Demethylation in the Metabolism of (−)-Nicotine*

HERBERT MCKENNIS, JR., LENNOX B. TURNBULL, SORELL L. SCHWARTZ, EINOSUKE TAMAKI,† and EDWARD R. BOWMAN‡

From the Department of Pharmacology, Medical College of Virginia, Richmond 19, Virginia

(Received for publication, August 21, 1961)

A number of early studies (4-6) on the metabolism of randomly labeled nicotine-C14 have indicated a high degree of urinary excretion of nicotine and its metabolites in the rat, mouse, and dog. In investigations with the latter two species, it was noted that respiratory carbon dioxide contained no radioactivity after administration of the labeled compound. Hucker (7) likewise sought evidence for the metabolism of nicotine to single-carbon components and reported that a fortification liver preparation, although active in the metabolism of nicotine, produced no formaldehyde.

In recent studies from this laboratory, in which a variety of metabolites of (−)-nicotine have been identified (8-10), it was noted (9) that (−)-nicotine was metabolized by dogs to (−)-demethylcotinine by way of the intermediate (−)-cotinine. This latter work, which at once implicated single-carbon metabolites in the catabolism of (−)-nicotine, has led to an investigation of the metabolism of (−) nicotine with high specific activity of C14 in the methyl group.

(−)-Nicotine-methyl-C14 was conveniently synthesized by the reaction (11) of (−)-nornicotine with formaldehyde-C14 in formic acid. Studies with (−)-nicotine-methyl-C14 in the rat clearly show the oxidation of the methyl group of nicotine to carbon dioxide and lead to a consideration of possible routes in this metabolism. Parallel studies on the metabolism of (−)-nicotine-methyl-C14 in the dog serve to indicate that the methyl group of (−)-cotinine and that of a subsequent metabolite \(\gamma-(3\text{-pyridyl})\-\beta\-oxo-N\-methylbutyramide are derived from the methyl group of nicotine.

EXPERIMENTAL PROCEDURE

Chromatographic Procedures—All paper chromatograms were prepared on Whatman No. 1 paper and developed by the descending method at ambient temperature. For simplicity, the solvent system composed of ammonia-ethanol-butanol (9) is called the “ammonia system.” The composition of the “formic acid system” has been previously described (9). “Koenig-positive” areas were disclosed by treating the dried chromatograms with an alcoholic solution of p-aminobenzoic acid (2% by weight) and subsequent exposure of the dried chromatograms to gaseous cyanogen bromide.

Before paper chromatography, urine samples (50 to 300 ml) were placed upon a column of Dowex 50 (H+) containing approximately 1 ml of wet resin for each 2 ml of urine. After a water wash, the resin column was eluted with 2 ml ammonia water, the ammoniacal eluates were concentrated at the water pump and then placed upon paper for chromatography.

(−)-Nicotine-methyl-C14—To 30.1 mg of (−)-nicotine ([\text{\alpha}]_{D} = -87.86°) in a 15-ml tube were added 6 mg of formaldehyde-C14 (specific activity 5 mc per mmole, New England Nuclear Corporation), 2 ml of water, and 3 drops of 90% formic acid. The stoppered tube was heated in the boiling water bath for 2 hours. The cooled solution was transferred to a 500-ml Kjeldahl flask with 10 ml of water. Two milliliters of 3.6 mM acetic acid and 10 ml of sodium nitrite solution (12) were then added. The mixture was kept at room temperature for 20 minutes and then made alkaline to phenolphthalein by addition of 30% (weight by weight) sodium hydroxide and finally neutralized to phenolphthalein by dropwise addition of 3.6 mM acetic acid. The distillate was transferred into a 500-ml round-bottomed flask and then concentrated to a small volume at the water pump. Water (50 ml) was then added and subsequently removed in a vacuum. The process was repeated to insure removal of any unchanged formaldehyde. The residual nicotine was chromatographically pure upon paper chromatography in the “ammonia” and “formic acid” systems as shown by autoradiograms which had a single radioactive zone corresponding in RF value to authentic (−)-nicotine. The total yield of purified (−)-nicotine assayed in aqueous solution by the method of Willits et al. (13) was 21.5 mg. Aqueous solutions of the product were treated with chromotropic acid (14) and compared in the colorimeter against standards of pure nicotine to which formaldehyde had been added. The colorimetric values indicated that contamination by formaldehyde, if any, was less than 0.1%. The foregoing procedure (15), which is based on that previously used for the preparation of (−)-, (+)-, and racemic nicotine (16, 17), proves to be more convenient than methylation of nornicotine with methyl iodide-C14 (18).

