The Source and State of the Hydroxylysine of Collagen

II. FAILURE OF FREE HYDROXYLYSINE TO SERVE AS A SOURCE OF THE HYDROXYLYSINE OR LYSINE OF COLLAGEN*

F. MAROTT SINEX,† DONALD D. VAN SLYKE, AND DAVID R. CHRISTMAN

From the Medical Research Center and the Chemistry Department, Brookhaven National Laboratory, Upton, New York

(Received for publication, December 4, 1958)

The amino acid 5-hydroxylysine, first isolated from gelatin (2), has been found absent in all types of proteins other than collagen that have been examined (3). It is not an essential amino acid for animal nutrition (4), and hence must be formed from other material in the animal body.

Previous papers from this laboratory (5, 6) have shown that lysine is the chief source of the hydroxylysine incorporated into collagen. When uniformly C14 labeled lysine was administered to young rats, either with food (5) or by injection (6), both lysine and hydroxylysine in the skin collagen were labeled to an approximately equal extent, indicating that lysine serves as the chief, and probably only significant, source of hydroxylysine in rat skin collagen. The relative rates of labeling of the two amino acids indicated that the hydroxylation of lysine to form hydroxylysine occurs simultaneously, or nearly so, with incorporation into the collagen (6). The results were confirmed by Piez and Likins (7), with regard to rat collagen of skin, tail, bone, and dentin, and by Kao and Boucek (8) with regard to collagen formed in implanted polyvinyl sponges.

The questions remained, whether administered free hydroxylysine can either be incorporated into the hydroxylysine or collagen, or be dehydroxylated, by reversion of the process by which lysine is hydroxylated, and incorporated into the lysine of collagen. With regard to the latter question, the probability of a negative answer is indicated by a feeding experiment by Lindstedt (9). He found that synthetic D5-hydroxylysine (D allo isomer) could not replace an equimolar amount of L-lysine in maintaining the growth of rats. The possibility remained, however, that the hydroxylase of lysine might be to some extent reversible.

The object of the work reported in the present paper has been to ascertain by isotope analysis whether hydroxylysine administered either orally or by injection to growing rats is incorporated into either the hydroxylysine or the lysine of collagen. Tritium-labeled hydroxylysine has been administered to young rats and the extent of incorporation of the label into the lysine and hydroxylysine of the skin collagen has been measured. The amount of tritium found in either the hydroxylysine or lysine of the collagen was so slight that it does not appear that free hydroxylysine is to a significant extent incorporated into collagen as either hydroxylysine or lysine.

The results are consistent with the deduction of Piez and Likins (7), who observed that the C14 content of the hydroxylysine isolated from collagen after injection of C14-labeled lysine into rats was not altered by accompanying injections of unlabeled hydroxylysine. Piez and Likins reasoned that “if preformed, unbound hydroxylysine can be incorporated into collagen, the presence of large amounts of the free amino acid would decrease the contribution of lysine-C14 to collagen hydroxylysine.”

EXPERIMENTAL

Two experiments were carried out. In each experiment tritium-labeled hydroxylysine was given to four young rats, and the relative extents of incorporation of labeled material into the lysine and hydroxylysine of the skin collagen were measured.

In Experiment I (Table I) the labeled hydroxylysine was administered to rats of 50 to 60 gm. weight by addition to the daily diet for 2 weeks before the rats were killed. The hydroxylysine was a synthetic preparation labeled with tritium attached to carbon 6.

In Experiment II (Table II) the labeled hydroxylysine was given by a single intraperitoneal injection and the rats were killed 4 hours later. The hydroxylysine was a preparation that had been tritiated by the method of Wilzbach (10), and was more radioactive than that used in Experiment I.

