The Trypsin and Chymotrypsin Inhibitors from Avian Egg Whites*

MARVIN B. RHODES, NELLE BENNETT, AND ROBERT E. FEENEY

From the Department of Biochemistry and Nutrition, College of Agriculture, University of Nebraska, Lincoln, Nebraska

(Received for publication, December 4, 1959)

Studies of the comparative properties of proteins and enzymes from closely related species are receiving increasing attention as an approach to understanding the relationships between molecular structures and functions (1). Outstanding examples of these are the studies on the hemoglobins by Pauling et al. (2) and the studies on ribonucleases by Anfinsen et al. (3). The purpose of this approach is to utilize the similarities or differences provided by nature in the proteins or enzymes from closely related species as a tool. By so doing, the investigator may be able to differentiate between those parts of the molecule which are important for the biological, chemical, or physical characteristics of the molecule and those parts which are less important. Such an approach is similar in purpose to the use of chemical and physical means to modify proteins for study.

The eggs of different avian species offer an excellent area for comparative biochemical research. This is true not only because of the wide variety of species but also because a number of very similar eggs may be obtained from the same bird. Furthermore, considerable study has already been made of the biologically active proteins of chicken egg white (4, 5).

One of the more interesting constituents of egg white is ovomucoid. Chicken ovomucoid has been identified as an inhibitor of trypsin (6). Although it has not been crystallized, it is easily isolated in apparently essentially pure form and the assay of biological activity (trypsin inhibition) is readily conducted (7). Ovomucoid inhibits trypsin by the formation of an equimolar complex, and this complex is relatively stable for periods which are necessary to conduct many biochemical experiments (6, 8). In addition to the ovomucoid in chicken egg white, Matsushima et al. (9) recently reported another inhibitor of a proteolytic enzyme which they named the ovoinhibitor. The ovoinhibitor was reported to inhibit microbial proteolytic enzymes prepared from Bacillus subtilis var. biotecus containing 0.6 meq. of titratable groups per g, employed in this exchange agent. DINE-cellulose Type 20 containing 0.6 meq. of titratable groups per g, employed in preparation of this exchange agent. DINE-cellulose Type 20 containing 0.6 meq. of titratable groups per g was purchased from the Brown Company.

Preparation and Use of Ion Exchange Agent—CM-cellulose, containing 0.6 meq. of titratable groups per g, employed in this study was prepared by the method of Peterson and Sober (16). A wood cellulose, Solka-Floc BW200 and BW20 obtained from the Brown Company, was used in preparation of this exchange agent. DEAE-cellulose Type 20 containing 0.6 meq. of titratable groups per g was purchased from the Brown Company.

As previously described (5), purification of the proteins employing the cellulose ion exchange agents was accomplished by...
olution with buffers of stepwise changes in pH values predetermined by separate experiments using stepwise and gradient elution procedures.

Analyses—Total nitrogen was determined by micro-Kjeldahl analysis. Estimations of protein in fractions were routinely obtained by measuring the optical densities of the eluate at 280 μm with a Beckman model DU spectrophotometer.

Tryptophan was determined chemically (17) and both tyrosine and tryptophan were determined spectrophotometrically (18). Sialic acid content of the proteins was determined by the method of Werner and Odin (20). The sialic acid used for analyses was prepared on the basis of this nitrogen content and were made up daily in 0.004 M acetic acid and 0.02 M CaCl₂. The chymotrypsinogen was an activated, three times crystallized chymotrypsinogen preparation containing 15.0% N. The enzyme was used as received and made up daily in 0.004 M acetic acid and 0.02 M CaCl₂. The Nagarse crystalline protease was obtained from Nagase and Company, Ltd., Osaka, Japan, through the Biddle Sawyer Corporation, 20 Vesey Street, New York.

The trypsin substrate, TAMe, and the chymotrypsin substrate, BTE, were purchased from Mann Research Laboratories, Inc. Part of the BTE used in this study was synthesized in this laboratory essentially according to the procedure of Fox (22) which he presented for the synthesis of benzoyl-L-tyrosine methyl ester.

