The Biosynthesis of Thiamine

I. ENZYMATIC FORMATION OF THIAMINE AND PHOSPHATE ESTERS OF THE PYRIMIDINE MOIETY OF THIAMINE*

GERALD W. CAMIENER† AND GENE M. BROWN

From the Department of Biology, Division of Biochemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts

(Received for publication, February 29, 1960)

The biosynthesis of thiamine appears to be accomplished with the initial formation of the pyrimidine and thiazole moieties by independent biosynthetic pathways, followed by a final step in which 2-methyl-4-amino-5-hydroxymethylpyrimidine and 4-methyl-5-(β-hydroxyethyl) thiazole are joined together to give thiamine. This conclusion was indicated originally from the observations that certain thiamine-requiring microorganisms can utilize the combination of hydroxymethylpyrimidine1 plus thiazole in place of thiamine, a fact which suggests that these organisms cannot synthesize either hydroxymethylpyrimidine or thiazole, but are able to form thiamine from these two compounds. The nutritional and genetic studies on a series of thiamine-requiring Neurospora mutants by Tatum and Roll (1) and Harris (2) tended to support the above conclusion, although some anomalous results obtained by these workers led them to postulate the existence of Neurospora of a second pathway whereby hydroxymethylpyrimidine is condensed with a thiazole precursor followed by the conversion of the unknown condensation product to thiamine (2).

The first relevant enzymatic evidence was provided by Harris and Yavit (3), who reported that extracts of bakers' yeast could catalyze the formation of thiamine from hydroxymethylpyrimidine, thiazole, and ATP in the presence of magnesium ions. They also reported that a synthetic monophosphate ester of hydroxymethylpyrimidine (pyrimidine-P) could replace the hydroxymethylpyrimidine and ATP requirements. The latter observation suggested that pyrimidine-P is an intermediate which reacts with thiazole to form thiamine and that this phosphate ester is formed enzymatically from hydroxymethylpyrimidine and ATP. However, investigations by Leder (4) indicated that yeast preparations could convert pyrimidine, thiazole, and ATP to thiamine only if ATP were also supplied. The present paper describes the experiments which led to the detection of phosphate esters of hydroxymethylpyrimidine as intermediates and also the details of the isolation and identification of these compounds. The second paper in the series (8) describes the fractionation of the enzyme system and presents the evidence for the enzymatic conversion of pyrimidine-P and thiazole-P to thiamine-P.

MATERIALS AND METHODS

Materials—Generous amounts of hydroxymethylpyrimidine, methoxymethylpyrimidine, bromomethylpyrimidine, and thiazole were kindly supplied by Merck and Company, Inc. Aminomethylpyrimidine was purchased from the California Corporation for Biochemical Research, crystalline ATP from the Pulset Laboratories, and Dowex 1 from the Dow Chemical Company. Alkaline phosphatase purified from Escherichia coli was a gift from Drs. F. Rothman and C. Levinthal; acid phosphatase was a gift from Dr. Gerhard Schmidt.

Phosphate Determinations—Inorganic phosphate was determined by the procedure of Lowry and Lopez (9). Total phosphate (organic plus inorganic) was determined by the method of Koerner and Sinsheimer (10).

Microbiological Assays—Thiamine was determined by microbiological assay with Lactobacillus viridescens (ATCC No. 12706) according to the general directions recommended by Deibl et al. (11). The basal growth medium (11) used was modified to contain L-asparagine (2 g per liter) and the following vitamins in amounts per liter of medium: pantothenic acid, 1.0 mg; niacinamide, 1.0 mg; riboflavin, 1.0 mg; p-aminobenzoic acid, 2.0
mg; pyridoxine, 4.0 mg; folic acid, 0.2 mg, and biotin, 0.02 mg. The thiamine-free yeast extract component of the medium was prepared according to the directions of Niven and Smiley (19).

