Binding of Myosin A to F-Actin*

YUJI TONOMURA, SEIICHI TOKURA, AND KAZUKO SEKIYA

From the Research Institute for Catalysis and the Department of Chemistry,
Faculty of Science, Hokkaido University, Sapporo, Japan

(Received for publication, July 11, 1961)

The studies of Szent-Györgyi (1) have clearly established the formation of actomyosin from F-actin and myosin A. Szent-Györgyi (1), Portzehl, Schramm, and Weber (2), Jaiale (3), Snellman and Gelotte (4), and Spicer and Gergely (5) have suggested from their viscometric and centrifugal studies that the maximal amount of myosin A which can be bound by F-actin is in the ratio of 2 to 4:1, by weight. Iaki, Spicer, and Carroll (6) and Portzehl et al. (2) have reported that the binding reaction is a reversible one which depends on temperature and ionic strength. However, it seems difficult to determine, by viscometric or ultracentrifugal experiments, the binding ratio of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.

So far, no kinetic study has been made of the binding reaction of myosin A to F-actin. In the present study the velocity and equilibrium constants for the binding of myosin A to F-actin, since such experiments must usually be performed under conditions involving large intermolecular interactions of fibrous proteins. Gergely and Kohler (7) have recently applied the method of light scattering, which can be used with protein solutions of much lower concentration. It may, however, be pointed out that under their experimental conditions the dissociation constant for the binding reaction is so small that its accurate measurement may be very difficult.
where \(a \) is determined as \(f \ X \ A/A \), as mentioned above. And \(K \) is independent of \(j \), from the equation (14), interactions between bound myosin A molecules are negligible \(\text{Myosin A} + \text{F-actin} \rightarrow \text{Myosin A-F-actin} \) can be calculated, in the range of low \(j \) where the dissociation constant, \(K \), of the reaction \(\text{Myosin A} + \text{F-actin} \rightarrow \text{Myosin A-F-actin} \) is equal to that of the binding site of F-actin, \([Z_A]\).

Therefore, the dissociation constant, \(K \), of the reaction \(\text{Myosin A} + \text{F-actin} \rightarrow \text{Myosin A-F-actin} \) was estimated by extrapolating the curve \(A/A, \) against \([Z_A] \), the weight of F-actin which was bound to \(0.03 \text{ mg per ml} \). The total molar concentration of myosin A was calculated from the equation (14),

\[
\frac{[Z_A]}{a} = K/(1 - a) + [Z_A]
\]

where \(a \) is determined as \(f \times \Delta A_m \), as mentioned above.

The kinetic studies were usually conducted at pH 7.0 and 5-10\(^{\circ}\) in a 0.6 M KCl medium. Two milliliters of myosin A solution were blown into 8 ml of F-actin solution with a pipet with cut tip, and the increase in \(A \) with time was recorded by a photoelectric spectropolarimeter with an oscillating polarizer prism (O. C. Rudolph and Sons). A xenon compact arc lamp was used as the source for continuous spectra (320 to 600 mp). The polarimeter could be set to about 0.002\(^{\circ}\). Water-jacketed, 10-cm polarimeter tubes, maintained at 25\(^{\circ}\) by circulation of water from an ultrathermostat, were used for the measurement. The concentration of actomyosin was about 0.6 mg per ml, because actomyosin solution showed a strong birefringence in the tube at concentrations higher than 1 mg per ml. The angle of rotation of actomyosin varied from \(-0.05^{\circ}\) to \(-0.2^{\circ}\) in the range of 450 to 320 mp. All results were expressed in terms of the equation of Moffitt and Yang (15),

\[
[m'] = \frac{3}{a^2 + \frac{9}{100}}[\alpha] = \frac{a_0\lambda^2}{\lambda^2 - \lambda_0^2} + \frac{b_0\lambda^4}{(\lambda^2 - \lambda_0^2)^2}
\]

in which \([m']\) is the so-called effective residue rotation at any wavelength, \(\lambda \), this being the observed specific rotation, \([\alpha]\), corrected for the effects of the refractive index, \(n \), and the average molecular weight of the single residue, \(M_a \). The \(M_a \) was calculated from the amino acid analyses of actin and of myosin A (16). The adjustable parameter, \(\lambda_0 \), was taken as constant and equal to 2140 A.