Trypsin Inhibitor Assays—Trypsin inhibitor assays were done with the use of a Beckman model DU spectrophotometer connected to a Bristol's Dynamaster recording spectrophotometer through a Beckman energy recording adapter, model 5800, as has been described (7) with slight modifications as given below. The reaction mixture in the cuvette of the spectrophotometer consisted of 0.3 ml of a solution containing 333 μg of trypsin per ml in 0.004 M acetic acid and 0.02 M CaCl₂, plus 0.0 to 0.7 ml of solution containing 150 μg per ml of inhibitor in 0.006 M Tris buffer, pH 8.2, and 0.7 to 0.0 ml of Tris buffer to bring the volume to 1.0 ml. To this were added 2 ml of substrate-buffer-indicator solution (0.008 M BTE, 30% methanol, 0.0075 M Tris-HCl buffer, and 0.01% m-nitrophenol with a final pH value of 8.2) and the recorder started. The speed of the chart was 2 inches per minute. Activities were calculated in the same manner as previously described for trypsin inhibitor activity (7).

Protease Inhibitor Assay with Casein Substrate—Inhibitor assays with casein as substrate were performed essentially as given by Sale et al. (23), and by Wu and Laskowski (24).

Physical Analyses—Diffusion experiments were carried out in a portable electrophoretic apparatus (American Instrument Company, Inc.) at 20-22°C. Diffusion constants were routinely corrected to 20°C and partial specific volumes were determined according to Bull (25). These determinations were made at 30°C. Sedimentation analyses were performed in a Spinco model E ultracentrifuge. Paper electrophoretic analyses were performed with the use of horizontal strip apparatus employing a constant current for 16 to 20 hours.

RESULTS

Fractionation and Purification of Ovomucoid—Initial fractionations of the egg whites of all species studies were performed on CM-cellulose. Columns of this exchange agent, consisting of 4 g of CM-cellulose per g of egg-white protein to be fractionated, were equilibrated with 0.1 M acetic acid titrated to pH 4.3 with NH₄OH. Quantities of 4 to 10 g of exchange agent were used as columns with a diameter of 2 cm and lengths appropriate to the amounts of CM-cellulose employed. Larger quantities of exchange agent (15 to 100 g) were used as short, compact columns on Buchner funnels of the appropriate size. In both cases, dialyzed egg white (0.1 M acetic acid-NH₄OH, pH 4.3) was run through the exchange agent. Elution was performed with the same buffer. With all the whites investigated, primarily only ovomucoid was unadsorbed and passed directly through the exchange column, whereas all of the other proteins were adsorbed. These ovomucoid fractions were then refractionated between pH 3.5 and 4.3 to separate different types of ovomucoids and to remove impurities. DEAE-cellulose was employed to remove small traces of apoprotein from the ovomucoid when present. The ovomucoid fractions equilibrated at pH 4.3 (0.1 M acetic acid-NH₄OH) were run through a short column of DEAE-cellulose (approximately 10 g of exchange agent per g of apoprotein). Under these conditions, the majority of the ovomucoid passed directly through the exchange agent unretained. The adsorbed apoprotein and ovomucoid containing a relatively high percentage of sialic acid were then eluted at pH 3.5 with 0.1 M acetic acid-NH₄OH 1 M NaCl. When this mixture was refractionated on CM-cellulose starting at pH 3.5, ovomucoid passed directly through the exchanger while the apoprotein was adsorbed. The purified ovomucoids were subjected to paper electrophoretic analysis employing 0.1 M sodium acetate-acetic acid, pH 4.5, as the buffer and also at pH 6.9 employing 0.1 M potassium phosphate buffer for 10 hours at 8 milliamperes. In all cases, the presence of contaminating proteins was not evident.
When the figures are multiplied by 0.9, the values obtained are approximately equivalent to the mg of chymotrypsin inhibited per mg of inhibitor.

Inhibitor from Duck Egg White—The ovomucoids isolated from both Peking duck egg white and from Khaki Campbell duck white were studied in detail. The ovoinhibitor present in chicken egg white appeared to be absent or present in very low concentration in duck white.

In Table II are given some physical properties of Peking duck ovomucoid compared to chicken ovomucoid. The mean sedimentation values, diffusion constants, and apparent specific volumes are similar. The calculated molecular weights of 27,000 and 28,000 for chicken and duck ovomucoid, respectively, are close to the values reported for chicken ovomucoid (7). Concentration of the proteins in the above sedimentation and diffusion analyses was 1%. The values given were not corrected to infinite dilution.