Metabolism of (−)-Nicotine-methyl-C14 in Rat—Male albino rats (Wistar strain from Albino Farms, Red Bank, New Jersey), weighing approximately 250 g, were housed in glass metabolism cages and allowed water but no food. (−)-Nicotine-methyl-C14 was administered intraperitoneally (0.3 mg/100 g) in

*These studies were aided by grants from the American Tobacco Company and the Tobacco Industry Research Committee. Presented in part at the 45th Annual Meeting of the Federation of American Societies for Experimental Biology, Atlantic City, April 11, 1961, and at the 89th Annual Meeting of the Virginia Academy of Science, Lexington, Virginia, May 12, 1961. Preliminary reports (1-3) have been made.

† American Tobacco Company Research Fellow. Present address: Central Research Laboratory, Japan Monopoly Corporation, Tokyo. Former name: Einosuke Wada.

‡ Public Health Research Fellow of the National Heart Institute, National Institutes of Health, United States Public Health Service.
aqueous solution (0.12 mg per ml). Respiratory carbon dioxide was swept by air from the cages into 10% sodium hydroxide solution. Radioactive carbon dioxide was counted as barium carbonate. Urine samples were dried on tare at 90°. Feces were dried at 90°. All samples were counted at infinite thickness. Radioactivity of urea was determined by counting carbon dioxide (as barium carbonate) evolved by the action of urease (19) on samples of urine. Before the treatment with urease, the samples were degassed under acidic conditions. The carbon dioxide from these samples contained trace quantities of radioactivity.

Metabolism of (-)-Cotinine in Rat—Six male albino rats (360 to 500 g) were fasted for 12 hours. The animals were then anesthetized with ether and the anal sphincters were closed with wound clips to prevent fecal contamination of the urine. After recovery from the anesthetic, each animal was given (-)-cotinine (9) (1 g per kg) in an aqueous solution (500 mg per ml) by stomach tube. A total of 2.75 g of (-)-cotinine was thus administered. The animals were then placed in metabolism cages and allowed water but no food during the subsequent 48 hour period. The urine was collected under toluene during this period.

The pooled urine was filtered through Celite and then adjusted to a volume of 500 ml and approximately pH 9 by addition of ammonia water. The solution was exhaustively extracted with chloroform in a rotating extractor. When chromatographed, the chloroform solution showed two Koenig-positive zones, R_F 0.25 and R_F 0.42 ("formic acid" system), and was concentrated to a brown gum. A neutral aqueous solution of this residue was placed upon a column (9 x 1.5 cm) of Dowex 21K (OH⁻). The effluent and water wash were combined (Fraction A) for further processing.

**Isolation and Identification of γ-(3-Pyridyl)-β-oxo-N-methylbutyramide from Rat Urine—The foregoing column was eluted with 1 M acetic acid. Paper chromatography of the acidic solution in the "formic acid" system revealed a single Koenig-positive spot, R_F 0.42, corresponding in value to authentic γ-(3-pyridyl)-β-oxo-N-methylbutyramide (10). The solution was concentrated under diminished pressure to 220 mg of reddish brown oil which was dissolved in a small amount of benzene. The solution was placed upon a column (2 x 7.5 cm) of Florisil (Floridin Company, Tallahassee). The column was eluted with 100 ml of acetone-benzene (1:1 by volume) and finally 100% acetone, until no more Koenig-positive material was removed. The combined Koenig-positive eluates were evaporated to a reddish oil. The latter was dissolved in hot acetone. The cooled solution deposited 103 mg of colorless crystals of γ-(3-pyridyl)-β-oxo-N-methylbutyramide. The metabolite was recrystallized from benzene to constant melting point, 114-116°. Upon admixture with an authentic sample, m.p. 114-116°, no melting point depression was observed. The metabolite cochromatographed in the "formic acid" and "ammonia" systems with authentic material.

