The present investigation is concerned with the biosynthesis of the commonly occurring open chain amino acids and proline. The methods used were tracer techniques, including isotopic competition. Since similar studies were recently carried out with *Escherichia coli* (1-3), the results obtained here with *Torulopsis utilis* and *Neurospora crassa* are discussed from the point of view of comparative biochemistry.

EXPERIMENTAL

Methods—For the isotopic competition experiments, the methods employed were analogous to those described for *E. coli* (1).

In the case of *T. utilis* (ATCC 9950), cultures growing vigorously in unlabeled glucose-salt medium were centrifuged, and the organisms were resuspended in fresh glucose-free salt medium to give an optical density of about 0.075 at 650 μ. To 20 ml. portions of the resulting suspensions were added supplements of 5 mg. of unlabeled glucose, about 5 to 10 μc. of a C14-labeled tracer4 (glucose or other tracer as indicated), and 2 mg. of any of the desired unlabeled competitors. The supplemented suspensions were incubated at about 25° with aeration until the mass of organisms approximately doubled. In some instances (as indicated), the organisms were not resuspended in fresh medium, but the tracers and competitors were added simultaneously to cultures growing in unlabeled medium.

* Present address, Geophysical Laboratory, Carnegie Institution of Washington, Washington, D. C.

† Damon Runyon Memorial Fellow.

1 A comprehensive report on tracer studies of amino acid biosynthesis in *E. coli* and other microorganisms is to be published shortly as a Carnegie Institution of Washington monograph.

2 See this reference for citations of earlier work.

3 The medium was similar to that of Baddiley et al. (4); an initial pH of about 4.5 was employed, and glucose (1 per cent) was substituted for sucrose.

4 The specific activity of the uniformly labeled tracers used was about 6 mc. per milliatom of carbon; that of the glutamic acid-14C and of the acetate-14C employed was about 1 mc. per mmole. Unless otherwise indicated, the C14 compounds used were uniformly labeled.
In the case of _N. crassa_ (ATCC 10336), a similar procedure was followed, except for modifications necessitated by the cultural habits of this organism. An appropriate medium and strong agitation (to insure a dispersed condition of the culture) were employed. About 1 mg. (dry weight) of freshly harvested _N. crassa_ was used per 20 ml. of the supplemented mixtures.

In addition to the isotopic competition studies, tracer incorporation experiments were carried out in which unlabeled glucose and a given C14 tracer were the only supplements.

After cultivation, the organisms were harvested and subjected to the fractionation, paper chromatography, and radioautography procedures previously described (1). Isotopic competition was determined as before (1). In the tracer incorporation experiments the relative specific activities of various protein amino acids were determined (see Abelson (1)).

Materials—The C14-carbon dioxide used was generated from barium C14-carbonate obtained from the Oak Ridge National Laboratory. Uniformly labeled C14-glucose was prepared from canna leaves (6, 7) which had assimilated C14-carbon dioxide. Uniformly labeled l-amino acids (except ornithine) were isolated from _Chlorella pyrenoidosa_, which had been grown on C14-carbon dioxide as a carbon source (8). Labeled l-ornithine was prepared from uniformly C14-labeled l-arginine by the action of arginase (9). L-Glutamic acid-1-C14 was isolated from _E. coli_ cultivated in the presence of C14-carbon dioxide (10). Sodium acetate-1-C14 was obtained from a commercial source. The unlabeled l-amino acids used were commercial products. Several of the keto acids, including _d_-\alpha-keto-\beta\text{-methylvaleric acid (the keto analogue of L-isoleucine), were kindly furnished by Dr. Alton Meister. Synthetic N2-acetyl-L-ornithine (11) and DL-glutamic \gamma\text{-semialdehyde (12), which is in equilibrium with the cyclized \Delta1-pyrroline-5-carboxylic acid, were prepared as previously described.**

RESULTS AND DISCUSSION

Classification of Amino Acids—The present results obtained with _T. utilis_ and _N. crassa_ support the subdivision of the open chain amino acids and proline into five groups on the basis of the biosynthetic origin of their carbon skeletons. As illustrated in Table I for _T. utilis_ and _N. crassa_, with aspartate as tracer, the protein amino acids shown fall into three distinct groups with respect to relative specific activity. One group con-

5 A modification of the medium of Beadle and Tatum (5) was employed. Tartrate was omitted to avoid possible complications, although it is not a carbon source for _N. crassa_ (5). The modified medium supported adequate growth for the present purposes.