Modification of F-actin by 2,4,6-trinitrobenzenesulfonate was accomplished as follows. Trinitrobenzenesulfonate solution, adjusted to pH 8.2, was added to G-actin at pH 8.2 and at 2\(^{\circ}\). The molar ratio of trinitrobenzenesulfonate to G-actin (molecular weight, \(6.1 \times 10^5 \) (17)) was 30. The pH of the mixture was maintained in the range of 8.2 to 8.4 by adding 0.2 M Tris. For observation of the reaction spectrophotometrically, aliquots of the reaction mixture were taken out at appropriate times and their pH values were adjusted to 7.0 to slow down the velocity of binding of trinitrobenzenesulfonate to G-actin. G-actin was transformed into the F form by the addition of 0.1 M KCl. The amount of bound trinitrophenyl groups was calculated from the absorption maximum of 345 mp with a molar extinction coefficient of 1.45 \times 10^4 (18).

The concentrations of the proteins were calculated by multiplying the nitrogen contents, determined by the micro-Kjeldahl method, by a factor of 6; or were determined by the biuret reaction (19). In the latter case the standard curves for myosin A and F-actin were constructed on the basis of their nitrogen content.

RESULTS

Equilibrium Studies

Binding Ratio—At 25\(^{\circ}\) and pH 7.5, various concentrations of myosin A were added to 0.03 mg per ml of F-actin (Fig. 1). Here, the value of \(K \) was too low to be measured, but it was estimated to be less than 10\(-^4\) M (see the next paragraph). If 10\(-^4\) M is taken as \(K \), almost all myosin A molecules should be bound to F-actin in a range of a lower than 0.8. By extrapolating the curve \(A/A_m \) against \([Z_A] \), the weight of F-actin which can be bound by 1 mole of myosin A (molecular weight taken as \(5.94 \times 10^5 \) was estimated to be 1.59 \pm 0.25 \times 10^5 \) for five preparations. The binding ratio (F-actin to myosin A = 1:3.7 by weight) agrees completely with that obtained by Gergely and Kohler (7) from determination of the molecular weight of acto-
As already suggested by Laki et al. (6), the binding was fortified by elevation of temperature. For example, in the case of myosin A No. 57 and F-actin No. 15, the values of I_i at 17°C and 6°C were 1.07 and 62.5×10^{-9} M, respectively. When 0.06 mg per ml of myosin A No. 60 and 0.03 mg per ml of F-actin No. 21 were allowed to stand at 24°C, Δ increased by 116. When the cell was cooled to 10.6°C, Δ decreased to 71. When the cell was then returned to 24°C, Δ increased gradually to the original value (Fig. 3). These results indicate that the reaction between myosin A and F-actin is reversible. In Fig. 4, log K is plotted against the reciprocal of absolute temperature, $1/T$. The enthalpy change, ΔH, calculated from the slope was very large and positive, $+57.5 \text{ kg cal per mole}$. The thermodynamic and kinetic constants of the reaction are listed in Table I. This reaction shows a comparatively large negative free energy change as the net result of the very large ΔH and entropy change ($\Delta S = +234 \text{ cal mole}^{-1} \text{ deg}^{-1}$).

Effect of Ionic Medium—The intrinsic dissociation constant, K, depends on pH, as shown in Fig. 5. The value of K was reduced 3.2-fold with an increase in pH from 6.3 to 7.3, both at 0.6 M KCl.

Dependence on Temperature—Fig. 2 is a plot of $[\Sigma M]/a$ against $1/(1 - a)$ at 16.5°C. The intercept of the ordinate of this curve, i.e., $[\Sigma A]$, was obtained from the extrapolation of the plot Δ/Δ_m against $[\Sigma M]$ at about 25°C and pH 7.5, shown in Fig. 1. When $1/(1 - a)$ exceeded 3.5 to 4, the value $[\Sigma M]/n$ deviated upwards from the line in the range of low a. This indicates that when myosin A molecules occupy more than 70% of the F-actin sites, the binding strength becomes less than expected for the dissociation constant at low a, presumably because of intermolecular repulsions of myosin A bound on F-actin. Therefore, the intrinsic value of the dissociation constant, K, was determined from the slope of the line in a range of a less than 0.5.