**Identification of Hydroxycotinine and Demethylcotinine as Met abolites of (-)-Cotinine in Rat—Fraction A (see above), when chromatographed in the "formic acid" system, displayed Koenig-positive zones corresponding to (-)-cotinine, R_F 0.42, and demethylcotinine-hydroxycotinine, R_F 0.25. The fraction was concentrated under diminished pressure to a brown oil (1.13 g). To the oil were added 5 ml of acetic anhydride and 3 ml of pyridine. The solution was allowed to stand overnight at room temperature. The solution was treated with 10 ml of methanol and then concentrated under diminished pressure. The residual brown oil was dissolved in benzene and placed upon a column (2 x 15 cm) of Florisil. The column was eluted with benzene containing increasing amounts of acetone and finally pure acetone. With the "formic acid" system, paper chromatograms of the eluates revealed Koenig-positive components corresponding in R_F value to authentic (-)-cotinine (appearing in the 0 to 85% acetone eluate), acetoxy cotinine (0 to 30% acetone), and (-)-demethylcotinine (65 to 100% acetone). Occasionally at R_F 0.55 (40 to 70% acetone eluates) the Koenig reaction was positive, yielding an evanescent purplish hue.

**Isolation of Demethylcotinine from Rat Urine—Fractions from the foregoing column (85 to 100% acetone and containing a single Koenig-positive zone corresponding to demethylcotinine) were combined and evaporated to a brown oil (48 mg). The oil was dissolved in absolute ethanol and then treated with 52 mg of 5-nitrobarbituric acid in 0.5 ml of ethanol-water (3:1 by volume). The precipitate of (-)-demethylcotinine 5-nitrobarbiturate was recrystallized from ethanol-water, m.p. 220-222° with decomposition (34.1 mg). The melting point was not depressed by admixture with an authentic sample prepared by reacting molar quantities of (-)-demethylcotinine (9) and 5-nitrobarbituric acid in ethanol-water, m.p. 222-224°. The sample for analysis was dried over KOH at 100° and 1 mm Hg, capillary m.p. 218-220°, dec.

The findings were as follows:

- **Found:** C 46.57, H 4.69, N 20.44
- **Calculated:** C 46.65, H 3.90, N 20.80

Isolation of Hydroxycotinine and Cotinine from Rat Urine—

The fractions from the foregoing Florisil column, which contained Koenig-positive material corresponding to (-)-cotinine and acetoxy cotinine, were combined and concentrated under diminished pressure to 910 mg of light yellow oil. This was dissolved in water and placed upon a column (1 x 6 cm) of Dowex 50 (H⁺). After a period of 1 hour (to allow for hydrolysis of acetoxy cotinine), the column was eluted with 1 M ammonia water. The solution was exhaustively extracted with chloroform in a rotating extractor. When chromatographed, the chloroform solution showed Koenig-positive zones corresponding to (-)-demethylcotinine, R_F 0.42, Fraction B. The 90 to 100% acetone fraction, Fraction C, contained a single Koenig-positive zone in the same system, R_F 0.25, corresponding in value to authentic hydroxycotinine (20).

Fraction C was concentrated under diminished pressure to an oil (61 mg). The oil was dissolved in ethanol and treated with 50 mg of picric acid (15% water) as a saturated solution in ethanol. The yellow hydroxycotinine picrate (109 mg) was recrystallized from ethanol, m.p. 132.5-134°. Admixture with an authentic sample of hydroxycotinine picrate (20) caused no depression of melting point.

In a similar experiment on another series of rats, acetoxy cotinine was separated from demethylcotinine on alumina (9). The acetoxy cotinine fraction was treated with picric acid to yield a crystalline picrate, m.p. 164-166°, corresponding to that of an
authentic sample. There was no depression of melting point upon admixture.

\[\text{C}_{19}\text{H}_{16}\text{N}_{10}\text{O}_{16} \]

Calculated: N 15.11
Found: N 14.96

Recovery of Cotinine from Rat Urine—Fraction B (above) yielded, when concentrated under diminished pressure, a light-brown oil (720 mg). The oil was dissolved in ethanol and treated with 300 mg of picric acid (15% water) as a saturated solution in ethanol. The crystalline cotinine picrate (1.01 g) which precipitated was recrystallised from ethanol, m.p. 102°C. An authentic sample (21) upon admixture did not depress the melting point.

