Ristocetins, Inhibitors of Cell Wall Synthesis in Staphylococcus aureus*

CHARLES H. WALLAS AND JACK L. STROMINGER

From the Department of Pharmacology, Washington University School of Medicine, St. Louis 10, Missouri

(RECEIVED FOR PUBLICATION, DECEMBER 28, 1962)

Inhibition of bacterial cell wall synthesis is an important mechanism of action of antibacterial agents. Bacterial cell walls are chemically and morphologically distinct from any structures found in animal cells. Inhibition of synthesis of these structures results, therefore, in selective toxicity. The bactericidal action of penicillins (1, 2), n-cycloserine (3, 4), bacitracin (5), and novobiocin (6) is accompanied by inhibition of cell wall synthesis and, in the case of n-cycloserine, the identification of two enzymatic reactions sensitive to n-cycloserine and uniquely found in bacteria provides a relatively complete explanation of its antibacterial activity (7).

Many of these laboratory studies have been carried out with Staphylococcus aureus. After the emergence of drug-resistant strains of S. aureus in injected humans, a search for new antibacterial antibiotics resulted in the isolation of vancomycin (8) and ristocetin (9). Both of these have been widely used in the treatment of staphylococcal infections. Investigation of the mechanism of action of these two substances has resulted in the finding that both of them selectively inhibit bacterial cell wall synthesis at levels which are comparable with those required for antibacterial activity. While these experiments were in progress, two other laboratories reported similar experiments with vancomycin (10, 11) and, hence, only the results obtained with ristocetin will be reported here.

EXPERIMENTAL PROCEDURE

The organism employed was S. aureus, strain Copenhagen. Measurement of uridine nucleotide accumulation (12), isolation and degradation of accumulated nucleotides (2, 12-14), and isotopic measurements of cell wall synthesis (15) were carried out by techniques described previously. In the isotope experiments the amounts of C14-labeled nucleosides (believed to be precursors of the cell wall) and insoluble material were removed by centrifugation. Nucleotides observed was virtually identical with that obtained with penicillin (14). Compounds found in the two prominent nucleotide areas were recovered by elution. Paper chromatography of 0.1 μmole of each compound after acid hydrolysis indicated the presence of only alanine in Compound 1 and of alanine, glutamic acid, and lysine in Compound 2.

Compound 1 contained, per μmole of uridine, 2.11 μmoles of

* This work was supported by research grants from the United States Public Health Service (NIAID E-1902) and the National Science Foundation (G-18742).
FIG. 1. Nucleotide accumulation in *S. aureus* as a function of concentration of ristocetins. Spontin is the commercial preparation.

FIG. 2. Nucleotide accumulation in *S. aureus* as a function of time at a concentration of ristocetin of 150 μg per ml.

organic phosphate, 1.03 μmoles of acetylMuramic acid, and 0.59 μmole of alanine, all of which was the L isomer. This material is presumably a mixture of UDP-GNAC-lactic acid and UDP-GNAC-lactyl-L-Ala, both of which accumulate in the presence of penicillin (17). It occupies the position of this mixture in the two-dimensional paper chromatogram. The separation of these two compounds is difficult, however, and has not been attempted in the present study.

Compound 2 (1.7 μmoles) was subjected to acid hydrolysis, and the phosphate, amino sugar, and amino acids present were separated on a column of Dowex 50W-H+ (8% cross-linked, 200 to 400 mesh). The column was 0.9 cm × 55 cm. For each 2 residues of phosphate in the column eluate, 2 residues of D-alanine and 1 residue each of L-alanine, glutamic acid, and lysine were found (Table I). The lower molar ratio of muramic acid observed (Table I) is due to some destruction during acid hydrolysis and corresponds to previous experience. The amino acids were identified by their positions in the ion exchange chromatogram, by paper chromatography in 1-butanol-acetic acid-water (3:1:1) and isobutyric acid-NH₂OH (5:3), and, in the case of alanine, by determination of D-alanine with D-amino acid oxidase and of L-alanine with L-alanine-α-ketoglutarate transaminase (Table I). By these methods the nucleotide is identical with UDP-GNAC-lactyl-L-Ala-d-Glu-L-Lys-d-Ala-d-Ala, which also accumulates in the presence of penicillin (17).

