Inhibition of Ribonucleic Acid Degradation in Bacteria by Spermine*

EDWARD J. HERBST AND B. P. DOCTOR†

From the Department of Biochemistry, School of Medicine, University of Maryland, Baltimore, Maryland

(Received for publication, November 13, 1958)

A release of acid soluble constituents that absorb at 260 μ occurring during the incubation of suspensions of Escherichia coli H (1), Pseudomonas aeruginosa (2), or Lactobacillus arabinosus (3) in buffers. Lysogenic E. coli strain K1 as well as nonlysogenic E. coli strains B and B/r excrete ultraviolet-absorbing substances during growth in media deficient in glucose, and a methionine-requiring auxotroph of lysogenic E. coli (strain K1;W-6) excretes 260 μ-absorbing materials when incubated in methionine-free growth medium (1). During methionine starvation the cells remained fully viable but there was no increase in the number of viable cells. Holme and Palmstierna (5) incubated E. coli B in nitrogen-deficient media and observed the accumulation of substances causing an absorption in the ultraviolet region. Cells of Rickettsia mooseri lost 260 μ-absorbing materials in isotonic media incubated at 36° and there was a complementary decrease in the nucleic acid fraction of rickettsial suspensions (6).

We have reported (7) the release of acid soluble constituents that absorb at 260 μ during the incubation of washed cells of Hemophilus parainfluenzae in water or buffers. The 260 μ-absorbing "leakage" was derived from the ribonucleic acid fraction of the cell suspension and the temperature and pH characteristics of the reaction suggested that it is an enzymatic process. In the presence of the polyanine, spermine, which is an essential growth factor for H. parainfluenzae (8), the leakage and the associated nucleic acid breakdown is reduced or eliminated. The inhibition of nucleic acid degradation in the cell suspensions was deemed a consequence of nucleic acid-spermine complex formation (9, 10).

The experiments described in this paper more fully characterize the leakage of 260 μ-absorbing materials from suspensions of H. parainfluenzae in buffers or growth media as an autolytic degradation of cellular ribonucleic acid by a very active ribonuclease. The enzymatic degradation of bacterial ribonucleic acid can be reduced or completely inhibited by the addition of spermine to the bacterial suspensions.

EXPERIMENTAL

The bacteria were grown in the defined medium of Herbst et al. (11) in 1 l Erlenmeyer flasks containing 300 ml of medium. Incubation was for 16 to 24 hours at 34° with continuous shaking.

* This work was supported in part by a research grant from the American Cancer Society, Maryland Division, and in part by a research grant E1185(C4) from the National Institute of Allergy and Infectious Diseases of the National Institutes of Health, United States Public Health Service.

† Present address, Department of Biochemistry and Nutrition, Savage-Hall, Cornell University, Ithaca, New York.

The cells were harvested by centrifugation at 2° and were washed with cold 0.9 per cent sodium chloride. A suspension containing approximately 10 mg. dry weight of cells per ml. was prepared in cold 0.1 M Tris buffer, pH 8.1, and the weight of cells per ml. of suspension was determined turbidimetrically by reference to a standard curve relating turbidity and cell dry weights. In most experiments, an aliquot containing 3 mg. of cells was pipetted into each of the experimental tubes (13 × 100-mm. Pyrex test tubes) containing the chilled suspending medium. The final volume was 3 ml and the tubes were incubated in a constant temperature bath at 37° without shaking. (Deviations from these conditions are indicated in the appropriate tables or figures.) At the end of the incubation period the tubes were centrifuged at 2° and the supernatants were treated with cold perchloric acid to a final concentration of 6 per cent. The very slight precipitate was removed by centrifugation and the supernatants were analyzed for 260 μ absorption with the Beckman model DU spectrophotometer and for ornin reactive material by the procedure of Dische (12).

The cells obtained by centrifugation of the incubation mixtures were suspended in cold 6 per cent perchloric acid and extracted three times; the perchloric acid insoluble fraction was washed once with cold 95 per cent ethanol and resuspended in 6 per cent perchloric acid. The suspension was heated in a water bath at 90° for 15 minutes according to the modified procedure of Schneider (13) and centrifuged in the cold. The residue was re-extracted at 90° for 15 minutes and the supernatant obtained after centrifugation was combined with the first hot perchloric acid extract. The absorbance of the extract at 260 μ was determined, RNA was estimated by the orcinol procedure (12), and DNA was determined by the diphenylamine method (14). The absorbance at 260 μ of each cell supernatant ("leakage") or cell extracts is expressed as A260. Absorances of orcin reactive material are expressed as the absorbance at 660 μ (A660) and the diphenylamine analyses are expressed as the absorbance at 595 μ (A595). All data have been calculated as absorbance per mg. dry weight of cells per ml.