Experiment I

Preparation of Hydroxylysine Labeled with Tritium Attached to C-6—In a Hydroxylysine was prepared by the method of Touster (11) as modified by Lindstedt (12). However, instead of using KC4N, as was done by Lindstedt to label the carbon, we employed tritium gas for reduction of the terminal —CH(OH)·CN group to —CH(OH)—CH3 (NH3). Tritium is introduced by the reduction into the —CH3—NH2 group and, by exchange, into the NH2 group, but in the NH2 and OH groups is replaced by H in subsequent operations in water solution, leaving H stably bound only in the CH3 group. The hydroxylysine obtained

919
was presumably a mixture of equal amounts of DL-n- and DL-allohydroxylysine. The specific activity of the preparation was 43.8 μc. per mmole.

Treatment of Rats—A rat, weighing 61 gm. at the start, consumed in 2 weeks 250 gm. of the "basal"* diet of Henderson et al. (13), referred to by them as supplement B, to which 2.5 gm. of unlabeled lysine and 0.134 gm. of tritium-labeled synthetic DL-hydroxylysine hydrochloride were added. On this diet, the rat grew 43 gm. in the 2 weeks. The approximate amount of per cent of the growth was dry solids, of the solids + was protein, of the protein $ was collagen, and of the collagen 0.01 was counted in the gas counter of Bernstein and Ballantine (16).

The conditions of the experiment were similar to those of our previous experiments (5), in which labeled lysine was fed, except that in the present experiment it is the hydroxylysine that is labeled.

Preparation and Analysis of Skin Collagen—The preparation of gelatin from skin collagen previously described (6) was followed, with precipitation of nongelatin proteins from the gelatin solution by trichloroacetic acid. The gelatin was not precipitated with acetone. Hydrolysis of gelatin and precipitation of the basic amino acids were carried out as previously described (5). The basic amino acids were chromatographed on Dowex 50 in 0.1 M citrate at pH 5. This procedure, as shown by Hamilton (11) gives good separation of lysine and hydroxylysine from each other and from histidine and arginine. The solutions of lysine and hydroxylysine were desalted with Dowex 50 as previously described (6) and eluted in 6 N HCl, which was removed by concentration in a vacuum and drying over KOH. The dihydrochlorides of lysine and hydroxylysine thus obtained were freed of chloride by treatment with silver sulfate, followed by barium hydroxide to remove SO₄, and by CO₂ to remove barium. To the solution of each amino acid thus obtained exactly enough picric acid was added to form the monopicrate, which was crystallized by concentrating the solution. Samples of the picrates were desalted with Dowex 50 as previously described (6), and from histidine and arginine. The solutions of lysine and hydroxylysine were desalted with Dowex 50 as previously described (6) and eluted in 6 N HCl, which was removed by concentration in a vacuum and drying over KOH. The dihydrochlorides of lysine and hydroxylysine thus obtained were freed of chloride by treatment with silver sulfate, followed by barium hydroxide to remove SO₄, and by CO₂ to remove barium. To the solution of each amino acid thus obtained exactly enough picric acid was added to form the monopicrate, which was crystallized by concentrating the solution. Samples of the picrates were analyzed for tritium by the method of Christman (15), in which the hydrogen is set free by heating with metallic zinc and is counted in the gas counter of Bernstein and Ballantine (16).

Experiment II

Preparation of Tritium-Labeled Hydroxylysine—In order to obtain hydroxylysine of greater specific activity for the injection experiment synthetic DL-hydroxylysine was treated with tritium gas according to the procedure of Wilzbach (10). A gm. of DL-hydroxylysine was exposed to 1.2 curies of tritium gas at room temperature and a pressure of 0.33 atmosphere for 14 days. In order to remove radiolabeled tritium the resulting material was dissolved in 5 successive portions of 6 ml. each of distilled water, and each portion of water was removed by evaporation under a vacuum at room temperature.

Chromatography in phosphate buffer by the procedure of Hamilton and Anderson (17) gave a preparation that contained approximately 70 per cent of n-n-hydroxylysine and 30 per cent of the allo isomers.

This material, 10 mg., was rechromatographed and the phosphate buffer removed according to the procedure of Mueller et al. (18). Isolation and counting of the sample of monopicrate indicated that the specific activity was 9.62 x 10⁵ μc. per mmole of hydroxylysine.