These modifications resulted in more reproducible results and also in more rapid growth of the organism so that assay tubes, when inoculated at 37°C, had to be read after a 5- to 8-hour incubation period. Growth was estimated turbidimetrically in a Coleman Junior spectrophotometer (660 mp). Phosphorylated forms of thiamine are somewhat less active than thiamine in this assay, and the pyrimidine and thiazole moieties of the vitamin are completely inactive.

The microorganism used for assay of the pyrimidine moiety of thiamine was a mutant (designated as ATh4) of Salmonella typhimurium, which was obtained from Dr. H. Ozeki of the Department of Genetics, Cold Spring Harbor, New York. This mutant is characterized by having a nutritional requirement for adenine plus either thiamine or the pyrimidine moiety of thiamine. The pyrimidine moiety can be supplied as either hydroxymethylpyrimidine or bromomethylpyrimidine, but neither aminomethylpyrimidine nor methoxymethylpyrimidine can be utilized. Assay tubes (18 x 150 mm) were prepared in the customary manner (13); those used for the standard curve were prepared to contain from 0 to 10⁻⁴ mmoles of thiamine per 10 ml of growth medium. One drop of a suspension of washed cells, adjusted so that it was only faintly turbid to the eye, was used to inoculate each assay tube. The tubes were incubated, without shaking, at 37°C for 18 to 24 hours, and growth was estimated turbidimetrically. The basal medium contained, per liter: K₂HPO₄, 21 g; KH₂PO₄, 9 g; sodium citrate-2H₂O, 1.0 g; MgSO₄·7H₂O, 0.1 g; ammonium sulfate, 2.0 g; mannitol, 20 g; thiamine-free yeast extract, 10 g, and the same vitamins that were used in the growth medium for L. virideaeae. Stock cultures were carried on nutrient agar and were transferred weekly in order to maintain vigorous cultures.

Paper Chromatographic and Bioautographic Methods—Paper chromatograms (Whatman No. 1 paper) were developed by the ascending technique. The solvents used will be indicated as the results are presented. Zones of migration of growth-promoting pyrimidine compounds were located by bioautography (14).

For this purpose the developed chromatogram was placed in contact with the surface of solid medium (the S. typhimurium basal medium described above solidified with 2% agar and seeded with a culture of S. typhimurium mutant ATh4) contained as a component of the reaction mixture. The microorganism used for assay of the pyrimidine moiety of thiamine was a mutant (designated as ATh4) of Salmonella typhimurium, which was obtained from Dr. H. Ozeki of the Department of Genetics, Cold Spring Harbor, New York. This mutant is characterized by having a nutritional requirement for adenine plus either thiamine or the pyrimidine moiety of thiamine. The pyrimidine moiety can be supplied as either hydroxymethylpyrimidine or bromomethylpyrimidine, but neither aminomethylpyrimidine nor methoxymethylpyrimidine can be utilized.

RESULTS

Enzymatic Synthesis of Thiamine from Hydroxymethylpyrimidine and Thiazole—The data of Table I show that cell-free extracts of bakers' yeast were able to convert hydroxymethylpyrimidine and thiazole to thiamine only if both ATP and Mg⁺⁺ were added to the reaction mixture. Dialysis did not appreciably reduce the activity of the enzyme system, nor did the addition of possible cofactors (commercial yeast extracts and "boiled juice") have any effect on thiamine production by a dialyzed enzyme preparation (Experiment 2, Table I).

Thiamine synthesis as a function of the concentrations of the various components of the reaction mixture is shown in Fig. 1. ATP and Mg⁺⁺ were required in amounts about 1000 times greater than the amounts of hydroxymethylpyrimidine and thiazole which were supplied. Also, the enzyme system could not be saturated with ATP and Mg⁺⁺ at the levels at which these two components were tested; i.e., thiamine synthesis was still increasing at the highest concentrations at which ATP and Mg⁺⁺ were tested.