Administration of (-)-Nicotine-methyl-C14 to Dog—A male mongrel dog (9.0 kg), under pentobarbital anaesthesia, was given 58.5 mg (0.5 mg per kg) of (-)-nicotine-methyl-C14 in 480 ml of 0.9% NaCl via the left femoral vein over a period of 9 hours. Urine was collected by means of an indwelling bladder catheter and contained approximately 75 ml as described above was concentrated under diminished pressure. The residue (4.1 mg), containing 5% of the total radioactivity of the original aliquot in methanol, was chromatographed on paper with butanol-acetic acid-water (100:22:50 by volume) (23). Autoradiograms revealed the presence of three radioactive zones, \(R_f \) 0.16, 0.58, and 0.72. The latter zone of major activity cochromatographed with authentic \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide. The cut zone at \(R_f \) 0.72 were extracted with methanol in a Soxhlet extractor. The residue from evaporation of the methanol was dissolved in water. The aqueous solution was placed on a column of Dowex 50 (H+). After a water wash, the column was eluted with 2 m ammonia water. When evaporated, the ammoniacal solution yielded 30.2 mg of colorless cotinine. The latter was dissolved in a slight excess of dilute hydrobromic acid. After addition of 34.8 mg of (-)-cotinine hydrobromide (20), the mixture was concentrated to dryness. The residue was recrystallised twice from isopropanol to give 32.2 mg, m.p. 187–188°C, with constant specific activity at infinite thinness, 4.10 \(\times \) 104 c.p.m. per mg.

Isolation of \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide from Dog Urine—Fraction II (obtained from another aliquot of urine, 75 ml) as described above was concentrated under diminished pressure. The residue (4.1 mg), containing 5% of the total radioactivity of the original aliquot in methanol, was chromatographed on paper with butanol-acetic acid-water (100:22:50 by volume) (23). Autoradiograms revealed the presence of three radioactive zones, \(R_f \) 0.16, 0.58, and 0.72. The latter zone of major activity cochromatographed with authentic \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide. The cut zones at \(R_f \) 0.72 were extracted with methanol in a Soxhlet extractor. The residue from evaporation of the methanol was dissolved in water. The aqueous solution was placed on a column of Dowex 50 (H+). After a water wash, the column was eluted with 2 m ammonia water. The residue obtained by evaporation of the solvent was added 100 mg of carrier \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide. The keto amide was recrystallised twice from benzene to give a product weighing 52.4 mg, m.p. 117.5–119°C, with constant specific activity at infinite thinness, 1.17 \(\times \) 104 c.p.m. per mg.

Methylamine-C14 by Hydrolysis of Metabolic \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide in Vivo—To 43.0 mg of the foregoing \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide was added new carrier \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxo-\(\gamma\)-methylbutyramide (57 mg). The mixture was heated under reflux in 2 ml of 5 m hydrochloric acid for 10 hours. The cooled solution was frozen in liquid nitrogen. To the mixture were added 1.1 ml of 10 m sodium hydroxide. With cautious thawing, methylamine and water were then distilled from the mixture into one equivalent of picric acid in a receiver cooled in liquid nitrogen.

After removal of solvent the resulting methylamine picrate was recrystallised twice from isopropanol, 75 m.g, m.p. 209°C, specific activity at infinite thinness, 3.62 \(\times \) 106 c.p.m. per mg. Two subsequent recrystallisations produced a constant specific activity of 4.15 \(\times \) 106 c.p.m. per mg with no change of melting point.

\(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxobutyric Acid—The dry residue from the hydrolysis of the keto amide and distillation of the methyl amine (above) was triturated with absolute ethanol. The alcoholic solution was filtered and then concentrated to dryness. An aqueous solution of the residue was placed on a column of Dowex 50 (H+). After a water wash, the column was eluted with 2 m ammonia water. The residual \(\gamma-(3\text{-pyridyl})\)-\(\beta\)-oxobutyric acid from evaporation of the ammoniacal solution con-
Determinations on the C¹⁴ concentration in expired air and urea of rats after administration of (-)-nicotine-methyl-C¹⁴ (Table I) show definitely that the methyl group of (-)-nicotine is a precursor of carbon dioxide in this species. It seems sufficiently clear that for the dog the general equations established for the metabolism of nicotine, schematically shown in Fig. 1, give ample opportunity for the formation of carbon dioxide from the methyl group of nicotine and, indeed, other carbons. The fact that previous workers were unable to find C¹⁴ activity in expired air after administration of randomly labeled nicotine-C¹⁴ to the dog can be ascribed presumably to the low activity of their samples.

