Threonine Biosynthesis

ON THE PATHWAY IN FUNGI AND BACTERIA AND THE MECHANISM OF THE ISOMERIZATION REACTION

MARSHALL M. KAPLAN AND MARTIN FLAVIN

From the Enzyme Section, Laboratory of Biochemistry, National Heart Institute, National Institutes of Health, Bethesda, Maryland 20014

(Received for publication, December 16, 1964)

The observation that an *Escherichia coli* mutant requiring exogenous succinate for aerobic growth would alternatively respond to a mixture of four amino acids (1) has now been explained in the case of three of the amino acids. Thus, N-succinyl-L-diaminopimelic acid has been shown to be an intermediate in the bacterial synthesis of lysine and diaminopimelic acid (2), and O-succinyl-L-homoserine is an intermediate in the bacterial synthesis of methionine (3–5). The requirement for threonine has not been explained. The pathway for threonine synthesis established in yeast (6), by Reactions 1 and 2, does not accommodate an intermediary role for succinate, nor does present knowledge of regulatory mechanism indicate that threonine should be required due to the presence of the other three amino acids (7).

\[ \text{l-Homoserine} + \text{ATP} \rightarrow \text{O-phospho-l-homoserine} + \text{ADP} \quad (1) \]

\[ \text{O-Phospho-l-homoserine} \xrightarrow{\text{pyridoxal-P}} \text{threonine} + \text{P}_i \quad (2) \]

The limited evidence available also indicates that the pathway in *E. coli* may be the same as that in yeast (8, 9). However, it has not previously been possible to identify Reaction 1 in extracts of Neurospora (10). In this paper, we wish to report a reinvestigation of these questions concerning the pathway of threonine biosynthesis (11).

Additional results bearing on the mechanism of Reaction 2 (12, 13) will also be described, including some kinetic properties of the *Neurospora* enzyme, substrate-products exchange reactions, and the unequivocal determination of the positions in threonine into which solvent hydrogen is introduced during the reaction (14).

**EXPERIMENTAL PROCEDURE**

**Microbial Culture Conditions—*Escherichia coli*** M-309-1 (1), obtained from Dr. B. D. Davis, was maintained on agar slants of Cold Spring Harbor Medium A supplemented with succinate, 0.3 μmole per ml. The latter medium contains (in grams per liter): K₂HPO₄, 10.5; KH₂PO₄, 4.5; sodium citrate-5H₂O, 0.5; (NH₄)₂SO₄, 1; MgSO₄, 0.05; glucose, 2. Inocula for growth experiments were cultured aerobically at 37° in liquid Medium A supplemented with succinate, 0.1 μmole per ml; near the end of the exponential growth phase the flasks were placed at 2°, and were kept, for use, at this temperature for periods up to a week. Growth responses were measured turbidimetrically in 125-ml Bellco Nephalo flasks with a Klett-Summerson colorimeter and No. 06 filter. The flasks contained 25 ml of Medium A supplemented with various nutrients as indicated in “Results.” After inoculation with 1 ml of the above culture, they were agitated at 37° on a shaker.

*Neurospora crassa* wild type 5997a cultures were prepared as previously described (10) except that the culture medium was that of Vogel (15). Cells were grown in carboys for the preparation of threonine synthetase, and on a rotary shaker in 2-liter Erlenmeyer flasks, containing 500 ml of medium, for studies of homoserine kinase (ATP:L-homoserine O-phosphotransferase, EC 2.7.1.39).

**Enzyme Preparations and Assays—*Neurospora* threonine synthetase was prepared and assayed as previously described (10). The fraction used in these experiments was Step 4B (10), a concentrated DEAE-cellulose eluate. Homoserine kinase activity (Reaction 1) which previously could not be detected in *Neurospora* extracts (10) was found to be demonstrable in a protein fraction prepared as follows. Freshly harvested mycelia were added to 2 parts of cold 0.05 M potassium dimethylglutarate buffer, pH 7.3, containing 0.002 M reduced glutathione, and were briefly dispersed in a Waring Blender to yield a thick paste. The latter was passed through a French pressure cell, and the extract was then centrifuged at 2°. The yield of soluble protein was 40 mg per g of cells, wet weight.