6 The differentiation between competition and incorporation is made to emphasize differences in experimental design and for purposes of exposition.
ists of glutamate, proline, and arginine (glutamic family), a second of aspartate, methionine, threonine, and isoleucine (aspartic family), and the third of lysine. The results with carbon dioxide, acetate, or glutamate as tracer are in accord with this classification.

As shown in Table II, with alanine as tracer, heavy incorporation into protein alanine, valine, and leucine (pyruvic family) was observed, along with light incorporation into certain amino acids. The labeling of valine and leucine presumably is introduced via pyruvate. With serine as tracer, approximately equal relative specific activities are obtained in protein serine, glycine, and cysteine (serine family).

Of the remaining protein amino acids, histidine is in a group by itself, as indicated by biosynthetic studies with N. crassa (13) and a yeast (14), and the aromatic amino acids form another group in these organisms (15, 16). Thus, the fungal protein amino acids may be classified as follows: (a) glutamic acid, proline, arginine; (b) aspartic acid, methionine, threonine, isoleucine; (c) lysine; (d) alanine, valine, leucine; (e) serine, glycine,

Table I

Incorporation of Tracers into Protein Amino Acids of T. utilis and N. crassa (As Relative Specific Activity)*

<table>
<thead>
<tr>
<th>Tracer</th>
<th>Glu</th>
<th>Arg</th>
<th>Pro</th>
<th>Asp</th>
<th>Thr</th>
<th>Iso</th>
<th>Met</th>
<th>Lys</th>
</tr>
</thead>
<tbody>
<tr>
<td>T. utilis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14-Carbon dioxide†</td>
<td>100</td>
<td>500</td>
<td>95</td>
<td>230</td>
<td>230</td>
<td>240</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>Acetate-1-C14†</td>
<td>100</td>
<td>250</td>
<td>129</td>
<td>33</td>
<td>30</td>
<td>30</td>
<td>35</td>
<td>200</td>
</tr>
<tr>
<td>C14-Aspartate</td>
<td>100</td>
<td>100</td>
<td>105</td>
<td>167</td>
<td>160</td>
<td>170</td>
<td>170</td>
<td>70</td>
</tr>
<tr>
<td>C14-Glutamate</td>
<td>100</td>
<td>80</td>
<td>67</td>
<td>26</td>
<td>25</td>
<td>24</td>
<td>22</td>
<td>40</td>
</tr>
<tr>
<td>Glutamate-1-C14</td>
<td>100</td>
<td>90</td>
<td>70</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>N. crassa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C14-Carbon dioxide†</td>
<td>100</td>
<td>440</td>
<td>100</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>160</td>
<td>0</td>
</tr>
<tr>
<td>Acetate-1-C14</td>
<td>100</td>
<td>85</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>93</td>
<td></td>
</tr>
<tr>
<td>C14-Aspartate</td>
<td>100</td>
<td>85</td>
<td>100</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>250</td>
<td>50</td>
</tr>
<tr>
<td>C14-Glutamate</td>
<td>100</td>
<td>70</td>
<td>90</td>
<td>51</td>
<td>49</td>
<td>48</td>
<td>47</td>
<td></td>
</tr>
<tr>
<td>Glutamate-1-C14</td>
<td>100</td>
<td>60</td>
<td>80</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

* The specific activity figures shown are relative to the respective protein glutamic acid values. See the text for details and foot-note 4. Glu, glutamic acid; Arg, arginine; Pro, proline; Asp, aspartic acid; Thr, threonine; Iso, isoleucine; Met, methionine; Lys, lysine.
† The high relative specific activity of arginine obtained with this tracer is presumably due to incorporation of C14 into the amidine carbon atom.
cysteine (cystine); (f) histidine; and (g) phenylalanine, tyrosine, tryptophan.

A similar subdivision applies to E. coli, except for lysine which in this organism is derived from aspartic acid, as is \(\alpha, \epsilon \)-diaminopimelic acid (1, 2). The latter amino acid has not been detected in fungi (17).

The results shown in Table I are in accord with the existence of a Krebs cycle in T. utilis and N. crassa.