Chemical and biological properties of the duck ovomucoids are given in Table III. Comparison of the chemical properties with those of chicken ovomucoid as shown in Table I indicates a similarity in elution pH from CM-cellulose, in nitro-
TABLE III
Comparison of the ovomucoids of different avian species

<table>
<thead>
<tr>
<th>Species</th>
<th>pH of elution from CM-cellulose</th>
<th>N</th>
<th>Tyrosine</th>
<th>Tryptophan</th>
<th>Tyrosine</th>
<th>Tryptophan</th>
<th>Relative trypsin inhibitory activity</th>
<th>Relative chymotrypsin inhibitory activity</th>
<th>Approximate ratio of trypsin inhibitory activity to chymotrypsin inhibitor activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peking duck</td>
<td>4.1±4.1</td>
<td>12.7</td>
<td>5.7</td>
<td>0.8</td>
<td><0.3</td>
<td><0.1</td>
<td>2.0</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>Khaki Campbell duck</td>
<td>4.1±4.1</td>
<td>12.6</td>
<td>5.1</td>
<td>0.5</td>
<td><0.3</td>
<td><0.1</td>
<td>2.0</td>
<td>1.0</td>
<td>2</td>
</tr>
<tr>
<td>Turkey</td>
<td>3.5±4.1</td>
<td>12.4</td>
<td>2.9</td>
<td>0.6</td>
<td><0.3</td>
<td>4.4</td>
<td>0.8</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Turkey</td>
<td>3.5±4.1</td>
<td>11.1</td>
<td>2.8</td>
<td>0.6</td>
<td><0.3</td>
<td>2.8</td>
<td>0.8</td>
<td>0.8</td>
<td>1</td>
</tr>
<tr>
<td>Turkey</td>
<td>4.1±4.3</td>
<td>11.7</td>
<td>3.4</td>
<td>0.4</td>
<td><0.3</td>
<td>1.9</td>
<td>0.9</td>
<td>0.9</td>
<td>1</td>
</tr>
<tr>
<td>Guinea</td>
<td>4.3±4.3</td>
<td>12.6</td>
<td>2.9</td>
<td>0.7</td>
<td><0.3</td>
<td>0.3</td>
<td>0.9</td>
<td>1.0</td>
<td>1</td>
</tr>
<tr>
<td>Goose</td>
<td>DEAE</td>
<td>4.7</td>
<td>0.7</td>
<td><0.3</td>
<td>1.7</td>
<td>1.5</td>
<td><0.05</td>
<td><0.05</td>
<td>>30</td>
</tr>
<tr>
<td>Goose</td>
<td>4.1±4.1</td>
<td>11.6</td>
<td>4.8</td>
<td>0.6</td>
<td><0.3</td>
<td>1.7</td>
<td>1.7</td>
<td><0.05</td>
<td>>30</td>
</tr>
<tr>
<td>Emu</td>
<td>DEAE</td>
<td>12.9</td>
<td>6.3</td>
<td>0.9</td>
<td><0.3</td>
<td>10.6</td>
<td>1.9</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>Emu</td>
<td>4.1±4.1</td>
<td>10.8</td>
<td>4.4</td>
<td>0.6</td>
<td><0.3</td>
<td>3.6</td>
<td>1.2</td>
<td>0.6</td>
<td>2</td>
</tr>
<tr>
<td>Golden pheasant</td>
<td>4.3±4.3</td>
<td>13.2</td>
<td>4.0</td>
<td>0.6</td>
<td><0.3</td>
<td>0.6</td>
<td>0.3</td>
<td>1.0</td>
<td><0.3</td>
</tr>
<tr>
<td>Cassowary</td>
<td>4.1±4.3</td>
<td>4.2</td>
<td>0.5</td>
<td><0.3</td>
<td>5.4</td>
<td>1.0</td>
<td><0.1</td>
<td><0.1</td>
<td>>10</td>
</tr>
<tr>
<td>Red jungle fowl</td>
<td>4.3±4.3</td>
<td>3.5</td>
<td>0.7</td>
<td><0.3</td>
<td>0.8</td>
<td>0.8</td>
<td><0.1</td>
<td><0.1</td>
<td>>8</td>
</tr>
<tr>
<td>California valley quail</td>
<td>4.3±4.3</td>
<td>4.9</td>
<td>0.7</td>
<td><0.3</td>
<td>1.4</td>
<td>0.9</td>
<td>0.9</td>
<td>0.9</td>
<td>2</td>
</tr>
<tr>
<td>Painted quail</td>
<td>4.3±4.3</td>
<td>4.0</td>
<td>0.6</td>
<td><0.3</td>
<td>0.4</td>
<td>0.7</td>
<td><0.1</td>
<td><0.1</td>
<td>>7</td>
</tr>
</tbody>
</table>

a Chicken ovomucoid prepared by the method of Lineweaver and Murray (6), corrected to 13.3% N, was used as the standard. Figures expressed on a dry weight basis.

b Duck ovomucoid (Peking) was used as the standard. Figures expressed on a dry weight basis.

c Fraction passed through CM-cellulose unadsorbed at this pH value.