Table I

Thermodynamic and kinetic constants of binding of myosin A to F-actin

<table>
<thead>
<tr>
<th>K (at 9°C)</th>
<th>ΔH</th>
<th>ΔS</th>
<th>k (at 9°C)</th>
<th>ΔB</th>
<th>ΔS</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.6×10^{-7}</td>
<td>+57.5</td>
<td>+234</td>
<td>1.9×10^{8}</td>
<td>+11.5</td>
<td>+0.2</td>
</tr>
</tbody>
</table>
The extent of the binding was reduced by an increase in concentration of KCl. In Fig. 6, log K was plotted against the square root of the ionic strength, $\sqrt{\mu}$. K increased 4.8-fold with increase in KCl concentration from 0.8 to 1.5 M, and log K against $\sqrt{\mu}$ was linear within this range of KCl concentration. On the other hand, the addition of 10% ethanol decreased K to 0.45 of the control value.

Optical Rotatory Dispersion—In Fig. 7 are shown the Moffitt-Yang plots of the optical rotatory dispersion curves of the myosin A-F-actin system (myosin A to F-actin = 4:1) in 0.6 M KCl and at pH 7.5 and 25°C. The rotatory dispersion of reconstituted actomyosin and F-actin could not be determined with high accuracy, because they could be measured only at low protein concentration. It is seen in the figure that the $-\alpha_0$ term in decreases and the $-\beta_0$ term decreases slightly with formation of actomyosin. Even when the F-actin or actomyosin solution (0.5 to 0.6 mg per ml) showed birefringence immediately after being inserted into the tube, the birefringence decreased with time, and several hours later it did not interfere with the optical rotatory measurement. In such a case, the α_0 term appeared to change remarkably with the formation of actomyosin, although the decrease of the $-\beta_0$ term by several per cent was observed without fail for all six preparations tested. This may be due to the circumstance that slight orientation of the helical polypeptide chain conspicuously changes the α_0 term and slightly changes the β_0 term (20). In Table II are listed several typical results showing optical rotatory dispersion in the myosin A-F-actin system. The excess right-handed helical content, which was estimated by the Doty method (21), decreased by several per cent (2% from the α_0 or 5% from the β_0 term) on the formation of actomyosin. The helical content of myosin A was 57 to 60% or 56 to 62%; and of F-actin, 44 to 58% or 30 to 43%. The value of myosin A agrees with that estimated previously by Cohen and Szent-Györgyi (22) from the β_0 term, but the value of actin is much higher than that reported by Kay (17).

Modification of Actin by Trinitrobenzenesulfonate—In Fig. 8 is shown the time course for the combination of trinitrobenzenesulfonate with G-actin. The binding of 1 mole of the reagent to 1 mole of G-actin occurred rapidly; thereafter, the rate of increase was gradual. The increment of absorption spectrum due to the combination of trinitrobenzenesulfonate (0.7 and 1.6 mole per ml) agreed well with the absorption spectrum of the e-trinitrophenyllysine, in the range of 340 to 500 mp. Furthermore, no N-terminal amino acid can be detected in G-actin by the fluorodinitrobenzene method (23). Accordingly, it is concluded that one amino group, probably of a lysine residue, in the G-actin molecule is attacked specifically by trinitrobenzenesul-
TABLE II