Glutamic Family—The data in Table I are consistent with the conclusion that in T. utilis and N. crassa the 5-carbon skeletons of proline and arginine are derived from glutamate. Table III summarizes the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.

\[\text{Ornithine cycle} \]

Table III summarizing the results of isotopic competition experiments with T. utilis, members of the glutamic family and presumable intermediates being used as competitors. Analogous experiments with N. crassa gave qualitatively very similar results. Ornithine, citrulline, and arginine are seen to compete effectively as sources of protein arginine and of protein proline. Proline as competitor is seen to suppress the radioactivity of protein proline but not that of glutamate and arginine. This result does not support the possible major rôle of proline.
as ornithine precursor proposed for \textit{T. utilis} (19) and \textit{N. crassa} (20). Glutamic \(\gamma\)-semialdehyde contributes to protein proline and to some extent to glutamate and arginine.

Evidence has been obtained with \textit{N. crassa} mutants that glutamic \(\gamma\)-semialdehyde is a precursor not only of proline but also of ornithine and hence arginine (21). The present finding that the semialdehyde contributes to arginine is consistent with a rôle of the semialdehyde as ornithine precursor in \textit{T. utilis} as well as \textit{N. crassa}. However, in view of the contribution of added semialdehyde to glutamate, it seems possible that at least part of the exogenous semialdehyde did not directly form ornithine.

\textbf{Table III}

\begin{center}
\begin{tabular}{|l|c|c|c|}
\hline
\textbf{C\# competitor} & \textbf{Glu} & \textbf{Arg} & \textbf{Pro} \\
\hline
None (control) & 100 & 100 & 100 \\
Ornithine† & 75 & 12 & 4 \\
Citrulline† & 95 & 25 & 25 \\
Arginine† & 95 & 15 & 15 \\
Glutamic \(\gamma\)-semialdehyde & 65 & 70 & 6 \\
Proline & 100 & 100 & 0 \\
\hline
\end{tabular}
\end{center}

* The tracer employed was C\(^{14}\)-glucose. See the text for details. Glu, glutamic acid; Arg, arginine; Pro, proline.
† The tracer and competitor were added simultaneously to a culture growing in unlabeled medium.

In contrast to the results with the fungi, the semialdehyde does not compete with glutamate and arginine in \textit{E. coli} under analogous conditions (1).

Studies with \textit{N. crassa} mutants have also shown that exogenous, but not endogenous, ornithine is a major source of proline, and that glutamic \(\gamma\)-semialdehyde as proline precursor may be distinct from the semialdehyde as ornithine precursor (21). These results have been interpreted as reflecting a physical separation of the proline and ornithine paths (21). This separation was ascribed to a spatial organization of relevant enzyme systems with a resulting more or less restrictive “channeling” of metabolites (21).

Thus the enzyme system involved in the formation of glutamic \(\gamma\)-semialdehyde as proline precursor may differ, with respect to organization and possibly to other properties, from that thought to be involved in the formation of the semialdehyde as ornithine precursor. Also, the enzyme catalyzing the ready conversion of exogenous ornithine to glutamic \(\gamma\)-semialdehyde may differ, as to organization and perhaps as to other properties, from the enzyme thought to be involved in the biosynthetic conversion of glutamic \(\gamma\)-semialdehyde to ornithine. Enzyme organization resulting
The present tracer studies point to a distinction between endogenous and exogenous ornithine in *T. utilis* also. With ornithine (at a concentration of about 1 γ per ml.) as tracer, the specific activities of proline and arginine were in the ratio, 100:6, respectively; when the labeled ornithine was diluted with carrier and used at a concentration of 50 γ per ml., this ratio was 100:80, respectively. These results indicate that the exogenous ornithine as a source of proline does not equilibrate with the endogenous ornithine as a source of arginine. On the other hand, the separation of endogenous from exogenous ornithine is not complete, as illustrated especially by the result with the diluted tracer ornithine.\(^9\)

The present results relating to the glutamic family support the accompanying scheme.\(^{10}\)

```
glutamic γ-semialdehyde → Δ¹-pyrroline-5-carboxylic acid → proline
Glutamic acid
(exogenous ornithine)
glutamic γ-semialdehyde → ornithine → citrulline → arginine
```

The glutamate-proline-ornithine interrelation shown above differs from the one found in *E. coli* in which ornithine is formed via several acetylated intermediates (23, 24).\(^{11}\) In isotopic competition experiments with *T. utilis* and *N. crassa*, *Nα*-acetylornithine, a precursor of ornithine in *E. coli* (11, 23), did not act as a source of arginine. This finding is in harmony with the failure of *Nα*-acetylornithine to satisfy the growth requirement of *N. crassa* mutants which respond to ornithine (23), and with the lack of detectable acetylornithinase activity in extracts of wild type *N. crassa* (21).

