Cytochrome c Oxidase Components

III. SPECTRAL PROPERTIES OF CYTOCHROMES a AND a₃*

SHIGEO HORIE AND MARTIN MORRISON

From the Department of Biochemistry, Medical Research Institute,
City of Hope Medical Center, Duarte, California

(Received for publication, March 11, 1963)

The spectral properties of cytochrome c oxidase have been the subject of a number of studies (1-14). Although these studies have not, in themselves, convinced all investigators that more than one hemoprotein was involved, they have confirmed the original observations which formed the basis for distinguishing the cytochromes a and a₃. These observations by Kailin and Hartree (1) indicated that the absorption at 605 and 444 nm was due to two components. One of these, which they termed cytochrome a₃, was autoxidizable and combined with carbon monoxide and cyanide, causing a spectral shift. The other, cytochrome a, which was not autoxidizable and did not combine with these reagents, showed no spectral alteration.

Some investigators (15-19) have interpreted the spectral data obtained with purified cytochrome c oxidase as indicating that only a single cytochrome is present. Wainio (15, 16) has further suggested that the copper present in the purified preparations may account for the spectral changes observed with carbon monoxide, cyanide, and nitric oxide.

It has been held that only separation of the cytochromes a and a₃ would offer satisfactory evidence for the existence of two cytochromes. However, in any study designed to isolate the cytochromes a and a₃, it would be necessary to correlate the properties of isolated components with the properties of the cytochromes in the intact cytochrome c oxidase system. It is, therefore, essential to establish the properties of the cytochromes while they are still a part of that system. Yonetani (13) has recently made an effort to do this by detailed study of his purified preparation. By the use of difference spectra, he was able to distinguish quantitatively the absorption due to cytochrome a and that due to cytochrome a₃.

In a continuation of our efforts to characterize the components (2, 3, 8, 20) of the cytochrome c oxidase, we have attempted to define further the spectral properties of cytochrome a and cytochrome a₃. With this information, we should have added criteria useful in comparing preparations which contain only cytochrome a or cytochrome a₃.

EXPERIMENTAL PROCEDURE

The cytochrome c oxidase was prepared as previously described (2). The heme and protein concentrations were determined as previously reported (2).

In most of the spectral studies, the concentration of cytochrome c oxidase contained 0.0123 mm heme a and 2 mg of protein per ml. The preparation was dissolved in 0.1 M phosphate buffer, pH 7.4, which contained 0.5% Tween 80. In experiments with cyanide, the concentration was 1.5 x 10⁻² M. In order to obtain the spectra of carbon monoxide derivatives, the solution was saturated with carbon monoxide by passing the gas through the solution for at least 3 minutes. The spectra were recorded on a Beckman DK-2 recording spectrophotometer.

The various forms of cytochrome c oxidase that were employed in the spectral studies are described below.

Oxidized cytochrome c oxidase (a+++, a₃+++) was considered to be the enzyme as prepared. The preparation was diluted with 0.1 M phosphate buffer containing 0.5% Tween 80 to the concentration indicated.

The cyanide derivative of the oxidized preparation (a+++, a₃+++ CN), was the solution described above, containing in addition 1.5 x 10⁻² M cyanide.

Reduced cyanide preparation (a++, a₃+++ CN) was the above preparation to which dithionite was added immediately before the recording of the spectrum.

Reduced cytochrome c oxidase (a++, a₃++) was prepared by passing carbon monoxide, cyanide, and nitric oxide through the reduced preparation for 3 minutes while the sample was submerged in an ice bath.

In order to record spectra in which the oxidation state of cytochrome c differed from that of cytochrome a, the procedure outlined in Table I was employed. Two sets of matched cuvettes were placed in the reference and sample beams of a double beam spectrophotometer. Solutions were prepared as indicated and the spectra shown in the figures are those recorded.

1 Purchased from the Nutritional Biochemical Corporation.
Reference beam, converting the solution in this cuvette to the reduced cyanide preparation.

By varying the concentration of the cytochrome c oxidase preparation in the cuvettes in the reference and sample compartments, it was possible to obtain spectra of the cytochrome c oxidase preparation equivalent to partially reduced and partially oxidized cytochrome a and cytochrome a*. These experiments are outlined in Table II. The concentration of the preparation was varied by accurate dilution with 0.1 M phosphate buffer containing 0.5% Tween 80. In Table II, a dilution factor of 1 indicates no dilution, whereas 1:4 indicates that 1 volume of the preparation was diluted to 4 volumes. Thus, on the assumption that the absorption of the preparation follows Beer's Law, the diluted material will have one-fourth the absorption of the