Use of Various Pyrimidine Compounds as Substrates for Thiamine Synthesis—Other pyrimidines which differ from hydroxymethylpyrimidine by containing specific chemical groups in place of the hydrox group were tested as substrates in the enzyme system. A comparison of the effectiveness of these compounds as substrates (see Table I) showed that bromomethylpyrimidine was as active as hydroxymethylpyrimidine and that aminomethyl- and methoxymethylpyrimidines were less than half as effective.

It was considered likely that these pyrimidines were converted...
Biosynthesis of Thiamine. I

Vol. 235, No. 8

MILLIMICROMOLES MICROMOLES

FIG. 1. Thiamine synthesis as a function of the concentrations of hydroxymethylpyrimidine (A), thiazole (A), ATP (B), and Mg$^{++}$ (B). Reaction mixtures and incubation conditions were as described in Table I, Experiment I, except that the concentrations of the components were varied as indicated.

TABLE II

Ability of various pyrimidine compounds to serve as enzymatic precursors of thiamine

The reaction mixtures and incubation conditions were identical with those described in Table I except that the indicated pyrimidine was substituted for hydroxymethylpyrimidine as substrate.

Pyrimidine used as substrate	Thiamine equivalents produced
Hydroxymethylpyrimidine | 21.6
Bromomethylpyrimidine | 20.0
Aminomethylpyrimidine | 7.6
Methoxymethylpyrimidine | 8.4

enzymatically to hydroxymethylpyrimidine before their utilization for thiamine synthesis. To test this hypothesis, the aminomethyl- and methoxymethylpyrimidines were incubated, in separate experiments, with the enzyme preparation in the absence of thiazole and ATP. The reaction mixtures were then analyzed for the appearance of hydroxymethylpyrimidine by bioautography. It was evident from the bioautogram obtained (Fig. 2) that aminomethylpyrimidine and methoxymethylpyrimidine had been converted enzymatically to hydroxymethylpyrimidine. It is presumed that hydroxymethylpyrimidine is formed from bromomethylpyrimidine in a similar manner; however, this could not be proven in the manner described above because bromomethylpyrimidine (unlike the aminomethyl and methoxymethyl compounds) is active in replacing hydroxymethylpyrimidine as a growth factor for the X. typhimurium mutant. Also, the two compounds have identical R_F values on paper chromatograms.

Whether or not the same enzyme is responsible for the conversion of all of these pyrimidines to hydroxymethylpyrimidine cannot be decided until enzyme fractionation and purification studies are undertaken.

Enzymatic Formation of Phosphorylated Pyrimidine Intermediates—Efforts were made to provide evidence for the possible formation of phosphorylated forms of hydroxymethylpyrimidine and thiazole as intermediates in thiamine synthesis. For this purpose, the enzyme preparation was incubated with ATP and either hydroxymethylpyrimidine or thiazole for 1 hour. The missing component (either hydroxymethylpyrimidine or thiazole) was then added to the reaction mixture, and the rate of formation of thiamine was compared to the rate observed in a control reaction mixture to which all components were added at the same time. The data (Fig. 3) show definitely that the preliminary incubation of hydroxymethylpyrimidine with ATP and the enzyme preparation resulted in an increased rate of thiamine synthesis. No increase was noted in the reaction mixture which contained "preincubated" thiazole. These results suggested that during the preliminary incubation there developed a phosphorylated form of hydroxymethylpyrimidine which served as a more direct precursor of thiamine. Although these experiments did not indicate the existence of a phosphorylated thiazole intermediate, they likewise did not exclude such a possibility, since in experiments of this type one cannot expect to detect an intermediate unless its formation is a rate-limiting step in the reaction sequence.