The extract was diluted with the above buffer to give a protein concentration of 10 mg per ml, and was then fractionated with solid ammonium sulfate at 2°, the pH being maintained at 7.3 with NH₄OH. The precipitate obtained between 30 and 50% of saturation (which contained half the original soluble protein) was collected by centrifugation, dissolved in a small volume of the above buffer, and dialyzed for 2 hours at 2° against 0.02 M potassium dimethylglutarate buffer, pH 7.3, containing 0.5 mM each of EDTA and β-mercaptoethanol. The dialysis bag contained several glass beads and was agitated by end over end rotation. This preparation could be stored for 1 week at −15°.

*Neurospora* homoserine kinase was inactivated by more prolonged dialysis but could be desalted by passage over Sephadex G-25. Activity was assayed in two ways. The first measured the rate of threonine formation (10) in the presence of added excess threonine synthetase according to Reaction 3 (sum of Reactions 1 + 2).

\[ \text{l-Homoserine} + \text{ATP} \rightarrow \text{l-threonine} + \text{ADP} + \text{P}_i \quad (3) \]

The second, based on the method of Wormser and Pardee (9), measured the rate of formation of ninhydrin-positive material which could be eluted with water from a small Dowex 50 (H⁺)-
column. Although the latter method was more convenient, high voltage electrophoresis of these clusters indicated that occasionally there were ninhydrin-positive products other than phosphohomoserine present. To correct for this, three control incubations were run, with enzyme, ATP, and homoserine omitted. Net ninhydrin values were then corrected for these blanks. A unit of activity was defined as that amount of enzyme catalyzing the formation of 1 pmole of phosphohomoserine in 1 min.

**Chemical Preparations and Materials—**O-Phospho-L-homoserine was prepared with yeast homoserine kinase as previously described (10) with the following changes. For avoidance of subsequent precipitation of BaSO₄, the yeast ammonium sulfate fraction was dialyzed overnight against 0.02 M Tris-HCl, pH 7.4, containing 1 mM each of EDTA and reduced glutathione. Some further purification was obtained by deacidifying an inactive protein precipitate which formed after freezing and thawing of the dialyzed fraction. After the O-P-homoserine was isolated from the enzymatic reaction mixture as the barium salt, it was purified by passage over Dowex 1-aceate-X10 (200 to 400 mesh). A linear acetic acid gradient from 0 to 8 n was used. The O-P-homoserine was present in the eluate from 6.2 to 7 n. The purified product was recovered as a faintly yellow, amorphous powder by lyophilization. It was homogeneous by paper chromatography and at least 95% pure by both total phosphate content and by assay with threonine synthetase. On the basis of the ATP initially added, the yield was 30% of theoretical (560 mg). A portion was crystallized from aqueous ethanol, m. p. 178°, with decomposition, in accord with previous results (16).

O-Succinyl-DL-homoserine and N-succinyl-DL-homoserine were prepared as previously described (4). D-Homoserine was a gift from Dr. M. D. Armstrong. L-homoserine was purchased from Calbiochem, nucleoside triphosphates from Pabst, and crystalline muscle lactate and yeast alcohol dehydrogenases from Boehringer.

**Analytical Procedures—**Oak Ridge ³²P-labeled orthophosphate was purified by autochlorination overnight at 120° in 1 n HCl, followed by heating for 20 min at 100° in 1 n NaOH. The solution was then neutralized at once and kept frozen. The alkali treatment reduced the unextractable ³²P (17) from 0.5 to 0.015% of the total. In the exchange experiment, ³²P was separated from O-phosphohomoserine by extraction into isobutyl alcohol as the phosphomolybdate complex (17).