Table I

Outline of experimental procedures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Reference cuvettes</th>
<th>Sample cuvettes</th>
<th>Algebraic sum of the recorded spectrum (sample and reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reduced cyanide, a++, a+++CN</td>
<td>Reduced, a++, a+++</td>
<td>a+++ + a+++CN</td>
</tr>
<tr>
<td>2</td>
<td>Oxidized cyanide, a+++CN</td>
<td>Oxidized, a+++</td>
<td>a+++CN</td>
</tr>
<tr>
<td>3</td>
<td>Reduced cyanide, a++, a+++CN</td>
<td>Carbon monoxide, a++, a+++CN</td>
<td>a+++CN</td>
</tr>
<tr>
<td>4</td>
<td>Oxidized, a+++CN</td>
<td>Reduced cyanide, a++, a+++CN</td>
<td>a+++CN</td>
</tr>
</tbody>
</table>

Table II

Outline of experimental procedures

<table>
<thead>
<tr>
<th>Figure No.</th>
<th>Percent reduction of cytochromes</th>
<th>Sample cuvettes</th>
<th>Reference cuvettes</th>
<th>Algebraic sum of the recorded spectrum (sample and reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>100</td>
<td>1:1 Oxidized, a++ + a+++CN</td>
<td>1 Reduced cyanide, a++ + a+++CN</td>
<td>a++ + a+++CN</td>
</tr>
<tr>
<td>6</td>
<td>100</td>
<td>1:1 Oxidized, a++ + a+++CN</td>
<td>1 Reduced cyanide, a++ + a+++CN</td>
<td>a++ + a+++CN</td>
</tr>
<tr>
<td>7</td>
<td>100</td>
<td>1:1 Oxidized, a++ + a+++CN</td>
<td>1 Reduced cyanide, a++ + a+++CN</td>
<td>a++ + a+++CN</td>
</tr>
</tbody>
</table>

* In this case three cuvettes are employed as indicated.
original material. As shown in Table II, two sets of matched cuvettes were employed in most experiments. In one experiment, as indicated, three sets of cuvettes were employed.

RESULTS

The recorded spectrum is the algebraic sum of the absorbing materials in the system. In Fig. 1, for example, the sample beam contains \(a^{++} + a_3^{+++} \) CN in one cuvette and \(a^{++} + a_3^{+++} \) in the other. The reference beam contains only \(a^{++} + a_3^{+++} \) CN. The algebraic sum is thus

\[
a^{+++} + a_3^{+++} CN + a^{++} + a_3^{+++} - (a^{++} + a_3^{+++} CN) = a^{+++} + a_3^{++}
\]

and the recorded spectrum in Fig. 1 is that of oxidized cytochrome \(a \) and reduced cytochrome \(a_3 \).

In a similar manner, the spectrum recorded in Fig. 2 is equivalent to reduced cytochrome \(a \) and oxidized cytochrome \(a_3 \). Fig. 3 presents the spectrum of oxidized cytochrome \(a \) and the reduced cytochrome \(a_3 \)-carbon monoxide complex.

In Fig. 1, where the spectrum is equivalent to a mixture in which only cytochrome \(a_3 \) is reduced, the greatest changes in the spectrum, as compared to the oxidized spectrum, are in the Soret region. The position of the absorption maxima in the visible region is at a slightly higher wavelength (605 \(\mu m \)) than when both cytochromes \(a \) and \(a_3 \) are totally reduced (603 \(\mu m \)). Fig. 5 shows a series of spectra in which the percentage of reduction of cytochrome \(a_3 \) is varied. The position of the visible absorption maximum is at 605 \(\mu m \), whereas the Soret peaks are at 424 \(\mu m \) with a shoulder at approximately 442 \(\mu m \) when cytochrome \(a_3 \) is reduced. When both cytochromes are oxidized, the Soret peaks of the two cytochromes are indistinguishable with a maximum at 421 \(\mu m \). When cytochrome \(a_3 \) is reduced, the oxidized Soret peak of cytochrome \(a \) is at a longer wavelength (423 \(\mu m \)).

![Fig. 1](http://www.jbc.org/)

Fig. 1. The absolute spectra of cytochrome \(c \) oxidase in which the cytochrome \(a \) component is oxidized and cytochrome \(a_3 \) component is in oxidized and reduced forms. The conditions are outlined in the text and Table I. The extinction values are based on the total heme \(a \) content of the preparation. ---, Both cytochrome \(a \) and \(a_3 \) in oxidized form; ----, cytochrome \(a_3 \) in the reduced form and cytochrome \(a \) in the oxidized form.