RESULTS

Leakage from Washed Cells of Material Absorbing at 260 μ — Examination of the ultraviolet absorption spectra of the supernatant solutions from suspensions of cells in distilled water, 1 per cent sodium chloride, and distilled water plus spermine or putrescine (final concentration 0.5 mm) shows a maximum near 260 μ in each series (Fig. 1). The leakage from cells in dia-

† The abbreviation used is: Tris, tris(hydroxymethyl)aminomethane.
Fig. 1. The absorption spectra of supernatant fluids from suspensions of *H. parainfluenzae*. Temperature 34°; time of incubation, 4 hours; 1 mg. dry weight of cells per ml. Curve 1, distilled water; Curve 2, 1 per cent sodium chloride; Curve 3, 0.5 mM putrescine.2 HCl; Curve 4, 0.5 mM spermine.4 HCl.

Fig. 2. The effect of pH on the 260 mμ leakage from *H. parainfluenzae*. Temperature, 37°; time of incubation, 1 hour; 1 mg. dry weight of cells per ml. (---), suspensions in 0.1 M Tris buffer; (O---O), suspensions in 0.1 M Tris buffer + 0.5 mM spermine.

tilled water is decreased somewhat by 1 per cent salt but the effect of the salt is not so pronounced as in the *Ps. aeruginosa* experiments where salt blocks essentially all leakage (2). The growth factors, spermine and putrescine, are more effective than salt in preventing leakage of the 260 mμ-absorbing materials with spermine possessing the greater activity.

Effect of pH on Leakage—The pH of the suspending medium markedly influences the amount of 260 mμ leakage from washed...
cells. In Fig. 2, leakage over the pH range 7.3 to 8.4 and the effect of spermine in reducing the level of 260 μm leakage are illustrated. Whereas Newton (2) observed a rather sharp pH optimum at 5.3 for maximal leakage from Ps. aeruginosa, the H. parainfluenzae leakage occurs in the alkaline range with an optimal pH of 8.1. In view of these results the test system adopted for further study consisted of washed cell suspensions in 0.1 M Tris buffer, pH 8.1, and spermine as the antagonist of the leakage phenomenon.

Effect of Temperature on Leakage—The effect of temperature on the rate of the leakage reaction was studied over the range 1 to 55°. Leakage at 1 and 22° is negligible while at physiological temperatures it is very great with the most leakage occurring at 37° (Fig. 3); at 55° the rate of leakage is reduced considerably. The protective effect of spermine is apparent over the entire range of temperatures and 0.5 mM growth factor provides essentially complete protection against the extensive leakage which occurs in its absence at 37°.

Rate of Leakage in Tris Buffer at 0 and 37°—The rate of the leakage reaction was studied at 0 and at 37° to further characterize the 260 μm release and to establish the time required to carry the reaction to completion. In Fig. 4 the rate of 260 μm leakage at the two temperatures is illustrated and the protection afforded by spermine is again demonstrated at each experimental point of the 37° time curve. The leakage at 0° is comparable to that observed in spermine-protected cells at 37°.

Origin of Leakage—The data summarized in Table I support the concept that cellular RNA is the origin of the 260 μm leakage. After the incubation of the bacteria in Tris buffer, the 200 μg absorption of the cell extracts is lowered, RNA is lost from the cells, and the 260 μm leakage rises sharply; analysis of the incubation medium (“leakage”) by the orcinol method reveals the presence of pentose in support of the data on RNA degradation in the cells. The DNA content of the cells is unchanged signifying the inactivity of the DNA-specific enzymes under these conditions of incubation. In the presence of spermine the 200 μm leakage and the loss of RNA from the cells is substantially reduced.

In Table II the relative effectiveness of the principal H. parainfluenzae growth factors as inhibitors of the leakage reaction is compared. Spermine is the most effective inhibitor of 260 μm leakage from cells that have been harvested from cultures containing either spermine or putrescine as the amine growth factor tested for leakage in Tris buffer suspensions as described in Table I. The inhibition of the leakage of 260 μm-absorbing materials by the addition of 0.5 μmoles of the amine to these suspensions is expressed as the percent decrease in absorbance at 260 μm of the cell supernatants.