The over-all reversibility of Reaction 2 was studied by incubating labeled threonine with threonine synthetase as follows. The reaction mixture was incubated for 60 min at 30° in 1 ml containing 12 ml of 0.1 M sodium bisulfite-sulfite, 0.1 M potassium phosphate (pH 6.6), and 10 mC of ³²H₂O. To the filtrate from

![Fig. 1. Nutritional requirements of E. coli mutant M 300-1.](http://www.jbc.org/)

**TABLE I**

<table>
<thead>
<tr>
<th>Material assayed for tritium content</th>
<th>Specific radioactivity (cpm/μ mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experiment 1</td>
<td></td>
</tr>
<tr>
<td>Water-periodate reaction vessel</td>
<td>1100</td>
</tr>
<tr>
<td>Water-bisulfite trap after H₂O oxidation</td>
<td>730</td>
</tr>
<tr>
<td>CH₃CO₂⁻ benzylisothiuronium salt</td>
<td>540</td>
</tr>
<tr>
<td>Experiment 2</td>
<td></td>
</tr>
<tr>
<td>Water-periodate reaction vessel</td>
<td>920</td>
</tr>
<tr>
<td>Water-bisulfite trap after KMnO₄ oxidation</td>
<td>380</td>
</tr>
<tr>
<td>CH₃CO₂⁻ benzylisothiuronium salt</td>
<td>0.5</td>
</tr>
</tbody>
</table>

**Fig. 1.** Nutritional requirements of *E. coli* mutant M 300-1. The conditions of the experiments are described in the text. Growth responses were measured in duplicate flasks, and lag phases, which varied at most by 15 min, were equalized for the chart. Additions to minimal medium were (amounts in micromoles per ml): O, succinate, 1.0; Δ, dL-methionine + L-lysine + L,L(+)mesodiaminopimelic + DL-threonine, each 0.1; O, methionine + lysine + diaminopimelic, each 0.1; Δ, methionine + lysine + diaminopimelic + DL-homoserine, each 0.1; •, succinate, 0.1; □, lysine + diaminopimelic + threonine, each 0.1; ○, methionine + threonine, each 0.1; Δ, no addition.

so formed, to glyoxylicate and acetaldehyde, has been reported (13). However, it was not possible to isolate separately the β from the 3 γ hydrogen atoms of threonine, since the γ hydrogen atoms exchanged with solvent during the alkaline hydrolysis reaction used to oxidize acetaldehyde to acetate (13). We wish now to describe the details of a procedure for oxidation of acetaldehyde with permanganate at pH 6.6 (14).

In an experiment to show nonexchangeability of threonine hydrogens during the degradation, 400 μmoles of unlabeled threonine were oxidized with periodate as previously described (13) in a solution containing 10 μC of ³²H₂O. The acetaldehyde was then transferred with a nitrogen stream into a chilled bed tower containing 12 ml of 0.1 M sodium bisulfite-sulfite, 0.1 M potassium phosphate (pH 6.6), and 10 mC of ³²H₂O. To the filtrate from
Table II
Requirements for phosphohomoserine biosynthesis in Neurospora

The reaction mixtures contained, in 0.5 ml final volume: potassium dimethylglutarate, pH 7.3, 25 μmoles; MgCl₂, 7.5 μmoles; NaF, 5 μmoles; ATP, 5 μmoles; dl-homoserine, 15 μmoles; and ammonium sulfate step enzyme, 1.4 mg of protein. Incubations were for 60 min at 30°C and were terminated by placing the tubes in a 100°C bath for 5 min. After the protein was centrifuged down, the supernatants were placed onto Dowex 50 (H⁺) columns, 1 ml bed volume, and the H₂O eluates from 0.5 to 2.5 ml were assayed for amino acid with ninhydrin (18).

<table>
<thead>
<tr>
<th>Omission</th>
<th>Ninhydrin-positive material eluted from Dowex 50 (H⁺)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.40 μ mole</td>
</tr>
<tr>
<td>ATP</td>
<td>0.02 μ mole</td>
</tr>
<tr>
<td>dl-Homoserine</td>
<td>0 μ mole</td>
</tr>
<tr>
<td>Enzyme</td>
<td>0.01 μ mole</td>
</tr>
</tbody>
</table>

Table III
Substrate specificities of Neurospora homoserine kinase

The reaction mixtures contained, in 1 ml final volume: potassium dimethylglutarate, pH 7.3, 50 μmoles; MgCl₂, 15 μmoles; NaF, 10 μmoles; pyridoxal-P, 0.2 μ mole; Step 4B threonine synthetase fraction, 4 mg of protein; nucleoside triphosphates, as indicated, 8 μ moles; and homoserine derivative, as indicated. Incubations were for 60 min at 30°C and were terminated by placing the tubes in a 100°C bath for 5 min. Aliquots of the supernatant, after centrifugation, were assayed for threonine as described in the text.