The formation of phosphorylated forms of hydroxymethylpyrimidine by the enzyme system was corroborated by paper chromatographic methods. A small aliquot of an incubated reaction mixture which initially contained hydroxymethylpyrimidine, ATP, Mg$^{++}$, and the enzyme preparation (see Table I for concentrations) was chromatographed according to the pro-
by alkaline phosphatase. The faster moving (in the solvent phosphatase) was prepared in 0.1
indicate that two phosphorylated compounds were formed which
is a phosphomonoesterase with only slight activity as a pyro-
and pyrophosphatase activities) was prepared in 0.1
phorus in 15 minutes at 37°. The results, shown in Fig. 4,
alkaline phosphatase (which exhibits both phosphomonoesterase
liberate the free hydroxymethylpyrimidine before the prepara-
tion of bioautograms. This was accomplished by spraying the
chromatograms either with N HCl or with a phosphatase, pre-
pared in the proper buffer, and incubating the wetted chroma-
tograms for 1 hour at 37° in a container saturated with water
vapor. After this treatment the chromatograms were dried and
used to prepare bioautograms. For use in this procedure,
alkaline phosphatase (which exhibits both phosphomonoesterase
and pyrophosphatase activities) was prepared in 0.1 M Tris buffer
(pH 8.5) to contain 2 μg per ml and prostate phosphatase (which
is a phosphomonoesterase with only slight activity as a pyro-
phosphatase) was prepared in 0.1 M acetate buffer (pH 5.6) to
contain 10 units per ml. One unit of the latter phosphatase is
defined as the amount of enzyme that liberates 0.1 mg of phos-
phorus in 15 minutes at 37°. The results, shown in Fig. 4,
indicate that two phosphorylated compounds were formed which
were capable of being degraded to free hydroxymethylpyrimidine
by alkaline phosphatase. The faster moving (in the solvent
system used) of these phosphorylated compounds will be referred
to, for the present, as pyrimidine derivative I and the slower
moving compound will be referred to as pyrimidine derivative II.

Treatment with prostate phosphatase liberated hydroxymethylpyrimidine only from pyrimidine derivative I. This suggested that this compound is a monophosphate ester of hydroxymethylpyrimidine, since prostate phosphatase is primarily a phosphomonoesterase. On the other hand, treatment with N HCl liberated hydroxymethylpyrimidine only from pyrimidine derivative II. This acid lability suggested that pyrimidine derivative II might be a pyrophosphate ester of hydroxymethylpyrimidine. That the compound liberated from both pyrimidine derivatives by treatment with the alkaline phosphatase was in fact hydroxymethylpyrimidine was shown by the fact that this compound was detected on bioautograms which had been prepared from phosphatase-treated reaction mixtures which, before treatment, had contained both of the pyrimidine derivatives.

Isolation of Pyrimidine Derivatives I and II

A 1 liter reaction mixture was prepared with 15 mmoles of
ATP, 20 mmoles of MgCl₂, 0.5 mmoles of hydroxymethylpyrimi-
dine, and 900 ml (20 g of protein) of an extract of bakers' yeast
previously dialyzed for a total of 18 hours against 3 (6 hours each)
successive 10-liter portions of 0.13 M potassium phosphate buffer
(pH 7.0), which also contained, as protective agents, EDTA
(0.02 M) and cysteine (0.02 M). The mixture was adjusted to
pH 8.4 and incubated for 3.5 hours at 37°. After incubation,
the reaction mixture (in 50- to 60-ml lots) was heated briefly at
100°, and the coagulated protein was collected by centrifugation
and discarded. Bioautograms prepared from aliquots of the
clarified reaction mixture showed that the hydroxymethylpyrimi-
dine substrate had been completely converted to pyrimidine
derivatives I and II and that the two compounds were present
in approximately equimolar quantities. The remainder of the
reaction mixture was adjusted to pH 5.4, centrifuged to remove a
small amount of insoluble material, and stored at 4° until it was
passed through the charcoal column described next.