Fig. 1. Activity of 100 μg of trypsin or chymotrypsin in the presence of increasing amounts of chicken or duck ovomucoid. Conditions for assay are given under methods.

Gen, and in low tryptophan content. However, the duck ovomucoids contained approximately twice the tyrosine content of chicken ovomucoids and very little or no sialic acid compared to variable amounts in the chicken ovomucoids.

Duck ovomucoid differed extensively from chicken ovomucoid in its inhibitory activity (Fig. 1). Curves A and C represent the curves obtained for chymotrypsin and trypsin in inhibition by chicken ovomucoid. Extrapolation to the abscissa of the linear portions of these and other curves given below approximate the amount of inhibitor required to inhibit the amount of enzyme present. Since the molecular weights of chymotrypsin, trypsin, chicken ovomucoid, and duck ovomucoid (21) are approximately the same, the μg of enzyme inhibited per μg of inhibitor are approximately equivalent to the moles of enzyme inhibited per mole of inhibitor. As previously reported, chicken ovomucoid possessed very little or no chymotrypsin inhibitory activity (24) (Curve A). Also as previously reported (7), 100 μg of trypsin were inhibited by approximately an equal weight of chicken ovomucoid, indicating a 1:1 molar complex.

In this study, the results represented by Curves B and D were obtained for duck ovomucoid. Curve B indicated that 100 μg of chymotrypsin were inhibited by an equal weight of duck ovomucoid, again indicating a 1:1 molar complex. On the other hand, Curve D showed that 100 μg of trypsin were inhibited per 50 μg of duck ovomucoid. In this instance, a 2:1 molar complex of trypsin and duck ovomucoid was indicated. Thus, it appeared, in contrast to chicken ovomucoid which inhibited only trypsin as a 1:1 molar complex, duck ovomucoid would inhibit chymotrypsin as a 2:1 molar complex and would also inhibit trypsin by forming a 2:1 molar complex.

Inhibitors from the Egg Whites of Different Avian Species—The results given in the previous section concerning duck ovomucoid stimulated extension of this comparative biochemistry study to include the ovomucoids of 9 other avian species. Chemical characteristics and biological activities of these ovomucoids are presented in Table III. In general, the conditions for adsorption and elution of these ovomucoids from CM-cellulose or DEAE-cellulose were approximately the same as for chicken or duck ovomucoids. In addition, all of the ovomucoids had similar nitrogen contents and very low tryptophan contents. Some variations were noted in the tyrosine content and in the sialic acid content of the various ovomucoids. In addition, the fractions of ovomucoid from the egg white of certain species also varied in sialic acid content. For example, the three fractions of turkey ovomucoid varied in sialic acid content similarly to chicken ovomucoid, although the content was significantly higher.

Extensive differences were observed in the biological prop-
The complex consists of two trypsins, one chymotrypsin and one duck ovomucoid. Extension of the investigation to the sin. These results indicate: (a) The sites of trypsin inhibition obtained in the presence of 400 pg of trypsin. Similarly, Curves ovomucoids which inhibit primarily trypsin are those from goose, and the fourth class, the ovomucoids which inhibit twice as much trypsin as chymotrypsin, were those from duck, emu, and California valley quail. Sedimentation constants obtained for the turkey, guinea, and golden pheasant ovomucoids indicate that the turkey and guinea ovomucoids form equal molar complexes with trypsin or chymotrypsin and that the golden pheasant ovomucoid forms an equal molar complex with chymotrypsin.