Excess right-handed helical contents of muscle proteins

<table>
<thead>
<tr>
<th>Protein</th>
<th>Concentration</th>
<th>Medium</th>
<th>a<sub>1</sub> - b<sub>1</sub></th>
<th>Helical content (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Myosin A No. 62</td>
<td>6.2 mg/ml</td>
<td>0.6 m KCl</td>
<td>103.324</td>
<td>58.4 55.9</td>
</tr>
<tr>
<td>Myosin A No. 68</td>
<td>6.1 mg/ml</td>
<td>0.6 m KCl</td>
<td>110.533</td>
<td>57.4 61.9</td>
</tr>
<tr>
<td>Myosin A No. 69</td>
<td>0.97 mg/ml</td>
<td>0.6 m KCl</td>
<td>106.369</td>
<td>59.8 62.9</td>
</tr>
<tr>
<td>F-actin No. 29</td>
<td>0.5 mg/ml</td>
<td>0.6 m KCl</td>
<td>174.174</td>
<td>57.9 30.9</td>
</tr>
<tr>
<td>F-actin No. 31</td>
<td>0.5 mg/ml</td>
<td>0.6 m KCl</td>
<td>236.249</td>
<td>48.8 43.0</td>
</tr>
<tr>
<td>F-actin No. 32</td>
<td>0.5 mg/ml</td>
<td>0.6 m KCl</td>
<td>179.265</td>
<td>57.5 36.4</td>
</tr>
<tr>
<td>Sum of values of Myosin A No. 67 and F-actin No. 29</td>
<td>M = 1.0*</td>
<td>0.6 m KCl</td>
<td>137.310</td>
<td>55.3 55.5</td>
</tr>
<tr>
<td>Actomyosin (myosin A No. 67, F-actin No. 29)</td>
<td>A = 0.25</td>
<td>8.5 m urea</td>
<td>513</td>
<td>0 0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>A = 0.125</td>
<td>0.6 m KCl</td>
<td>150.281</td>
<td>53.5 48.4</td>
<td></td>
</tr>
</tbody>
</table>

* Specific optical rotation of myosin A did not depend appreciably on concentration in the range of 0.5 to 1.0 mg per ml.

Fig. 8. Time course of binding of trinitrobenzenesulfonate with G-actin. Ordinate, moles of bound trinitrophenyl group per mole of G-actin. pH 8.2, 32°C. 52.1 μM G-actin No. 27 (molecular weight, 61,437), 1.56 mM trinitrobenzenesulfonate.

Fig. 9. Effects of binding of trinitrobenzenesulfonate with G-actin on G-F transformation of actin and binding of F-actin with myosin A. Degree of polymerization: X, G-actin No. 29, 0.1 m KCl, 5 mM MgCl₂; A, G-actin No. 31, 0.1 m KCl; pH 6.7, room temperature. Light scattering increment after mixing actin and myosin A; O, actin No. 29, myosin A No. 67; ·, actin No. 30, myosin A No. 68; ●, actin No. 31, myosin A No. 69; 0.6 m KCl, pH 7.0, 10°C, 0.04 mg per ml of myosin A, 0.01 mg per ml of F-actin.

Fig. 10. Relation between initial velocity of actomyosin formation and concentration of myosin A. Initial velocity is calculated from rate of actomyosin formation which is shown in inserted figure. Extent of occupation of active site with myosin A, [AM]/[2Δ], was determined by multiplying measured value of Δ/Δ₀ by Factor f, which was determined by the procedure shown in Fig. 1. The initial velocity of the increase of [AM]/[2Δ] is equal to Δ/[2M]. 0.6 m KCl, pH 7.0, 10°C. 0.01 mg per ml of F-actin No. 16. Concentration of myosin A No. 58, C, 0.01; ●, 0.02; X, 0.01; Δ, 0.08 mg per ml.

Kinetic Studies

Dependence of Velocity on Concentration of Myosin A and F-Actin—In Fig. 10 are shown the time course of actomyosin formation and concentration of myosin A. Initial velocity is calculated from rate of actomyosin formation which is shown in inserted figure. Extent of occupation of active site with myosin A, [AM]/[2Δ], was determined by multiplying measured value of Δ/Δ₀ by Factor f, which was determined by the procedure shown in Fig. 1. The initial velocity of the increase of [AM]/[2Δ] is equal to Δ/[2M]. 0.6 m KCl, pH 7.0, 10°C. 0.01 mg per ml of F-actin No. 16. Concentration of myosin A No. 58, C, 0.01; ●, 0.02; X, 0.01; Δ, 0.08 mg per ml.
formation after the addition of various concentrations of myosin A (0.01 to 0.08 mg per ml) to F-actin (0.01 mg per ml), and the dependence of the initial velocity on the concentration of myosin A. The initial velocity of the binding was proportional to the concentration of myosin A. From observations with increasing F-actin concentration, with myosin A held constant, it was also shown that the initial velocity is proportional to the concentration of F-actin. Therefore, the reaction is second order. The velocity constant, \(k \), at 9° was found to be 1.9 \(\times 10^5 \) M\(^{-1}\) sec\(^{-1}\) for myosin A No. 58 and F-actin No. 16.