Treatment of Rats—Hydroxylysine, 6.68 mg., in four approximately equal portions was injected intraperitoneally into four rats of 60 to 66 gm. weight. Since 70 per cent of the hydroxylysine in the preparation was the n-n form, it is calculated that each rat received 0.59 mg. of L-n-hydroxylysine. The rats were killed 4 hours after the injection.

Preparation and Analysis of Skin Collagen—The procedure was the same as in Experiment I, except that in Experiment II unlabeled n-n-hydroxylysine was added to the gelatin solution to produce a concentration of 0.15 per cent of hydroxylysine in the solution before treatment of the latter with trichloroacetic acid. The addition was made with the thought that the free unlabeled hydroxylysine might displace from the gelatin any of the highly active tritium-labeled hydroxylysine that might have been adsorbed or otherwise non-specifically bound by the collagen in vivo from the injected labeled hydroxylysine (however, the work of Cornwall and Luck (19) appearing after these experiments).

<table>
<thead>
<tr>
<th>Labeled amino acid</th>
<th>Specific activity</th>
<th>Amount injected per rat</th>
<th>Specific activity</th>
<th>Derived from injected amino acid</th>
</tr>
</thead>
<tbody>
<tr>
<td>L-Lysine†</td>
<td>4.83 x 10⁴ μc.</td>
<td>0.98</td>
<td>20.3</td>
<td>20.3</td>
</tr>
<tr>
<td>DL-Hydroxylysine†</td>
<td>9.62 x 10⁴ μc.</td>
<td>2.63</td>
<td>2.50</td>
<td></td>
</tr>
<tr>
<td>L-Lysine†</td>
<td>153</td>
<td>0.518</td>
<td>0.34</td>
<td>0.46</td>
</tr>
</tbody>
</table>

* Preparation with 70 per cent DL-n-isomer, 30 per cent DL-allo isomer.
† From data on 4-hour rats of Van Slyke and Sinex (6).

Preparation was carried out by Dr. Seymour Rothstein of the New England Nuclear Corporation, Boston, Massachusetts.
were done indicates that addition of the amino acid before dialysis probably had no influence on the results. In order to insure complete removal of the added inactive hydroxylysine, the gelatin solution was dialyzed against 5 successive changes of distilled water instead of the 3 changes used previously (6) and in Experiment I.

Preparation of the picrates of lysine and hydroxylysine from the hydrolyzed collagen, and determination of their activities by Christman's method were as in Experiment I.

DISCUSSION

Results of Experiment I. Administration of Labeled Hydroxylysine in Diet

The results of feeding labeled hydroxylysine are shown in the upper row of figures in Table I. For comparison the results of feeding labeled lysine previously reported (5) are shown in the lower row of figures in the table. The percentages of the lysine and hydroxylysine residues of skin collagen derived from the labeled amino acids in the food are calculated as

\[
\text{specific activity of amino acid isolated} \times \frac{\text{specific activity of amino acid fed}}{\times 100.}
\]

The results show that incorporation of fed hydroxylysine into skin collagen was insignificant compared with incorporation of fed lysine. After feeding lysine the activities of both the lysine and the hydroxylysine of the collagen were 20.3 per cent of the activity of the fed lysine, whereas after feeding hydroxylysine the activities of both the lysine and hydroxylysine in the collagen were only 0.004 per cent of the activity of the fed hydroxylysine.

The fact that after feeding labeled hydroxylysine the specific activities of lysine and hydroxylysine in the collagen were equal could be interpreted to indicate that about \(\frac{1}{2}\) of the incorporated hydroxylysine was reduced to lysine during the process of incorporation, a reversal of the hydroxylation of lysine that was noted after either feeding (5) or injecting (6) labeled lysine. However, the results of injecting hydroxylysine in Experiment II do not support such an interpretation. It appears more probable that a small part of the fed hydroxylysine was reduced to lysine by bacterial action in the intestine, and that this lysine was the source of the small amounts of labeled lysine and hydroxylysine that were incorporated into the collagen.