Adsorption on an Etusion from Charcoal—A glass column, 95
mm (diameter) × 110 cm (length), was packed with 1200 g of a
charcoal mixture consisting of equal parts (weight per weight) of
Celite 545 and 325 mesh Norit. The packed column was
degassed by passing 15 to 16 liters of cold, degassed, deionized
water through it (flow rate, 10 to 20 ml per minute). The cold

![Figure 3](http://www.jbc.org/)

Fig. 3. Effect on the rate of thiamine synthesis of "preincubation" of hydroxymethylpyrimidine and thiazole with ATP and enzyme preparation. See the text for the procedure. The concentrations of the components of reaction mixtures and the incubation conditions were as described in Table I.

![Figure 4](http://www.jbc.org/)

Fig. 4. A drawing of bioautograms which illustrates the migration characteristics on paper chromatograms and the stability to phosphatases and HCl of phosphorylated forms of hydroxy-
methylpyrimidine formed enzymatically. Small samples (0.002 to 0.003 ml) of a reaction mixture (described in the text) were spotted on paper strips, and the chromatograms were developed with isobutyric acid-NH₄OH-water (10:3:99, volume per vol-
ume). The chromatograms were treated with either N HCl, alkaline phosphatase, or prostatic phosphatase (as shown in the
figure and according to the directions given in the text) before
the preparation of the bioautogram.
reaction mixture then was passed through the column (flow rate, 10 ml per minute) and the column was washed successively with 2 liters of cold, degassed water, 8 liters of 0.1 M EDTA solution, pH 7.0, and finally another 2 liters of water. A total of 20 liters (about 10 column volumes) of an aqueous ethanol solution (50 volumes of 95% ethanol plus 50 volumes of water) were then passed through the column at a flow rate which varied from 5 to 15 ml per minute; the first 8 liters of the ethanol eluate were collected in 500-ml fractions and the remaining 18 liters in 1- to 4-liter fractions and the fractions were stored at 4°C. The above procedure was suggested by the work of Pontis et al. (15), who used a similar one to purify certain nucleoside diphosphate sugars on charcoal columns.

To test each eluate fraction for the presence of phosphorylated forms of hydroxymethylpyrimidine, 0.1-ml aliquots were heated (100°C) to boil off the ethanol, then incubated at 37°C for 2 hours with about 2 μg of alkaline phosphatase in 1.0 ml of 0.1 M Tris buffer (pH 8.5), and finally assayed for hydroxymethylpyrimidine content with the S. typhimurium mutant. All of the fractions, except the first 500-ml fraction, contained phosphorylated hydroxymethylpyrimidine, although the final fractions which were collected contained only small amounts. Although the recovery of phosphorylated hydroxymethylpyrimidine from the column was only 30 to 40%, the step was nevertheless considered to be worthwhile since it served to eliminate large amounts of inorganic salts which were present in the reaction mixture and which would otherwise have interfered with subsequent purification on ion exchange columns.

The ethanol eluates were concentrated under reduced pressure to 500 to 600 ml and stored at 4°C until passage through the first Dowex column.

First Dowex 1 Column—A 300-ml portion of Dowex 1-formate ion exchange resin was used to prepare a column 3.6 cm in diameter and 30 cm long. The column was washed with 1500 ml of 85% formic acid followed by about 8 liters of distilled water until all of the formic acid had been washed from the resin. The ethanol-free effluent from the charcoal column was adjusted to pH 7.9 and passed through the column. After the column had been washed with 1 liter of distilled water, a linear concentration gradient elution was begun. The gradient was scaled to increase at a rate of 0.1 M ammonium formate per 2 liters of eluting solution from an initial concentration of 0 to a final concentration of 0.6 M ammonium formate. One hundred fractions of 100 to 110 ml each were collected (flow rate, 10 to 12 ml per minute).