Effect of Temperature—As shown in Fig. 4, the plot of log \(k \) against \(1/T \) was approximately linear. The calculated energy of activation, \(E \), from this line was 12.1 kg calories per mole. Accordingly, the enthalpy of activation at room temperature, \(\Delta H^f = E - RT \) (\(R \) is the gas constant), is calculated to be 11.5 kg calories per mole.

Effect of Ionic Medium—As indicated in Fig. 11, the value of \(k \) increased 5-fold with an increase in pH from 6.2 to 7.4. \(k \) decreased with increasing KCl concentration in the medium. The plot of log \(k \) against \(\sqrt{\mu} \) is seen in Fig. 6 to be a straight line in the range of KCl concentrations of 0.5 to 1.5 M. As shown in Fig. 12, Mg\(^{++}\) enhanced the reaction velocity significantly and Ca\(^{++}\) did so moderately. For instance, 0.5 mM Ca\(^{++}\) and Mg\(^{++}\) increased \(k \) 2.4- and 4-fold, respectively. The divalent cation which may be contained in myosin A and F-actin preparations does not, however, seem to be an essential factor for the binding reaction, because 10 mM EDTA did not significantly decrease the reaction velocity of the system to which no divalent cation was added.

DISCUSSION

The binding of myosin A to F-actin is a completely reversible reaction. By viscometric and light scattering methods, the size and shape of the myosin A molecule was observed to be only slightly dependent on temperature (5-25°), on pH (6.3 to 8.2), or on KCl concentration (0.6 to 1.5 M). Furthermore, the reduced viscosity of F-actin, which was measured 30 or 40 minutes after each change of medium, was decreased by only approximately 4% when the KCl concentration was changed from 0.6 to 1.5 M, and by only 3% when the temperature was lowered from 20° to 5°; it did not change at all when pH was increased from 6.3 to 7.5. Therefore, the effects of temperature and ionic media on the equilibrium and the rate constants for actomyosin formation probably are not significantly influenced by change in groove properties of both proteins.

The standard entropy of activation, \(\Delta S^f \), may be evaluated from the equation (24):

\[
k = \frac{RT}{N\hbar} \exp(T\Delta S^f - \Delta H^f)/RT
\]

where \(N \) is the Avogadro constant and \(\hbar \) is the Planck constant. Utilizing the value of \(\Delta H^f \) (11.5 kg calories per mole) and the measured velocity constant for binding, \(k \) (at 9°, \(k \sim 2 \times 10^5 \) M\(^{-1}\) sec\(^{-1}\)), \(\Delta S^f \) is found to be slightly positive and is approximately 6.2 cal deg\(^{-1}\) mol\(^{-1}\). It can be seen in Table I that the binding reaction of myosin A to F-actin is accompanied by extremely large positive entropy and enthalpy changes, and that the entropy and enthalpy changes are much larger than the entropy of activation and the enthalpy of activation.