Aspartic Family—Isotopic competition results with members of the as-
partic family, and intermediates are given in Table IV for *N. crassa*. Very similar competition results were obtained with *T. utilis* with C14-carbon dioxide as tracer. In addition, \(\alpha\)-aminobutyrate was found to contribute to protein isoleucine in both organisms. These results support the paths in the accompanying diagram.

\[
\text{methionine} \\
\uparrow \\
\text{Aspartic acid} \rightarrow \text{homoserine} \rightarrow \text{threonine} \rightarrow \alpha\text{-ketobutyric acid} \rightarrow \alpha\text{-keto-}\beta\text{-methylvaleric acid} \rightarrow \text{isoleucine}
\]

The function of aspartate as threonine precursor has previously been shown for a yeast (25), but apparently not for *N. crassa*. In the latter organism homoserine has been found to yield threonine and methionine (26), and \(\alpha,\beta\)-dihydroxy-\(\beta\)-methylvalerate (27) forms isoleucine via its \(\alpha\)-keto analogue (28). In *E. coli* similar interrelations among metabolites derived from aspartate have been found, except that in this organism lysine and \(\alpha,\epsilon\)-diaminopimelic acid are also aspartate derivatives (2).

Lysine—The data in Table I are consistent with the view that in *T. utilis* the carbon chain of lysine is built up through a combination of the succinate moiety of \(\alpha\)-ketoglutarate with acetate (or a related compound), in confirmation of earlier results (29, 30). The results in Table I indicate

Table IV

*Effect of Competitors on Radioactivity of Amino Acids of Aspartic and Pyruvic Families in *N. crassa* (As Per Cent Radioactivity of Protein Amino Acids Relative to Control)*

<table>
<thead>
<tr>
<th>C(\text{14}) tracer</th>
<th>C(\text{14}) competitor</th>
<th>Asp</th>
<th>Thr</th>
<th>Iso</th>
<th>Met</th>
<th>Ala</th>
<th>Val</th>
<th>Leu</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbonate</td>
<td>None (control)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Homoserine</td>
<td>100</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Threonine</td>
<td>90</td>
<td>8</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Isoleucine</td>
<td>100</td>
<td>100</td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Glucose</td>
<td>None (control)</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>(\alpha)-Ketobutyrate</td>
<td>100</td>
<td>100</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha)-Keto-(\beta)-methylvalerate</td>
<td>100</td>
<td>100</td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pyruvate</td>
<td></td>
<td></td>
<td></td>
<td>75</td>
<td>63</td>
<td>58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha)-Ketoisovalerate</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>64</td>
<td>55</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\alpha)-Ketoisocaproate</td>
<td></td>
<td></td>
<td></td>
<td>100</td>
<td>100</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Valine</td>
<td>100</td>
<td>43</td>
<td>62</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leucine</td>
<td>100</td>
<td>100</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

See the text for details. Asp, aspartic acid; Thr, threonine; Iso, isoleucine; Met, methionine; Ala, \(\alpha\)-alanine; Val, valine; Leu, leucine.
that \textit{N. crassa} also utilizes the succinate moiety of \(\alpha\)-ketoglutarate for lysine synthesis, but (in contrast to \textit{T. utilis}) derives the remaining 2 carbon atoms of lysine from a precursor which does not appear to equilibrate with exogenous acetate or with Krebs cycle acetate.\footnote{Thus, in \textit{N. crassa}, the results with C\(^{14}\)-glutamate as tracer are consistent with a contribution of 4 carbon atoms to lysine via \(\alpha\)-ketoglutarate; with glutamate-1-C\(^{14}\) as tracer, lysine does not become labeled; and with acetate-1-C\(^{14}\) as tracer, the specific activity of the lysine is equal to only about that of the protein glutamate. In contrast, in \textit{T. utilis}, with acetate-1-C\(^{14}\) as tracer the specific activity of lysine is twice that of protein glutamate.} In neither fungus does aspartate serve as a major lysine precursor, as it does in \textit{E. coli}.

\textbf{Pyruvic Family}—The incorporation data in Table II with alanine as tracer show labeling of alanine, valine, and leucine. As mentioned above, the labeling of valine and leucine presumably is introduced via pyruvate. In Table IV isotopic competition data for the pyruvic family in \textit{N. crassa} are presented. Closely similar results were obtained in analogous experiments with \textit{T. utilis}.

