} \text{CHOH} \xrightarrow{\text{Decarboxylation}} \text{CO} \xrightarrow{\text{Antiketogenesis}} \text{COH} \\
\text{Laetic acid} & \xrightarrow{\text{Pyruvic acid}} \text{COOH} & \text{CO}_{2} & \text{Acetaldehyde} \\
\text{As yet unknown} & \quad \text{intermediary} & \quad \text{No glucose body}
\end{align*}
\]

Another contribution recently appeared, also dealing with the question of sugar formation from pyruvic acid. Its author, Barrenscheen, perfused the extirpated liver of a phlorhizinized dog with blood to which pyruvic acid as sodium salt had been added. He found no increase in the glucose concentration of the blood after perfusion, and he therefore concluded that pyruvic acid is not a glucogenetic substance.

From what was said above it becomes evident that the method of experimentation employed by Barrenscheen, is not at all adapted for settling this question. Since it was shown that the glucogenetic properties of pyruvic acid may be very largely due to the intermediary formation of acetaldehyde, and as it was also shown that in liver perfusions acetaldehyde undergoes aldol condensation with the formation of acetone bodies, whereas in the organism as a whole it causes the formation of extra glucose, the failure of the above author to find any increase in glucose in his experiment does not in any way lend support to Mayer’s conclusions.

Perfusion experiments with pyruvic acid, through the liver, may, however, become instructive if simultaneous analysis be made of the lactic acid, aceto-acetic acid and glucose concentration of the blood before and after the perfusion. This will show whether lactic acid is formed in those experiments where acetaldehyde fails to be formed, or whether the two substances are formed simultaneously.

18 The same argument is applicable to the work of Parnas and Baer: *ibid.*, xli, p. 386, 1912.
THE CHEMISTRY OF GLUCONEOGENESIS: VII.
CONCERNING THE FATE OF PYRUVIC ACID IN METABOLISM
A. I. Ringer

Access the most updated version of this article at http://www.jbc.org/content/17/2/281.citation

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/17/2/281.citation.full.html#ref-list-1