The absorbancy of each fraction was measured at 260 and 275 μm, and aliquots of each fraction were treated with alkaline phosphatase and assayed for hydroxymethylpyrimidine with the S. typhimurium mutant. Two peaks containing phosphorylated hydroxymethylpyrimidine were obtained. It was determined by the bioautographic methods described earlier that the major peak, shown in Fig. 5, contained about 480 μmoles of pyrimidine derivative I and that the minor peak contained approximately 30 μmoles of pyrimidine derivative II. It will be noted from Fig. 5 that most of the pyrimidine derivative I fractions were free from contaminating ultraviolet-absorbing material but that the pyrimidine derivative II fractions contained large amounts of these contaminants. It was decided to put the fractions containing the phosphorylated hydroxymethylpyrimidine through a second Dowex 1 column in an effort to rid these compounds of the contaminating substances. Accordingly, the fractions which contained most of the pyrimidine derivative I (37 to 43) and pyrimidine derivative II (52 to 59) were combined, adjusted to pH 7.0 with ammonium hydroxide, and concentrated under reduced pressure to a volume of about 75 ml. This concentrate was then lyophilized, taken up in 15 ml of distilled water, and relyophilized for 2 days in order to remove the ammonium formate. The residue was dissolved in about 120 ml of water and adjusted to pH 7.9 before application to the second Dowex column.

Second Dowex 1 Column—Dowex 1-formate resin, 100 ml, was used to prepare as described earlier a column 2.2 cm in diameter and 30 cm long. After the ammonium formate-free eluates from the first Dowex column had been allowed to pass through the column, a linear concentration gradient elution, scaled to increase from 0 to 0.4 M ammonium formate at a rate of 0.1 M per 4 liters of eluting solution, was applied to the column. Fractions were collected in 17 to 20 ml amounts at a flow rate of 10 to 12 ml per minute.

As before, each fraction was analyzed for phosphorylated hydroxymethylpyrimidine and for ultraviolet-absorbing material. The elution pattern from this column was similar to that shown in Fig. 5 for the first Dowex 1 column, except that the fractions containing the phosphorylated forms of hydroxymethylpyrimidine were found to be less contaminated with other ultraviolet-absorbing material by several fold. Pyrimidine derivative I was eluted by 0.05 to 0.07 M ammonium formate and pyrimidine derivative II by 0.09 to 0.11 M ammonium formate. Both compounds were obtained in quantitative yields. Examination of the fractions containing pyrimidine derivative I in a Cary recording spectrophotometer indicated that this compound was free from contaminating ultraviolet-absorbing materials as judged by a comparison of its spectrum with that of authentic hydroxymethylpyrimidine. The presence of the phosphate group apparently does not noticeably alter the spectrum of the compound. Similar spectrophotometric analyses of the pyrimidine derivative II fractions showed that those fractions were still appreciably contaminated with ultraviolet-absorbing material. Only that portion of pyrimidine derivative II which was recovered in the trailing edge of the pyrimidine derivative II peak was reasonably free from contaminating substances.

Phosphate determinations revealed that the pyrimidine deriva-
Pyrimidine derivative I fractions contained 3 moles of phosphate per mole of hydroxymethylpyrimidine and also suggested that inorganic phosphate was present as a contaminant. The pyrimidine derivative II fractions contained 4 to 5 moles of phosphate per mole of hydroxymethylpyrimidine. In order to obtain pyrimidine derivative I free of inorganic phosphate, the fractions containing this compound were passed through another charcoal column. Owing to its lability on charcoal columns, pyrimidine derivative II could not be purified further in this manner and, in unsuccessful attempts to do so, much of this compound could not be purified further in this manner.

Purification of Pyrimidine Derivative I on Charcoal Column—Six grams of the charcoal mixture described earlier were packed into a column 25 mm in diameter. Before adsorption of pyrimidine derivative I, the column was degassed as described earlier and washed successively with 0.1 m EDTA (100 ml), 300 ml of 47.5% ethanol, and 2 liters of deionized water. Eleven micromoles of pyrimidine derivative I contained in 90 ml of the peak fractions from the second Dowex 1 column were passed through the column at a flow rate of 1.5 ml per minute. The column was then washed successively with 150 ml of 0.1 m EDTA, 150 ml of deionized water, and finally 300 ml of 47.5% ethanol. The pyrimidine derivative I-containing ethanol eluate was collected and concentrated under reduced pressure to a volume of 40 to 50 ml.