"Multihed" Inhibitors—As a result of finding that some of the ovomucoids would inhibit either trypsin or chymotrypsin, it was necessary to determine, if possible, whether the same inhibitor sites were involved or whether the site of trypsin inhibition was distinct from the site of chymotrypsin inhibition. One approach available was to determine the inhibition of one enzyme in the presence of high concentrations of the other enzyme. Such an approach was possible through the use of the specific synthetic substrates, TAME and BTE for trypsin and chymotrypsin, respectively. Results of one such experiment are presented in Fig. 2. Curves A and B represent percentage activity of 100 μg of chymotrypsin in the presence of increasing amounts of duck ovomucoid. Curve A was obtained in the presence of 400 μg of trypsin. Similarly, Curves C and D represent percentage activity of 100 μg of trypsin. Curve D was obtained in the presence of 400 μg of chymotrypsin. These results indicate: (a) The sites of trypsin inhibition are distinct from the site of chymotrypsin inhibition, (b) both enzymes may be inhibited simultaneously, and (c) the molecular complex consists of two trypsins, one chymotrypsin and one duck ovomucoid. Extension of the investigation to the other ovomucoids indicated that those of turkey, guinea, emu, and California valley quail each have several distinct inhibitory sites. Inhibition of both trypsin and chymotrypsin occurs simultaneously, and excess of one enzyme does not effect inhibition of the other enzyme.

Further evidence for the simultaneous inhibition of trypsin and chymotrypsin by duck ovomucoid was obtained by the use of a mixed substrate of TAME and BTE. The activity of the enzyme-inhibitor complex of two trypsins, one chymotrypsin, and one duck ovomucoid molecules was much lower than an equivalent amount of either enzyme on the mixed substrate.

Physical Studies of Enzyme-Inhibitor Mixtures—Further evidence for the enzyme-ovomucoid complexes was obtained through the use of paper electrophoresis. For these analyses, 0.1 β/2 potassium phosphate buffer at pH 6.9 was employed and the analyses were run at 8 milliamperes for 16 hours. In all cases, 0.02 ml of the enzymes, ovomucoids, or enzyme-ovomucoid mixtures prepared in the buffer was placed on the paper strips. The concentration of ovomucoid was 1% in all cases. The enzyme-ovomucoid mixtures given below contained additional amounts of enzymes on a weight basis.

A single spot for the chicken ovomucoid-trypsin (1:1) mixture was obtained. This was easily distinguishable from the spot for trypsin or chicken ovomucoid alone and moved to an intermediate position. Analyses of the chicken ovomucoid-chymotrypsin (1:1) mixture did not show a new spot but showed only the presence of two spots corresponding to those for chymotrypsin and chicken ovomucoid. Both the duck ovomucoid-trypsin (1:2) mixture and the duck ovomucoid-chymotrypsin (1:1) mixture gave single spots which were distinguishable from one another and the individual components of the mixtures. In the case of the duck ovomucoid-trypsin (1:2) mixture, however, a trace of a second component was observed which might correspond to the 1:1 duck ovomucoid-trypsin complex. The duck ovomucoid-trypsin-chymotrypsin (1:2:1) mixture gave a single spot which was indistinguishable from the duck ovomucoid-trypsin (1:2) mixture or to chymotrypsin alone. Finally, the duck ovomucoid-trypsin-chymotrypsin (1:1:1) mixture gave two spots. These corresponded to the duck ovomucoid-chymotrypsin (1:1) mixture and the duck ovomucoid-trypsin-chymotrypsin (1:2:1) mixture.

The golden pheasant ovomucoid-chymotrypsin (1:1) mixture gave one spot distinguishable from the spots of the chymotrypsin or golden pheasant ovomucoid alone as expected from the biological data. In contrast, the golden pheasant ovomucoid-trypsin (1:1) mixture gave two spots corresponding to trypsin and golden pheasant ovomucoid, respectively. These observations are the reverse of those obtained with chicken ovomucoid as would be expected from the enzymatic studies.

Further evidence for the enzyme-inhibitor complexes was furnished by ultracentrifugal analyses. Sedimentation patterns for duck, chicken, and golden pheasant ovomucoids and for several enzyme-ovomucoid mixtures are presented in Fig. 3. In all instances, the final protein concentration was 1%. The buffer employed for Pattern A and B was 0.1 M sodium acetate-acetic acid in 0.1 M KCl at pH 4.5. For the remaining analyses described, the buffer was 0.1 M Tris-HCl in 0.1 M NaCl at pH 8.5 except for Pattern G which was obtained in 0.01 M Tris-HCl in 0.01 M NaCl at pH 8.5. The speed of the rotor was 52,640 r.p.m. Only a single ultracentrifugal analysis was made in most cases. The sedimentation constants for the golden pheasant (Pattern F, 1.8 S) and for the turkey and guinea...
ovomucoids, 2.0 S and 2.1 S, respectively (not shown in Fig. 3), are somewhat lower than for duck or chicken ovomucoids (Patterns A and B, respectively). This does not necessarily indicate lower molecular weights in the former cases since calculations of molecular weights depend also on other physical measurements. Only single components were noted in each case, but more detailed studies would be necessary to prove homogeneity by this criterion.