<table>
<thead>
<tr>
<th>Homoserine or derivative added</th>
<th>Amount added</th>
<th>Nucleoside triphosphate</th>
<th>Threonine formed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>μ moles</td>
<td>μ moles</td>
<td>μ moles</td>
</tr>
<tr>
<td>L-Homoserine</td>
<td>5</td>
<td>ATP</td>
<td>1.02</td>
</tr>
<tr>
<td>dl-Homoserine</td>
<td>5</td>
<td>ATP</td>
<td>0.14</td>
</tr>
<tr>
<td>O-Succinyl-dl-homoserine</td>
<td>5</td>
<td>ATP</td>
<td>0.00</td>
</tr>
<tr>
<td>N-Succinyl-dl-homoserine</td>
<td>25</td>
<td>UTP</td>
<td>0.88</td>
</tr>
<tr>
<td>DL-Homoserine</td>
<td>25</td>
<td>GTP</td>
<td>0.00</td>
</tr>
<tr>
<td>DL-Homoserine</td>
<td>25</td>
<td>ITP</td>
<td>0.37</td>
</tr>
<tr>
<td>DL-Homoserine</td>
<td>25</td>
<td>CTP</td>
<td>0.31</td>
</tr>
</tbody>
</table>

The results in Table I show that the acetate obtained by this procedure (Experiment 2) had not undergone any significant exchange with solvent hydrogen, in contrast to the extensive exchange (Experiment 1) in the peroxide procedure (13). Various samples of enzymatically formed threonine-1H and -3H (13) were then degraded in unlabeled solvent in the same manner described above. In the case of threonine formed in H₂O, 30 mg of the crystalline sample obtained previously from Dowex 50 (13) were mixed with 150 μ moles of additional carrier. S-Benzylisothiouronium acetate, 30 mg, was isolated, m.p. 128–136°C; after one recrystallization, 18 mg were isolated, m.p. 129–134°C. In this experiment, glyoxylate was isolated again for deuterium analysis.

RESULTS

As previously reported (1), E. coli M-309-1 was found to grow aerobically in the presence of succinate, or alternatively, in a mixture of methionine, lysine, diaminopimelic acid, and threonine (Fig. 1). Maximal growth required a higher concentration of succinate than of the amino acids. However, contrary to previous reports, the single omission of threonine from the amino acid mixture had no effect on the rate (doubling time, 40 min) or extent of growth. No growth was observed after the single omission of either methionine or lysine (Fig. 1). Single omissions of diaminopimelic acid resulted in a small increase in turbidity (3 to 5 Klett units) followed by cell lysis and clarification of the medium.

Similar results were obtained with solid growth media, except that in this case diaminopimelic acid was not apparently required and the mutant responded to lysine plus methionine. In neither case was growth affected by the addition of threonine or homoserine.

Table II shows the evidence for the presence of a homoserine kinase in wild type Neurospora. Formation of O-phosphohomoserine was dependent on the addition of ATP, dl-homoserine and the 30 to 50% ammonium sulfate fraction. The reaction product was identified as O-phosphohomoserine in the following ways. First, it migrated identically with authentic O-P-homoserine, in high voltage electrophoresis, with pyridoxal-acetate buffer, pH 3.5, and like O-P-homoserine, gave positive ninhydrin and phosphate spot tests. When dl-homoserine-2-¹⁴C was used, the product was also radioactive, corresponding to O-P-homoserine. When excess purified threonine synthetase and pyridoxal phosphate were added to the above incubation mixture, threonine was formed. With dl-homoserine-2-¹⁴C as substrate, label appeared in the threonine. Threonine formation, too, was dependent on ATP, homoserine, and the ammonium sulfate fraction protein.