Purification of Pyrimidine Derivative I on Third Dowex 1 Column—Dowex 1-formate resin, 5 ml, was used to prepare a column 0.9 cm in diameter and 8 cm long. A 20-ml portion of the concentrated eluate from the charcoal column was adjusted to pH 8.0 with ammonium hydroxide and passed through the column. The resin was then washed with 40 to 50 ml of deionized water. The following solutions of ammonium formate were allowed to pass successively through the column: 40 ml of 0.005 m, 60 ml of 0.01 m, and 50 ml of 0.025 m. Fractions were collected in 10-ml volumes at a flow rate from the column of about 1 ml per minute. Spectrophotometric and microbiological determinations showed that pyrimidine derivative I had been eluted from the column by the 0.01 m ammonium formate.

Pyrimidine derivative I contained in these fractions was used to determine the properties of the compound.

Properties of Pyrimidine Derivative I and Its Identification as Pyrimidine-P—Fig. 6 shows the similarity of the absorption spectra of isolated pyrimidine derivative I and hydroxymethylpyrimidine in acid and alkaline solutions. Phosphate analyses revealed that pyrimidine derivative I contained 1 mole of phosphate per mole of hydroxymethylpyrimidine (Table III). No inorganic phosphate could be detected in the pyrimidine derivative I preparation. These data indicate that pyrimidine derivative I is a monophosphate ester of hydroxymethylpyrimidine (pyrimidine-P). The stability of the compound to acid indicates that the phosphate group is not attached to the amino group of the hydroxymethylpyrimidine, but instead is esterified with the hydroxymethyl group.

Properties of Pyrimidine Derivative II—Experiments designed to establish elution patterns from Dowex 1 columns revealed that pyrimidine derivative II is eluted (see Fig. 5 for conditions) immediately after AMP and immediately before ADP; ATP was eluted after ADP. Thus pyrimidine derivative II obtained from the second Dowex 1 column, although not spectrophotometrically pure, nevertheless was free from ATP and pyrimidine-P (established by bioautography) and was therefore suitable for use in enzyme experiments. The original yeast enzyme system was separated into two enzyme fractions, designated as Fraction 1 and Fraction 2 (8). Fraction 2 was capable of forming thiamine-P directly from thiazole-P and pyrimidine derivative II, but not from pyrimidine-P (see Table IV). Pyrimidine-P could be used for thiamine-P synthesis only if Fraction 1 and ATP were also supplied (Table IV). Further investigations have shown that

Table III

| Method of measurement of pyrimidine content | Pyrimidine content | Phosphate content | Moles of phosphate per mole of pyrimidine
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Spectrophotometric (245 m(\nu))</td>
<td>46</td>
<td>42</td>
<td>0.69</td>
</tr>
<tr>
<td>Spectrophotometric (260 m(\nu))</td>
<td>43</td>
<td>42</td>
<td>0.98</td>
</tr>
<tr>
<td>Microbiological assay</td>
<td>46</td>
<td>42</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Table IV

<table>
<thead>
<tr>
<th>Substrates added</th>
<th>Enzyme fraction added</th>
<th>Thiamine equivalents produced</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pyrimidine derivative II</td>
<td>2</td>
<td>6.8</td>
</tr>
<tr>
<td>Pyrimidine derivative II</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Pyrimidine derivative I</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Pyrimidine derivative I + ATP</td>
<td>2 and 1</td>
<td>5.5</td>
</tr>
</tbody>
</table>
Fraction 1 catalyzes the conversion of pyrimidine-P to pyrimidine derivative II (detected by bioautography) in the presence of ATP. Pyrimidine derivative II was destroyed quite readily by heating an aqueous solution at 180° for 20 to 30 minutes, or by treatment with 1 N HCl at room temperature. The products in both instances were free hydroxymethylpyrimidine and pyrimidine-P. These results suggest that pyrimidine derivative II is a pyrophosphate ester of hydroxymethylpyrimidine (pyrimidine-PP). Other observations which support this suggestion are: (a) the migration characteristics on paper chromatograms in several solvent systems which resemble those of cytidine diphosphate, and (b) the elution pattern from Dowex 1-formate columns which also resembles that of cytidine diphosphate.