Examination of the patterns obtained for the enzyme-ovomucoid mixtures indicates single peaks in all cases where complexes were expected from the biological and electrophoretic studies described above. This is apparent from Pattern C and G, duck ovomucoid, trypsin, and chymotrypsin in a 1:2:1 mixture; Pattern D, duck ovomucoid and trypsin in a 1:2 mixture; and Pattern E, chicken ovomucoid and trypsin in a 1:1 mixture. In addition, the calculated sedimentation constants increase in magnitude in the order which would be expected. The enzymes involved here have reported sedimentation constants which are similar to the ovomucoids (27). Another analysis not shown in Fig. 3 gave a calculated sedimentation constant for a duck ovomucoid-chymotrypsin mixture of 3.5 S and a single peak. This is in contrast to the results with the mixture of chicken ovomucoid and chymotrypsin where no complex was expected (Pattern H). No increase in sedimentation constant was obtained over chicken ovomucoid alone, and an unsymmetrical peak was obtained.

Inhibitor Content of Various Avian Egg Whites—In Table IV are given the percentage inhibitory activity against trypsin and chymotrypsin of various avian egg whites employing chicken ovomucoid and duck ovomucoid as the respective standards. The percentage activities obtained in this study do not agree with those obtained in earlier studies on some of these whites (12, 14). These disagreements might be explained in that different substrates were used in these studies. Table IV also gives the ratios of inhibitory activities against trypsin and chymotrypsin for the different whites. In general, these ratios agree with the ratios obtained for the respective isolated ovomucoids (see Table III). The ovomucoid contents of the whites (calculated on the basis of the biological activity of the isolated ovomucoids) indicated chicken white to contain the least amount and cassowary white to contain the highest amount. The amount of ovoinhibitor of only the chicken and turkey were considered in these calculations since the amounts present in the other whites have not been established.

Additional Observations—A bacterial proteolytic enzyme marketed as Nagarse was found to be inhibited by duck ovomucoid as well as by the ovoinhibitor which had been previously reported (9). This enzyme has very slow activity on BTE compared to equal amounts of chymotrypsin and apparently no activity on TAME. A study of the effect of Nagarse proteinase on the inhibition of trypsin or chymotrypsin by duck ovomucoid gave the following results: (a) Inhibition of trypsin in the presence of 4 times the amount of Nagarse (on a weight basis) was unaffected, (b) inhibition of chymotrypsin in the presence of 4 times as much Nagarse (on a weight basis) was reduced approximately 40%, and (c) equal amounts of Nagarse (on a weight basis) with chymotrypsin caused only an approximately 20% reduction in inhibition of chymotrypsin. Evidence supporting these data was obtained by paper electrophoresis with the methods described above for the other enzyme-inhibitor complexes.

Table IV

<table>
<thead>
<tr>
<th>Species</th>
<th>Relative trypsin inhibitor activity</th>
<th>Relative chymotrypsin inhibitor activity</th>
<th>Approximate ratio of trypsin inhibitor activity to chymotrypsin inhibitor activity</th>
<th>Approximate ovomucoid contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken</td>
<td>13</td>
<td>2.6</td>
<td>5</td>
<td>11</td>
</tr>
<tr>
<td>Peking</td>
<td>35</td>
<td>20</td>
<td>1.6</td>
<td>18</td>
</tr>
<tr>
<td>Khaki Campbell duck</td>
<td>39</td>
<td>18</td>
<td>2</td>
<td>19</td>
</tr>
<tr>
<td>Turkey</td>
<td>16</td>
<td>15</td>
<td>1</td>
<td>15</td>
</tr>
<tr>
<td>Guinea</td>
<td>23</td>
<td>20</td>
<td>1</td>
<td>21</td>
</tr>
<tr>
<td>Goose</td>
<td>21</td>
<td>1.0</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>Emu</td>
<td>47</td>
<td>22</td>
<td>2</td>
<td>22</td>
</tr>
<tr>
<td>Golden pheasant</td>
<td>8</td>
<td>19</td>
<td>0.4</td>
<td>19</td>
</tr>
<tr>
<td>Cassowary</td>
<td>30</td>
<td>3.2</td>
<td>9</td>
<td>30</td>
</tr>
<tr>
<td>Rhea</td>
<td>12</td>
<td>10</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