Table II

<table>
<thead>
<tr>
<th>Cells grown on</th>
<th>Spermine</th>
<th>Soerminlne</th>
<th>Putrescine</th>
<th>1,3-Propanediol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>%</td>
<td>%</td>
<td>%</td>
<td>%</td>
</tr>
<tr>
<td>Putrescine</td>
<td>100</td>
<td>92</td>
<td>35</td>
<td>57</td>
</tr>
<tr>
<td>Spermine</td>
<td>92</td>
<td>75</td>
<td>26</td>
<td>54</td>
</tr>
</tbody>
</table>

Table III

Degradation of RNA in Cells Incubated in Growth Media

<table>
<thead>
<tr>
<th>Conditions</th>
<th>A_{260}</th>
<th>A_{600} (RNA)</th>
<th>A_{260} (DNA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zero time</td>
<td>4.680</td>
<td>0.640</td>
<td>0.047</td>
</tr>
<tr>
<td>2 hours' incubation</td>
<td>2.025</td>
<td>0.224</td>
<td>0.045</td>
</tr>
<tr>
<td>2 hours' incubation + spermine</td>
<td>3.450</td>
<td>0.440</td>
<td>0.050</td>
</tr>
<tr>
<td>4 hours' incubation</td>
<td>1.530</td>
<td>0.130</td>
<td>0.042</td>
</tr>
<tr>
<td>4 hours' incubation + spermine</td>
<td>2.971</td>
<td>0.340</td>
<td>0.047</td>
</tr>
</tbody>
</table>

* Absorbance data are expressed as in Table I.
RNA and DNA were determined on cell extracts by the procedures described under "Experimental." Five volumes of 300-ml. of defined growth medium were inoculated with an equal amount of logarithmic phase inoculum and a single volume of 300 ml. was centrifuged after 8, 14, 25, 36, and 50 hours' incubation at 34°. Total growth factor was determined by microbiological analysis (11) of HCI-hydrolyzed cells while RNA and DNA were determined on cell extracts by the procedures described under "Experimental."

Table IV

<table>
<thead>
<tr>
<th>Time (hr)</th>
<th>RNA (μg/mg)</th>
<th>DNA (μg/mg)</th>
<th>Growth factor (μ mole/mg)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>1.151</td>
<td>0.152</td>
<td>0.0317</td>
</tr>
<tr>
<td>14</td>
<td>1.095</td>
<td>0.111</td>
<td>0.0290</td>
</tr>
<tr>
<td>25</td>
<td>0.870</td>
<td>0.113</td>
<td>0.0163</td>
</tr>
<tr>
<td>36</td>
<td>0.712</td>
<td>0.102</td>
<td>0.0184</td>
</tr>
<tr>
<td>50</td>
<td>0.519</td>
<td>0.098</td>
<td>0.0083</td>
</tr>
</tbody>
</table>

* Absorbance data are expressed as in Table I.

† Cells grown under these conditions contain putrescine (15).

The relative low activity of the diamines, putrescine and 1,3-propanediamine, in preventing the degradation of RNA is surprising since these diamines and spermine have equivalent activity as growth factors for *H. parainfluenzae* (11). We have been unable to demonstrate a conversion of diamine to polyamine by this organism (16) and it is extremely unlikely, in view of the relatively high concentration of spermine employed to prevent leakage, that trace quantities of polyamine synthesized from a diamine precursor would be effective in growing cultures.

DISCUSSION

These experiments illustrate a pronounced effect of *H. parainfluenzae* growth factors, and especially spermine, in stabilizing the RNA of buffered cell suspensions or of bacteria suspended in the normal growth medium. The significance of this polyamine inhibition of the degradation of RNA by the bacterial RNAse remains to be explored and defined. A related investigation in our laboratory has established that all of the growth factor in *H. parainfluenzae* cells can be precipitated as a nucleic acid-amine complex (9, 10). This observation and the effect of polyamine as an inhibitor of RNA breakdown seem indicative of an essential role of the growth factors in nucleic acid metabolism. If the role of the growth factors is that of a protector or stabilizer of RNA during the lag or early log phase of growth, then the cells incubated in buffer or growth medium without the growth factor might be damaged or destroyed by the extensive RNA degrada-

REFERENCES

Inhibition of Ribonucleic Acid Degradation in Bacteria by Spermine
Edward J. Herbst and B. P. Doctor

Access the most updated version of this article at http://www.jbc.org/content/234/6/1497.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/234/6/1497.citation.full.html#ref-list-1