The results described above also show that pyrimidine derivative II (pyrimidine-PP) is the pyrimidine compound which is the immediate precursor of thiamine.

DISCUSSION

The data described in this paper clearly show that both pyrimidine-P and what has been identified tentatively as pyrimidine-PP are formed by an enzymatic preparation from yeast with hydroxymethylpyrimidine and ATP. The experiments also show that pyrimidine-PP is the "activated" pyrimidine compound used directly for the enzymatic synthesis of thiamine. It is likewise clear that pyrimidine-PP can be degraded, enzymatically and chemically, to pyrimidine-P, and that pyrimidine-P can be converted enzymatically to pyrimidine-PP in the presence of ATP. The question arises as to whether pyrimidine-P is a necessary intermediate in the formation of pyrimidine-PP or whether pyrimidine-P is formed merely as a degradation product of pyrimidine-PP. In an effort to clarify this point, preliminary experiments were performed with ATP containing C14-labeled adenine to determine whether ADP or AMP is the product of the formation of the phosphorylated pyrimidines. In the absence of interfering side reactions, this experiment could determine whether pyrimidine-P is formed directly from hydroxymethylpyrimidine or whether it arises via the intermediate formation of pyrimidine-P. However, the enzyme which was used (purified Fraction I) was found to be so contaminated with phosphatases, and perhaps myokinase, that all of the adenosine-containing compounds (including adenosine itself) analyzed were equally radioactive. The elucidation of the exact mechanism of formation of pyrimidine-PP therefore must be postponed until the enzymes have been further purified.

SUMMARY

Cell-free extracts of bakers' yeast catalyzed the conversion of 2-methyl-4-amino-5-hydroxymethylpyrimidine (hydroxymethylpyrimidine) and 4-methyl-5-(β-hydroxyethyl)thiazole to thiamine compounds (either thiamine, thiamine monophosphate, or thiamine pyrophosphate) which are active in supporting the growth of Lactobacillus viridescens. Adenosine triphosphate and magnesium ions were also required in the system.

Other pyrimidine compounds which contained bromomethyl, aminomethyl, or methoxymethyl groups in place of the hydroxymethyl group could also be used by the enzyme system for the synthesis of thiamine. It was shown that these pyrimidines were converted enzymatically to hydroxymethylpyrimidine before being used for thiamine synthesis.

Evidence was presented for the enzymatic formation of a phosphorylated derivative of hydroxymethylpyrimidine (formed in the presence of adenosine triphosphate) which serves as an intermediate in thiamine formation. Two phosphorylated derivatives of hydroxymethylpyrimidine were detected in enzymatic reaction mixtures. Procedures for the isolation of these compounds were described. One derivative was identified by its stability characteristics, phosphate content, and ultraviolet absorption spectrum as the monophosphate ester of hydroxymethylpyrimidine. The other derivative was identified tentatively as the pyrophosphate ester of hydroxymethylpyrimidine. The pyrophosphate ester was shown to be the intermediate active in thiamine formation. Whether the monophosphate ester is an intermediate in the formation of the pyrophosphate ester or whether it is merely a degradation product of the pyrophosphate compound cannot be decided from the available information.

REFERENCES

The Biosynthesis of Thiamine: I. ENZYMATIC FORMATION OF THIAMINE AND PHOSPHATE ESTERS OF THE PYRIMIDINE MOIETY OF THIAMINE
Gerald W. Camiener and Gene M. Brown

Access the most updated version of this article at http://www.jbc.org/content/235/8/2404.citation

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/235/8/2404.citation.full.html#ref-list-1