Fig. 2 shows the spectrum of reduced cytochrome \(a \) and oxidized cytochrome \(a_3 \). In contrast to the reverse situation as shown in Fig. 1, there is a marked change in the spectrum in both the visible and Soret regions upon reduction of cytochrome \(a \). The peak in the visible region is at a slightly shorter wavelength (602 \(\mu m \)) than that obtained in Fig. 1. There is a \(\beta \)-peak clearly present in Fig. 2, with a maximum at 518 \(\mu m \). The spectral changes, which occur as the cytochrome \(a \) is progressively reduced, can be seen in Fig. 6.

The spectra of cytochrome \(a_3 \)-carbon monoxide complex and oxidized cytochrome \(a \) are shown in Fig. 3. Also shown is the spectrum of cytochrome \(a_3 \)-carbon monoxide complex in the presence of reduced cytochrome \(a \). The position of the absorption maximum is shifted more than 10 \(\mu m \) to 591 \(\mu m \) when cytochrome \(a \) is in the oxidized form. Compared to the usual spectrum in which both cytochromes are reduced, the \(\beta \)-peak is also more pronounced and the Soret peak is shifted to shorter wavelengths.

Fig. 4 shows the difference spectra between the oxidized and reduced cytochrome \(a_3 \) and the carbon monoxide complex. The position of the \(\alpha \)-absorption peaks in these spectra is at 605 \(\mu m \) for the reduced and at 589 \(\mu m \) for the carbon monoxide complex. In both cases, a \(\beta \)-peak can be most clearly seen at 548 \(\mu m \).
for the carbon monoxide complex, and although fused with the
α-peak, there is clearly a shoulder in the 560 to 570 μm region of the reduced spectrum. In the Soret region, the maxima are at 430.5 μm for the carbon monoxide derivative and 443.5 μm for the reduced compound.

It is clear from Table II that spectra equivalent to partial reduction of either or both cytochromes can be obtained. The spectra are shown in Figs. 5, 6, and 7. In all cases, the absorption maxima and the shape of the curves are in complete agreement with those shown in Figs. 1 and 2.

The relatively small contribution of cytochrome α_3 to the absorption at 605 μm, and its relatively large contribution in the Soret region, are apparent in Figs. 1 and 5. In contrast, cytochrome α has a much larger absorption in the visible region and also accounts for much of the absorption at 444 μm in the reduced form. The isosbestic points for the two cytochromes in the Soret region are not greatly separated, occurring at 430 and 462 μm for cytochrome α_3, with a very slight shift to a higher wavelength for cytochrome α.

DISCUSSION

It was the object of the present study to produce spectra of a cytochrome c oxidase preparation in which the cytochrome α and cytochrome α_3 each existed in a different valence state. In this way, it was hoped to establish that the cytochrome α and α_3 were distinct components and, further, to distinguish the spectral properties of each.

The fact that cyanide combined with both reduced and oxidized cytochrome α_3, as first indicated by Keilin and Hartree (1),...
made it possible to produce cytochrome a_2 in a different valence state from the cytochrome a. Yonetani (13) had suggested that the oxidized cytochrome a_2-cyanide complex is not readily reduced, even by dithionite. In the present work, it was observed that the oxidized cyanide complex of cytochrome a_2 resisted reduction for some time after the addition of dithionite. Thus, it was possible to obtain a preparation with cytochrome a in the reduced form and still maintain cytochrome a_2 in the oxidized form. Advantage was also taken of the fact that the recorded spectrum was the algebraic sum of the absorbing materials in the light path.

Yonetani (13) obtained a series of difference spectra of the cytochromes a and a_2. He employed the oxidized cytochrome a_2-cyanide complex as oxidized cytochrome a_2, in cases where he could assume that the cyanide effect was small, and he corrected by calculation for the effect of cyanide in other experiments. The present study has, in most instances, been able to confirm Yonetani's results, and we have been able to record directly all the difference spectra that he calculated.

Table III records the position of the maxima and the ratio of the extinction of the Soret and α-peaks of the difference spectra. The positions of the maxima are in complete agreement, but the ratio of the extinctions is not. The reason for these discrepancies is not apparent, but it is possible that the different techniques used to obtain the spectrum, or differences in the preparation employed, may be involved.

Although Yonetani (13) reported a ratio of 13 for the extinction of the α- and Soret maxima in the difference spectrum of reduced and oxidized cytochrome a_2, the present work shows this ratio to be significantly higher. In the case of the difference spectrum of reduced and oxidized cytochrome a_2, the ratio is lower than that of cytochrome a_2, and the value in the present work is lower than the value of 4.5 given by Yonetani (13). It is interesting to note that the reduced versus oxidized difference spectrum of the cytochrome a_2-cyanide complex has a Soret to α-ratio very similar to that of cytochrome a. The cyanide complex of cytochrome a_2 also resembles cytochrome a in that it has a β-peak which is missing from the cytochrome a_2 spectra.

