THE CONVERSION OF GLYCINE INTO SERINE IN THE INTACT RAT*

Sirs:

In an earlier communication we have presented evidence indicating that glycine is converted into serine via condensation with formate or a formate derivative (Scheme I).

\[
\text{CH}_2\text{NH}_2\text{COOH} + \text{HCOOH} \rightarrow \text{CH}_2\text{OHCHNH}_2\text{COOH} \quad (I)
\]

In the present investigation we have studied the physiological formation of this "formate." One possible mechanism is that glycine itself, by deamination and subsequent decarboxylation, gives rise to "formate" (Scheme II).

\[
\text{CH}_2\text{NH}_2\text{COOH} \rightarrow \text{CHO}_2\text{COOH} \rightarrow "\text{HCOOH}" + \text{CO}_2 \quad (II)
\]

We have investigated this pathway by degrading liver serine isolated after the administration of glycine labeled with C14 in the methyl position. According to the proposed scheme the \(\alpha\)- and \(\beta\)-carbon atoms of serine are both derived from the methyl carbon of glycine and should contain the isotope.

Four fasted rats weighing a total of 427 gm. were given 5 mm of glycine by stomach tube per 100 gm. After 14 hours the animals were sacrificed. Serine was isolated from the livers and degraded as previously described.\(^1\)

The results of the carbon analyses, shown in the table, are in accord with Schemes I and II. The serine contained C14 in both the \(\alpha\)- and \(\beta\)-carbon atoms with almost as much activity in the \(\beta\) as in the \(\alpha\) position.

<table>
<thead>
<tr>
<th></th>
<th>COOH*</th>
<th>(\alpha)*</th>
<th>(\beta)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serine</td>
<td>0</td>
<td>390</td>
<td>319</td>
</tr>
</tbody>
</table>

* Counts per minute per mg. of carbon.

* Aided by a grant from the American Cancer Society, recommended by the Committee on Growth of the National Research Council, and by support of the Eliza-beth Severance Prentiss Foundation.

1 Sakami, W., J. Biol. Chem., 176, 995 (1948).
This experiment indicates that under certain conditions glycine itself is a major source of the formate or formate derivative for its conversion to serine.

The data of Winnick et al.3 are in agreement with this hypothesis. Their serine isolated from liver homogenate equilibrated with C14-methyl-labeled glycine contained a small amount of isotope in the β-carbon.

The author wishes to express his thanks to Dr. H. G. Wood for his interest in this investigation.

\textit{Department of Biochemistry}
\textit{School of Medicine}
\textit{Western Reserve University}
\textit{Cleveland}

Received for publication, January 20, 1949

3 Winnick, T., Moring-Claesson, I., and Greenberg, D. M., \textit{J. Biol. Chem.}, 175, 127 (1948).

4 With the technical assistance of Jean Lafaye.
THE CONVERSION OF GLYCINE INTO SERINE IN THE INTACT RAT
Warwick Sakami and With the technical assistance of Jean Lafaye

Access the most updated version of this article at http://www.jbc.org/content/178/1/519.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/178/1/519.citation.full.html#ref-list-1