* Chicken ovomucoid prepared by the method of Lineweaver and Murray (6), corrected to 13.3% N, was used as the standard. Figures calculated on a dry weight basis.
* Duck ovomucoid (Peking was used as the standard). Figures were calculated on a dry weight basis.
* Estimated from assays on whites and relative activities of preparations of ovomucoids.
A variety of inhibitors of proteolytic enzymes has been studied including the chicken ovomucoide (5), chicken ovoinhibitor (9), pancreatic inhibitor (24), soybean trypsin inhibitor (24), the ascars inhibitor (28), and the proteolytic enzyme inhibitors of animal sera (29). Most of these, however, have been found to be either inhibitors of trypsin or to have varying activities against trypsin and chymotrypsin and activity against bacterial proteolytic enzymes.

A “multiheaded” inhibitor with simultaneous inhibitory activity against more than one proteolytic enzyme was implied by Wu and Laskowski (28) for soybean trypsin inhibitor. Even in this instance, inhibition of molar quantities of both trypsin and chymotrypsin B was not obtained. Thus, perhaps the duck ovomucoide is the first inhibitor of this type actually established. On the other hand, Green (28) has reported the isolation of an impure mixture of proteins as possibly containing the first example of a specific inhibitor of chymotrypsin. There is a question as to whether this preparation had two inhibitors present, as was suggested, or whether the inhibitor was of the multiheaded variety. Thus, the ovomucoide of golden pheasant egg white is at least one of the few protein inhibitors known to inhibit primarily chymotrypsin.

The existence of the multiheaded inhibitors appears well supported by biological, electrophoretic, and ultracentrifugal studies. However, future work perhaps should consider other criteria for the existence of these inhibitors. Diagrammatic presentations of the types of enzyme-inhibitor complexes demonstrated in this study are given in Sketch 1. Although this presentation is only diagrammatic, the equal size of the circles is indicative of the similarity in the molecular weights of the enzymes and inhibitors involved here. In addition, the lack of overlapping of the circles indicates that the site of inhibition of one enzyme is distinct from the site of inhibition of the other enzyme and that simultaneous inhibition of both enzymes may occur.

Other results indicated that both chymotrypsin and Nagarse protease are inhibited by duck ovomucoide but that these enzymes appeared to occupy the same site or closely adjacent sites on the inhibitor. This might be interpreted to mean that the combination site (active site?) of Nagarse protease is more similar to that of chymotrypsin than to that of trypsin. The comparative results with casein and BTE as substrates for chymotrypsin would indicate that the type of substrate, in certain cases, may affect the amount of inhibition caused by any particular inhibitor.

Variable amounts of sialic acid in the several fractions of chicken ovomucoide as well as in the ovomucoide fractions of other species have apparently not been reported previously. The results of a detailed investigation of the distribution of sialic acid in these fractions will appear elsewhere.

DISCUSSION

A variety of inhibitors of proteolytic enzymes has been studied including the chicken ovomucoide (5), chicken ovoinhibitor (9), pancreatic inhibitor (24), soybean trypsin inhibitor (24), the ascars inhibitor (28), and the proteolytic enzyme inhibitors of animal sera (29). Most of these, however, have been found to be either inhibitors of trypsin or to have varying activities against trypsin and chymotrypsin and activity against bacterial proteolytic enzymes.

A “multiheaded” inhibitor with simultaneous inhibitory activity against more than one proteolytic enzyme was implied by Wu and Laskowski (28) for soybean trypsin inhibitor. Even in this instance, inhibition of molar quantities of both trypsin and chymotrypsin B was not obtained. Thus, perhaps the duck ovomucoide is the first inhibitor of this type actually established. On the other hand, Green (28) has reported the isolation of an impure mixture of proteins as possibly containing the first example of a specific inhibitor of chymotrypsin. There is a question as to whether this preparation had two inhibitors present, as was suggested, or whether the inhibitor was of the multiheaded variety. Thus, the ovomucoide of golden pheasant egg white is at least one of the few protein inhibitors known to inhibit primarily chymotrypsin.