The role of pyruvate as valine precursor has previously been shown in \textit{E. coli} (1) and in \textit{T. utilis} (31). In \textit{N. crassa}, \(\alpha,\beta\)-dihydroxyisovalerate (32) and \(\alpha\)-ketoisovalerate (28) are known to yield valine. The function of \(\alpha\)-ketoisovalerate as a precursor of \(\alpha\)-ketoisocaproate and leucine has thus far been demonstrated in \textit{E. coli} only (1). The present results show that the two fungi synthesize leucine in the same manner as does \textit{E. coli}. The conversion of \(\alpha\)-ketoisovalerate to \(\alpha\)-ketoisocaproate is suggested to involve the loss of a 1-carbon fragment (presumably the carboxyl carbon of \(\alpha\)-ketoisovalerate) and addition of a 2-carbon fragment which is probably derived from acetate or a related compound, in view of the finding by Ehrensvärd et al. (29) that in \textit{T. utilis} the carboxyl group of leucine appears to come from acetate carboxyl.

\textbf{Serine Family}—As illustrated in Table II for both \textit{T. utilis} and \textit{N. crassa}, tracer serine labels protein serine, glycine, and cysteine at equal specific activity. However, with tracer glycine in \textit{T. utilis}, serine and cysteine were found to have only 15 per cent each of the specific activity of protein glycine.

These results indicate the following metabolic relationship among members of the serine family.

\footnote{In incorporation experiments with \textit{T. utilis} and \textit{N. crassa}, with C\(^{14}\)-valine as tracer, significant labeling was observed only in protein valine and leucine.}
It has previously been concluded (e.g. by Ehrensvärd et al. (33)) that glycine can form serine in yeast. Apparently, under the cultural conditions used here, serine is a major precursor of both glycine and cysteine in the two fungi. The same relationship has been observed in *E. coli* (1).14

There are, however, at least three differences in serine metabolism between *E. coli* (1) and the two fungi when these organisms are grown on glucose-salt medium. In *E. coli*, but not in the fungi, exogenous threonine contributes to serine, and serine contributes to members of the pyruvic family; in *T. utilis*, but not in *E. coli*, glycine can yield serine and cysteine, as shown in Table II.

SUMMARY

The biosynthesis of open chain amino acids and proline in *Torulopsis utilis* and *Neurospora crassa* was studied by means of tracer techniques. The results are in harmony with the existence of a Krebs cycle in these organisms; they permit the classification of the amino acids studied into groups on the basis of biosynthetic origin, and they support the following biosynthetic sequences (in both *T. utilis* and *N. crassa*): (a) glutamic acid, glutamic \(\gamma \)-semialdehyde, \(\Delta^1 \)-pyrroline-5-carboxylic acid, proline; (b) glutamic acid, glutamic \(\gamma \)-semialdehyde, ornithine, citrulline, arginine; (c) aspartic acid, homoserine, threonine, \(\alpha \)-ketobutyric acid, \(\alpha \)-keto-\(\beta \)-methylvaleric acid, isoleucine; (d) homoserine, methionine; (e) \(\alpha \)-ketoglutaric acid, lysine; (f) pyruvic acid, \(\alpha \)-alanine; (g) pyruvic acid, \(\alpha \)-ketoisovaleric acid, \(\alpha \)-ketoisocaproic acid, leucine; (h) \(\alpha \)-ketoisovaleric acid, valine; (i) serine, glycine; (j) serine, cysteine. *T. utilis* and *N. crassa* apparently differ from each other in details of lysine formation. Both organisms differ from *E. coli* in several respects, including the glutamate-proline-ornithine relationship, lysine synthesis, as well as aspartate and serine metabolism.

BIBLIOGRAPHY

14 The serine-glycine relationship in serine-requiring mutants of *E. coli* has been investigated by J. O. Meinhart and S. Simmonds (personal communication).
364 AMINO ACID BIOSYNTHESIS

AMINO ACID BIOSYNTHESIS IN
TORULOPSIS UTILIS AND
NEUROSPORA CRASSA
Philip H. Abelson and Henry J. Vogel

Access the most updated version of this article at http://www.jbc.org/content/213/1/355.citation

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/213/1/355.citation.full.html#ref-list-1