Azide can also be employed in the same manner as cyanide, which was used in this paper. Azide forms a complex with both the oxidized and reduced cytochrome a_2. The oxidized cytochrome a_2-azide complex, like the cyanide complex, is not readily reduced by dithionite. However, the oxidized azide does not appear to be as stable in the presence of dithionite as is the cyanide complex, and is converted to the reduced form more readily. Cyanide is, therefore, the reagent of choice.

Figs. 3 and 4 demonstrate that the cytochrome a_2-carbon monoxide complex has the characteristics attributed to the photochemical action spectrum (6, 7, 21). In addition, the spectrum of the reduced cytochrome a_2-carbon monoxide complex with oxidized cytochrome a shown in Fig. 3 is identical with that obtained by treatment with ferricyanide of a reduced
The absolute spectra of the cytochromes a and a_3 make apparent a number of points that are not evident in the difference spectrum. First, the positions of the a-peaks of cytochromes a and a_3 are not identical, but are separated by about 3 mp. Second, cytochrome a accounts for much more of the absorption of cytochrome a_3 than has been suggested by previous workers (4, 5, 9-12, 22). Thus, in the Soret region, the spectrum between 605 and 630 mp can all be attributed to cytochrome a_3. In Table IV, the contribution of cytochrome a to the Soret peak of the reduced cytochrome c oxidase preparation saturated with carbon monoxide (2).

The data bring into question the basic assumptions of a number of these previous investigations (4, 5, 9-12, 22). It has been usual to assume that the value obtained in the difference spectrum between 605 and 630 mp can all be attributed to cytochrome a (12, 22-26), whereas the absorption at 445 to 460 mp is all attributed to cytochrome a_3. The actual percentage reductions of the cytochromes a and a_3 are compared with the percentage reductions of the preparation in each region of the spectrum as determined by the methods of Smith (12) and Chance (22-26). The discrepancies are apparent. Attention has already been called to the need for a correction (13), although the magnitude of the proposed correction is not completely in agreement with the data presented in Table IV. This may be the result of the different preparations employed.

Williams (27) has indicated that the difference in the positions of the Soret maxima of the reduced and oxidized forms of a hemoprotein is a guide to the type of heme complex. A large difference in the position of the Soret involves a high spin or ionic complex. According to this theory, the sum of the magnetic moments of the ferrous and ferric forms is directly related to the change in the Soret maximum between the two forms. Since the Soret maxima of the cytochromes a and a_3 are very nearly identical, this postulate would lead to the prediction that both of these cytochromes have the same ionic character. The cyanoide derivatives of cytochrome a_3, on the other hand, have absorption maxima which are closer together, indicating a lower magnetic moment even than cytochrome a. The actual magnetic susceptibility data do not appear to correlate with these speculations and a re-evaluation of the observations and theory is undoubtedly required.

Numerous investigators have made a number of assumptions concerning the spectra of the cytochromes a and a_3 (4, 5, 9-11, 22-29) and on this basis speculated on the molar relationship between the two cytochromes. The spectral data presented here clearly indicate that the original assumptions were for the most part faulty. A direct analysis for the molecular ratio of the two cytochromes should now be possible (3) and our efforts are being directed toward this goal.

SUMMARY

The spectral properties of a purified cytochrome c oxidase preparation have been investigated. A procedure is outlined by which the difference spectra of any desired combination of reduced and oxidized cytochromes a and a_3 can be obtained. The reduced versus oxidized difference spectrum of cytochrome a and the difference spectrum of oxidized versus reduced carbon monoxide-cytochrome a are presented.

The procedure can be modified to obtain absolute spectra of the cytochrome c oxidase preparation in which cytochromes a and a_3 are present in different valence states. Thus, spectra are shown of the preparation with either oxidized cytochrome a and reduced cytochrome a_3 or, conversely, reduced cytochrome a and oxidized cytochrome a_3. It is also possible to obtain the spectrum of the preparation equivalent to partially reduced cytochrome a_3 in the presence of oxidized cytochrome a or, conversely, the equivalent of partially reduced cytochrome a in the presence of oxidized cytochrome a_3. Examples are also given of the spectra of various combinations of partially reduced cytochromes a and a_3.

Acknowledgment—The heart muscle used in this study was generously supplied by the Farmer John Packing Company, Vernon, California.

REFERENCES

Cytochrome c Oxidase Components: III. SPECTRAL PROPERTIES OF CYTOCHROMES a AND a3
Shigeo Horie and Martin Morrison

Access the most updated version of this article at http://www.jbc.org/content/238/8/2859.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/238/8/2859.citation.full.html#ref-list-1