The existence of the multiheaded inhibitors appears well supported by biological, electrophoretic, and ultracentrifugal studies. However, future work perhaps should consider other criteria for the existence of these inhibitors. Diagrammatic presentations of the types of enzyme-inhibitor complexes demonstrated in this study are given in Sketch 1. Although this presentation is only diagrammatic, the equal size of the circles is indicative of the similarity in the molecular weights of the enzymes and inhibitors involved here. In addition, the lack of overlapping of the circles indicates that the site of inhibition of one enzyme is distinct from the site of inhibition of the other enzyme and that simultaneous inhibition of both enzymes may occur.

Other results indicated that both chymotrypsin and Nagarse protease are inhibited by duck ovomucoide but that these enzymes appeared to occupy the same site or closely adjacent sites on the inhibitor. This might be interpreted to mean that the combination site (active site?) of Nagarse protease is more similar to that of chymotrypsin than to that of trypsin. The comparative results with casein and BTE as substrates for chymotrypsin would indicate that the type of substrate, in certain cases, may affect the amount of inhibition caused by any particular inhibitor.

Variable amounts of sialic acid in the several fractions of chicken ovomucoide as well as in the ovomucoide fractions of other species have apparently not been reported previously. The results of a detailed investigation of the distribution of sialic acid in these fractions will appear elsewhere.

SUMMARY

The ovomucoides from eleven different avian species have been isolated and studied in detail. Particular attention has been focused on their respective biological properties. The ovomucoides were all somewhat similar as to the conditions for elution from carboxymethyl cellulose, low nitrogen content, and the low content or absence of tryptophan in these proteins. Variable amounts of sialic acid in the ovomucoide fractions prepared from the egg white of a given species have been found. The types of biological activity of the ovomucoides may be divided into four classes on the basis of their inhibitory activity: First, ovomucoides which inhibit primarily trypsin; second, ovomucoides which inhibit primarily chymotrypsin; third, ovomucoides which inhibit equal molar amounts of trypsin and chymotrypsin, separately or simultaneously; and fourth, ovomucoides which inhibit twice as much trypsin as chymotrypsin, separately or simultaneously. The latter two classes of inhibitors were considered to be “multiheaded” in their biological action.

The calculated ovomucoide contents of eight avian egg whites of different species are given.

Acknowledgments—The authors wish to express their gratitude to Mr. Paul Stageman and the Department of Biochemistry, College of Medicine, University of Nebraska, for use and operation of the ultracentrifuge, to Mr. John Anderson for assistance in preparation of some of the inhibitors and performing sialic acid analyses, and to Dr. R. M. Hill for assistance with electrophoretic analyses. Particularly appreciation is due Kenneth C. Lint, Curator of Birds, and other members of the technical staff of the San Diego Zoo, San Diego, California, for advice and assistance in obtaining eggs.

REFERENCES

3. ANFINSEN, C. B., Åqvist, S. E. G., Cooke, J. P., and Jönsso
4. WARNER, R. C., in H. NEURATH AND K. C. BAILEY (Editors),
5. RHODES, M. B., AZARI, P. R., and FEENEY, R. E., J. Biol.
6. LINeweaver, H., and MURRAY, C. W., J. Biol. Chem., 171,
 565 (1947).
8. Sri RAM, J., Terminello, L., Bier, M., and NORD, F. F.,
 (1947).
 (1959).
12. MacDonnell, I. R., Ducat, E. D., SugiHara, T. F., and
 Mexico, 6, 65 (1949).
15. RHODES, M. B., and FEENEY, R. E., Poultry Sci., 36, 801
 (1937).
 751 (1956).
 (1949).
 (1950).
 220 (1952).
 227, 83 (1957).
27. Green, N. M., and Neurath, H., in H. Neurath and K. C.
 Bailey (Editors), The proteins, Vol. II, Part R, Academic
 (1959).
The Trypsin and Chymotrypsin Inhibitors from Avian Egg Whites
Marvin B. Rhodes, Nelle Bennett and Robert E. Feeney

Access the most updated version of this article at http://www.jbc.org/content/235/6/1686.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/235/6/1686.citation.full.html#ref-list-1