In the present study it was shown that in the dog (-)-cotinine arising from the metabolism of (-)-nicotine-methyl-C¹⁴ contains radioactivity. Since (-)-cotinine is degraded to (-)-demethylcotinine in the dog, the demethylation of the radioactive cotinine would lead in the present case to C¹⁴ activity in the respiratory carbon dioxide. As previously discussed (10), any degradation of γ-(3-pyridyl)-β-oxo-N-methylbutyramide-N-methyl-C¹⁴ to the corresponding keto acid would give rise to methylamine-C¹⁴.

Owen and Larson (6), in their studies on the metabolism of randomly labeled (-)-nicotine-C¹⁴, sought evidence for radioactivity in the methylamine fraction from dog urine. Their negative results, but not their interpretation, were confirmed in the present investigation. Although methylamine has been reported as a normal constituent of dog urine (25) and subjected to various limited studies on several occasions (see, for example, references (26) and (27)), there are little or no data on turnover rates of the compound. In unpublished studies from this laboratory conducted in collaboration with Dr. Antonio Horvath, it was observed that the major part of methylamine-C¹⁴ is eliminated as respiratory carbon dioxide soon after administration to the rat. These data add significance to the early experiments in which it was reported that liver preparations would metabolize both nicotine (28) and methylamine (29).

Truhaut and de Clercq (30) noted that (-)-nicotine was metabolized in the rat to a variety of substances. These authors

TABLE I

Metabolism of (-)-nicotine-methyl-C¹⁴ in the male albino rat

<table>
<thead>
<tr>
<th>Rat No. and weight</th>
<th>Per cent of radioactivity excreted</th>
<th>Respiratory CO₂</th>
<th>Urea (24-hr total)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0-6 hr</td>
<td>6-12 hr</td>
</tr>
<tr>
<td>1 (254 g)</td>
<td></td>
<td>7.5</td>
<td>3.2</td>
</tr>
<tr>
<td>2 (234 g)</td>
<td></td>
<td>4.0</td>
<td>1.2</td>
</tr>
<tr>
<td>3 (260 g)</td>
<td></td>
<td>5.6</td>
<td>1.8</td>
</tr>
</tbody>
</table>

- **Fig. 1. Nicotine metabolism in the dog.**
reported the presence of a small amount of cotinine among other urinary metabolites which were not identified. In the present investigation, the metabolism of (-)-cotinine in the rat was studied at a variety of dose levels. The data obtained serve to suggest that metabolic routes for the degradation of cotinine in the rat resemble those of the dog.

A chloroform extraction of the alkalized urine obtained from rats after administration of (-)-cotinine contained, upon paper chromatography, Koenig-positive zones corresponding to cotinine \(\gamma(3\text{-pyridyl})\beta\text{-oxo-N-methylbutyramide and hydroxycotinine-demethylcotinine.}

By chromatography on ion exchange resins and adsorption chromatography, all three of the foregoing metabolites and cotinine were obtained from the urine and chemically identified. It seemed to be especially significant that paper chromatograms of urine from rats given single oral doses of (-)-cotinine (4.0 mg per kg) showed clear signs of demethylcotinine. Human urine (20) obtained under comparable conditions after oral doses of cotinine (9.8 mg per kg and 7.6 mg per kg) showed no evidence of demethylcotinine.