Effects of Ristocetin in Incorporation of C¹⁴-Lysine and of P³²-Inorganic Phosphate into Cell Wall—Under conditions in which ristocetin inhibited incorporation of these isotopes into the cell wall by greater than 95%, incorporation into the tri-

![Image](http://www.jbc.org/)

Table I

Quantitative analyses of products of hydrolysis of Compound 2

<table>
<thead>
<tr>
<th>Compound isolated</th>
<th>Micromoles found</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td>3.53</td>
<td>2.1</td>
</tr>
<tr>
<td>Amino sugar</td>
<td>0.99</td>
<td>0.6</td>
</tr>
<tr>
<td>Glutamic acid</td>
<td>1.66</td>
<td>(1.0)</td>
</tr>
<tr>
<td>Alanine (total)</td>
<td>4.80</td>
<td>2.9</td>
</tr>
<tr>
<td>D-Alanine</td>
<td>3.24</td>
<td>2.0</td>
</tr>
<tr>
<td>L-Alanine</td>
<td>1.82</td>
<td>1.1</td>
</tr>
<tr>
<td>Lysine</td>
<td>1.84</td>
<td>1.1</td>
</tr>
</tbody>
</table>
TABLE II

Effect of ristocetins on incorporation of isotopes into various cell fractions

Spontin, the commercial preparation containing both ristocetin A and ristocetin B, was used in this experiment. Antibiotic and isotopes were added to 400 ml of logarithmic phase cultures as described previously (15). Cell walls and trichloroacetic acid precipitates of the soluble cell contents (protein and nucleic acid) were prepared, purified, and counted (15). Data are expressed as counts per minute per mg of cell wall peptide or protein in each fraction. Similar data are obtained if the results are expressed as total counts per minute in each fraction.

<table>
<thead>
<tr>
<th>Cell wall</th>
<th>Protein and nucleic acid</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>32P-Phosphate</td>
</tr>
<tr>
<td>Control</td>
<td>180,000</td>
</tr>
<tr>
<td>+ Spontin, 150 µg per ml</td>
<td>4,180</td>
</tr>
<tr>
<td>Per cent inhibition</td>
<td>98</td>
</tr>
</tbody>
</table>

chloroacetic acid precipitate of the cell contents (which contains both protein and nucleic acid) continued at a normal rate (Table II).

DISCUSSION

Ristocetin A and ristocetin B can thus be added to the list of antibiotics which inhibit bacterial cell wall synthesis. These substances, like penicillins, bacitracin, novobiocin, and vancomycin, inhibit at a late stage in cell wall synthesis, and although superficially, by the techniques employed here, they have similar loci of action (i.e. the same cell wall precursors accumulate with each of these substances), it is unlikely that their precise mechanisms of action are identical. Bacitracin and the penicillins are both peptide antibiotics whereas novobiocin is related chemically to dicoumarol and belongs to a heterogeneous group chemically. The ristocetins and vancomycin, on the other hand, are complex oligosaccharides which contain amino acids. In the case of ristocetins, even shorter oligosaccharide chains prepared by acid hydrolysis exhibited both growth inhibition and inhibition of cell wall synthesis. In view of the complexity of cell wall synthesis, it would be surprising if each of these substances interfered with this process in exactly the same manner. It is possible, for example, that some of these substances interfere in some manner with synthesis of the primary polysaccharide backbone of the cell wall (a polymer of N-acetylglucosamine and N-acetylmuramic acid), whereas others interfere with the formation of the peptides and their cross-links. An experimental approach to this problem, however, will require much more information about the mechanisms of cell wall synthesis than is presently available.

SUMMARY

Ristocetin A, ristocetin B, and partial acid hydrolysis products of these compounds, like several other antibiotics, induce accumulation of cell wall precursors (uridine diphosphoacetylmuramyl-peptide compounds) in Staphylococcus aureus. Moreover, studies with isotopes indicate that inhibition of cell wall synthesis is a selective effect of ristocetins and may, therefore, represent their primary mechanism of antibacterial activity.

REFERENCES

Ristocetins, Inhibitors of Cell Wall Synthesis in Staphylococcus aureus
Charles H. Wallas and Jack L. Strominger