The thermodynamic constants have already been measured for some antigen-antibody reactions. For the rabbit antibody complex with sulfanyl ovalbumin, \(\Delta H = -2.85 \) kg calories per mole and \(\Delta S = +21 \) cal deg\(^{-1}\) mole\(^{-1}\) (25); and for rabbit antibody complex with human serum albumin, \(\Delta H = -3.66 \) kg calories per mole and \(\Delta S = +14 \) cal deg\(^{-1}\) mole\(^{-1}\) (26). In the case of the dimerization of insulin molecules, \(\Delta H \) and \(\Delta S \) were found to be -8.1 kg calories per mole and -12.1 cal deg\(^{-1}\) mole\(^{-1}\), respectively (27). Furthermore, von Hippel, Gellert, and Morales (28) observed that some components of myosin B dissociate reversibly when the temperature is lowered. As noted by Doty and Myers (27), these positive or small negative values of \(\Delta S \) seem to be quite expected as those of binding reactions. The entropy change of binding of myosin A to F-actin as reported here is much larger than the values previously reported for protein reactions. As the basis of comparison, the Sackur-Tetrode equation (cf. 29) may be applied to estimate the entropy of binding of a structureless myosin A to a structureless F-actin fiber based upon the loss of translational and rotational freedom.

\(^3 \) The transmission coefficient was assumed to be 1. In the case of a complicated reaction such as the present one, the coefficient is expected to be smaller than 1, and the legitimate value of \(\Delta S^f \) may be smaller than the figure calculated here.
Taking as models for myosin A a cylinder 2000 Å in height and with a molecular weight of 5.94 × 10^5, and for F-actin a cylinder 12,000 Å in height and with a molecular weight of 3 × 10^6, −105 cal deg⁻¹ mole⁻¹ is calculated as the decrease in entropy. Thus, the observed value of the entropy change (+234 cal deg⁻¹ mole⁻¹) is 339 cal deg⁻¹ mole⁻¹, higher than the value expected for the binding.

As pointed out by Kauzmann (30), both electrostatic bonds and hydrophobic bonds are stabilized predominantly by entropy effects rather than by energy effects. In actomyosin formation, electrostatic effects seem to play a dominant role, because it was found that KCl is able to dissociate the complex. The observation that ethanol decreases the dissociation constant also supports this view. The mechanism of the ethanol effect may, however, be very complicated, because 10% ethanol reduced the viscosity of F-actin by 10% and promoted polymerization of myosin A (9).

The binding of myosin A to F-actin was strengthened by a shift of pH to the alkaline side of the isoelectric points of both proteins. This suggests that the reaction depends on the dissociation of specific groups on the protein molecule rather than on the total charge of the molecule. Bailey and Perry (31) reported that the binding of myosin A to F-actin is prevented by modifications of the sulfhydryl groups of myosin A, but not of actin. As described above, when one amino group, probably of a lysine residue, of actin was modified by trinitrobenzenesulfonate, the transformation of G-actin to F-actin was not inhibited but trinitrophenyl-F-actin could not bind with myosin A; trinitrophenyl-myosin A can be bound to intact F-actin (33). According to Kauzmann (30), both electrostatic bonds and hydrophobic bonds are stabilized predominantly by entropy effects rather than by energy effects. In actomyosin formation, electrostatic effects seem to play a dominant role, because it was found that KCl is able to dissociate the complex. The observation that ethanol decreases the dissociation constant also supports this view. The mechanism of the ethanol effect may, however, be very complicated, because 10% ethanol reduced the viscosity of F-actin by 10% and promoted polymerization of myosin A (9).

The binding of myosin A to F-actin was strengthened by a shift of pH to the alkaline side of the isoelectric points of both proteins. This suggests that the reaction depends on the dissociation of specific groups on the protein molecule rather than on the total charge of the molecule. Bailey and Perry (31) reported that the binding of myosin A to F-actin is prevented by modifications of the sulfhydryl groups of myosin A, but not of actin. As described above, when one amino group, probably of a lysine residue, of actin was modified by trinitrobenzenesulfonate, the transformation of G-actin to F-actin was not inhibited but trinitrophenyl-F-actin could not bind with myosin A; trinitrophenyl-myosin A can be bound to intact F-actin (33). Accordingly, it is plausible to conclude that the salt linkage between a sulfhydryl group of myosin A and an amino group of F-actin, −S−...H3N+, is one of the bonds essential to actomyosin formation, although the present results cannot exclude the possibility that the salt linkage between a hydroxyl group and an amino group is essential to the binding. The dependence of K on pH may be partly attributed to the dissociation of a sulfhydryl group, −SH = −S− + H+, and the promoting effect of divalent metal ions on the binding may be due to a decrease in nonspecific electrostatic repulsion between myosin A and F-actin, the net charges of both proteins being negative at pH 7.0.