Correction for the effect of the greater amount of labeled lysine fed does not alter the significance of the difference in incorporation between the two amino acids. The amount of L-hydroxylysine in the hydroxylysine feeding experiment was only \(\frac{1}{6}\) of the amount of L-lysine in the lysine feeding experiment, but was equivalent, as a source of collagen hydroxylysine, to \(\frac{1}{3}\) the amount of lysine fed, because only \(\frac{1}{3}\) of incorporated lysine is changed to hydroxylysine (5, 6). If hydroxylysine were incorporated to the same extent as lysine per unit of each present, the percentage of labeled collagen hydroxylysine derived from fed hydroxylysine would therefore be \(\frac{1}{3}\) the percentage derived from fed lysine. However, the percentage, 0.004, in the hydroxylysine feeding (upper row, Table I) is only \(\frac{1}{2}\) that obtained in the lysine feeding (lower row, Table I).

Results of Experiment II. Intraperitoneal Injection of Labeled Hydroxylysine

In Table II the results of labeled hydroxylysine injection in Experiment II are given in the upper row of figures. In the lower row are given for comparison the results of a previous experiment (6) in which labeled lysine was injected. In both experiments the rats were killed 4 hours after the injections.

The incorporation of labeled hydroxylysine into the collagen was quantitatively insignificant compared with the incorporation of labeled lysine. Correcting for the difference in amounts of labeled L-lysine and L-hydroxylysine injected, as in the discussion of Experiment I, one would expect the percentage of collagen hydroxylysine derived from injected hydroxylysine to be \(\frac{1}{2}\) as great as the percentage of collagen lysine derived from injected lysine, if the same proportion of injected hydroxylysine as of lysine were incorporated. Actually after injection of labeled hydroxylysine the percentage of collagen hydroxylysine derived from the injected material was only \(\frac{1}{3}\) as great as after injection of labeled lysine.

The results (upper row, Table II) indicate that a slight but measurable amount of the injected hydroxylysine was taken up directly by the skin collagen. This conclusion is indicated by the fact that the specific activity of the hydroxylysine isolated from the collagen was about 10 times the specific activity of the isolated lysine. This activity ratio excludes the possibility that the labeled hydroxylysine found in the collagen was formed, as suggested for fed hydroxylysine in Experiment I, by intestinal reduction to lysine and incorporation of the resultant lysine accompanied by its partial hydroxylation. It is possible that the small amount of labeled hydroxylysine found in the collagen was taken up by a nonspecific adsorption or combination of the amino acid with the collagen such as that studied in vitro by Cornwall and Luck (19). These authors have shown that the proteins, histone and insulin, in solution can form combinations with small amounts of phenylalanine and lysine that are not dissociated by precipitation and dialysis. Whatever the mechanism of the observed combination of collagen with injected hydroxylysine, the proportion combined is too slight to indicate that direct incorporation of free hydroxylysine can serve as a physiologically significant source of collagen hydroxylysine.

SUMMARY

Feeding or injecting radioactive hydroxylysine into young rats did not lead to the incorporation of significant amounts into the hydroxylysine of the skin collagen. Slight amounts of radioactive hydroxylysine and lysine were found in the collagen hydrolysates, but the amounts were so small, compared with those obtained after similar administration of radioactive lysine, that they excluded free hydroxylysine as a physiologically significant source of either hydroxylysine or lysine in the collagen.

The results reinforce the conclusion reached by the authors from experiments with labeled lysine (5, 6), that the hydroxylysine of collagen in the rat originates from hydroxylation of lysine during formation of the collagen.

Acknowledgments—We wish to acknowledge the competent assistance in carrying out these experiments of Miss Barbara Faris, Mrs. Mary Phillips, and Mr. John Plasin.
REFERENCES

The Source and State of the Hydroxylysine of Collagen: II. FAILURE OF FREE HYDROXYLYSINE TO SERVE AS A SOURCE OF THE HYDROXYLYSINE OR LYSINE OF COLLAGEN

F. Marott Sinex, Donald D. Van Slyke and David R. Christman

J. Biol. Chem. 1959, 234:918-921.