The variety of Koenig-positive components, not extractable with chloroform from alkalized rat urine, which arises after the administration of cotinine (Table II) also parallels in many respects that obtained after administration of cotinine to both the dog and the human (20). These paper chromatograms, which indicate the presence of at least seven Koenig-positive components and the chloroform-soluble metabolites which have been identified indicate, in view of the reported large number of unidentified urinary metabolites of nicotine in the rat (30), that cotinine serves in this species, as in many others, as an important urinary metabolite of nicotine in the rat (30), that cotinine-methyl-C14 has been studied in both the rat and the dog. After administration to the former species, 0 to 10% of the radioactivity of the dose appeared as respiratory carbon dioxide. An examination of the metabolism of (-)-nicotine and the intermediate (3)-cotinine in both species leads to the conclusion that the conversion of cotinine to demethylcotinine is involved in the formation of carbon dioxide-C14. After administration of nicotine-methyl-C14, cotinine and \(\gamma(3\text{-pyridyl})\beta\text{-oxo-N-methylbutyramide were isolated from the urine of dogs. All of the radioactivity of the latter compound was found in the N-methyl group. As a consequence of this and other considerations, methyamine arising from the hydrolysis of the keto amide in vivo may be an intermediate in the formation of the carbon dioxide-C14 observed in the studies.

Table II

<table>
<thead>
<tr>
<th>Animal and oral dose</th>
<th>4.7 mg/kg</th>
<th>150 mg/kg</th>
<th>1000 mg/kg</th>
<th>150 mg/kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male albino rat</td>
<td>RP</td>
<td>RP</td>
<td>RP</td>
<td>RP</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>0.07</td>
<td>0.18</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>0.29</td>
<td>0.29</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>0.37†</td>
<td>0.34†</td>
<td>0.37†</td>
<td>0.35†</td>
<td></td>
</tr>
<tr>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>0.63†</td>
<td>0.63†</td>
<td>0.63†</td>
<td>0.63†</td>
<td></td>
</tr>
<tr>
<td>Male mongrel dog</td>
<td>RP</td>
<td>RP</td>
<td>RP</td>
<td>RP</td>
</tr>
<tr>
<td>0.03</td>
<td>0.03</td>
<td>0.03</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>0.08</td>
<td>0.07</td>
<td>0.18</td>
<td>0.22</td>
<td></td>
</tr>
<tr>
<td>0.31</td>
<td>0.29</td>
<td>0.29</td>
<td>0.28</td>
<td></td>
</tr>
<tr>
<td>0.37†</td>
<td>0.34†</td>
<td>0.37†</td>
<td>0.35†</td>
<td></td>
</tr>
<tr>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td>0.46</td>
<td></td>
</tr>
<tr>
<td>0.63†</td>
<td>0.63†</td>
<td>0.63†</td>
<td>0.63†</td>
<td></td>
</tr>
</tbody>
</table>

* After exhaustive extraction with chloroform at pH 9 to 10, urine samples were placed upon Dowex 50 (H+). Eluates were obtained with 1 M ammonia water and then, after concentration under diminished pressure, chromatographed in the "formic acid system."

† Cochromatographed with 3-pyridylacetic acid (32).

‡ Cochromatographed with \(\gamma(3\text{-pyridyl})\beta\text{-oxobutyric acid.}"

SUMMARY

The metabolism of (-)-nicotine-methyl-C14 has been studied in both the rat and the dog. After administration to the former species, 6 to 10% of the radioactivity of the dose appeared as respiratory carbon dioxide. An examination of the metabolism of (-)-nicotine and the intermediate (-)-cotinine from both species leads to the conclusion that the conversion of cotinine to demethylcotinine is involved in the formation of carbon dioxide-C14. After administration of nicotine-methyl-C14, cotinine and \(\gamma(3\text{-pyridyl})\beta\text{-oxo-N-methylbutyramide were isolated from the urine of dogs. All of the radioactivity of the latter compound was found in the N-methyl group. As a consequence of this and other considerations, methyamine arising from the hydrolysis of the keto amide in vivo may be an intermediate in the formation of the carbon dioxide-C14 observed in the studies.

REFERENCES

5. **Bennett, D. R., Tedeschi, R. E., and Larsson, P. S., Arch. intern. pharmacodynamie, 98, 221 (1954).**
15. **Acquah, W., Deutsches Reichs-Patent 80520 (1893).**
23. **Stepka, W., in A. C. Corcoran (Editor), Methods of medical research, The Year Book Publishers, Chicago, 1952, p. 25.
Demethylation in the Metabolism of (-)-Nicotine
Herbert McKennis, Jr., Lennox B. Turnbull, Sorell L. Schwartz, Einosuke Tamaki and Edward R. Bowman

Access the most updated version of this article at http://www.jbc.org/content/237/2/541.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/237/2/541.citation.full.html#ref-list-1