It hardly seems reasonable, however, to attribute the large positive ΔS values for this reaction merely to electrostatic effects (cf. Ref. (30), p. 47). Two possible explanations may be suggested for the extraordinarily large and positive ΔS (34): (a) Protein molecules may be unable to combine in their native states, and a partial unfolding in the neighborhood of the reaction centers may be a necessary prelude to the linkage. (b) The binding of protein molecules involves a large surface of contact between them, with an accompanying dehydration of charged groups on each molecule over this portion of the molecular surface. Since the hydration of charged groups is accompanied by a large decrease in entropy, a dehydration process will yield a corresponding increase (27). As mentioned above, the excess right-handed helical content seemed to decrease by several per cent with the formation of actomyosin, although this result was not conclusive because of the orientation effect of fibrous proteins. Thus, the second mechanism may be adequate, in the present case, to explain the observed large increase in entropy.

The changes in optical rotatory dispersion of myosin A caused by adding pyrophosphate and by adding F-actin were observed to be of the same order. It is well known that pyrophosphate binds to myosin A (35, 36) and breaks the bond between myosin A and actin, in which an amino group has a share (7, 13, 37). Furthermore, comparison of the dependence of myosin A ATPase activity on divalent cations with that of actomyosin suggests that the conformation around the ATPase-active site of myosin A becomes loose as the latter combines with F-actin (38). Therefore, it may be concluded that the decrease in the helical content with actomyosin formation occurs mainly in the myosin A moiety rather than in actin.

SUMMARY

1. The dissociation constant, K, for the binding of myosin A to F-actin was measured under a wide range of experimental conditions, and the following results were obtained. (a) The binding ratio of myosin A and F-actin is 3.7:1, by weight. (b) The reaction is an endothermic equilibrium reaction. K is 4.6 × 10⁻⁷ M in 0.6 M KC1 and at pH 7.5 and 9°. The entropy and enthalpy changes of the binding are +234 cal deg⁻¹ mole⁻¹ and +57.5 kg calories per mole, respectively. (c) K decreases when pH is increased from 6.3 to 7.6, and increases with increased ionic strength. It decreases on addition of ethanol.

2. The following results were obtained from measurement of the rate of the binding. (a) Velocity of binding is proportional to the concentrations of both myosin A and F-actin. The rate constant, k, is 1.9 × 10⁶ m⁻¹ sec⁻¹ in 0.6 M KC1 and at pH 7.0 and 9°. (b) The rate constant, k, increases with a rise in temperature. The enthalpy of activation is estimated to be +11.5 kcal calories per mol. (c) The rate constant, k, increases with an increase in pH from 6.3 to 8.0 and decreases with increased ionic strength. It increases on addition of Ca²⁺ and especially of Mg²⁺.

3. The optical rotatory power of the myosin A-F-actin system changes slightly on formation of actomyosin. The excess right-handed helical content estimated by the Doty method decreases by several per cent on formation of the complex.

4. When one amino group, probably of a lysine residue, of G-actin is modified by 2,4,6-trinitrobenzenesulfonate, the transformation of G-actin to F-actin is not inhibited, but the actomyosin formation is inhibited.

Acknowledgments—We wish to express our sincere thanks to Mies I. Kamasusuk and Mr. K. Miki for their technical assistance, and especially to Mr. K. Imamura for his skillful measurements of optical rotatory dispersion.

REFERENCES

4 Unpublished observations by K. Sekiya, K. Imamura, and Y. Tanoura. In the case of pyrophosphate-myosin A system, the measurements were made at a protein concentration of approximately 6 mg per ml where the orientation of the protein was negligible. The change in the a₀ and the b₄ term could be measured accurately.
Binding of Myosin A to F-Actin
Yuji Tonomura, Seiichi Tokura and Kazuko Sekiya

Access the most updated version of this article at http://www.jbc.org/content/237/4/1074.citation

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/237/4/1074.citation.full.html#ref-list-1