Table IV

Stoichiometry of threonine synthetase reaction

The reaction mixture contained, in 6 ml final volume: glycylglycine, pH 7.3, 300 μmoles; O-P-homoserine eluted from Dowex 1-acetate, 11.3 μ moles; Step 4B threonine synthetase, 0.4 unit. The mixture was incubated at 30°C, and aliquots were deproteinized for assays at successive short intervals until the reaction came to a stop.

<table>
<thead>
<tr>
<th>Reaction time</th>
<th>Total phosphate</th>
<th>Inorganic phosphate</th>
<th>Threonine</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td>μ moles</td>
<td>μ moles</td>
<td>μ moles</td>
</tr>
<tr>
<td>0</td>
<td>11.3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>80</td>
<td>11.3</td>
<td>10.6</td>
<td>10.6</td>
</tr>
</tbody>
</table>

the beads, at pH 6.6, was added sufficient 0.2 m KMnO₄, pH 6.6, to leave a residual purple color (after all the bisulfite had been oxidized). The precipitate was discarded after centrifugation. The supernatant was kept at 25°C for 30 min, then back-titrated and phosphate spot tests. When L-homoserine-2-¹⁴C was used, the new radioactive spot corresponded to O-P-homoserine. When excess purified threonine synthetase and pyridoxal phosphate were added to the above incubation mixture, threonine was formed. With dl-homoserine-2-¹⁴C as substrate, label appeared in the threonine. Threonine formation, too, was dependent on ATP, homoserine, and the ammonium sulfate fraction protein.
The reaction rate with the ninhydrin assay was proportional to protein concentration from 1 to 7 mg per ml. The specific activity of the 30 to 50% ammonium sulfate fraction was 0.004 with the ninhydrin assay and 0.005 with the coupled assay. Although this latter assay was not strictly proportional to protein concentration, it was more specific for homoserine kinase since O-P-homoserine is the only known substrate for threonine synthetase.

Inability to detect the kinase in crude extracts (10) was not caused by exceptionally low activity but rather by destruction of substrates and products through side reactions. Equal amounts of crude extract protein decomposed threonine as much as four times faster than the rate at which it was formed from homoserine by the ammonium sulfate fraction. Similarly, if the reaction mixture used in Table II was incubated longer than 1 hour, there was a decline in measureable O-3-homoserine and after 2 hours, none was detectable.

Table III indicates that Neurospora homoserine kinase was specific for L-homoserine. Other nucleoside triphosphates were less effective than ATP in the order ATP > UTP > GTP > ITP = CTP.

The rest of the results are concerned with some functional properties of purified Neurospora threonine synthetase and the mechanism of Reaction 2. Table IV shows the stoichiometric formation of phosphate and threonine from O-P-homoserine which had been eluted from Dowex 1-acetate. A plot of threonine synthetase Vmax against pH (Fig. 2) shows an asymmetrical curve with a pH optimum of 7.3. The Km for O-P-homoserine was found to be 1.3 × 10⁻⁴ M, by use of the integrated form of the Michaelis-Menten equation (Fig. 3). The standard Lineeweaver-Burk plot was unsatisfactory because it was difficult to measure small amounts of threonine accurately. The purified threonine synthetase does not, in the usual range of enzyme concentration, form threonine from the succinic ester or amide of homoserine, nor from any of several related substrates tested (10). The free energy change for transformation of a primary alcohol phosphate ester into a secondary alcohol + phosphate is not known. A sensitive test for any measurable reversibility of the threonine synthetase reaction gave negative results. When enzyme was incubated with threonine-¹⁴C and phosphate with or without a pool of O-P-homoserine, no radioactivity could be detected in the latter. Threonine also did not yield any radioactive homoserine or α-ketobutyrate.

This result did not, however, rule out the possibility of enzymatic exchange of phosphate into O-P-homoserine. Enzyme was, therefore, incubated with O-P-homoserine and various concentration of phosphate, with a constant high amount of ³²P, for brief periods so that most of the substrate remained unreacted. No labeling of O-P-homoserine was observed, under conditions in which incorporation of about ¹/₂₀₀₀ of the added phosphate could have been detected (17).

Previous results had shown that during the enzymatic synthesis of threonine in H₂O, 2 solvent hydrogen atoms were incorporated into it (13). Partial degradation showed that 1 deuterium residue was in the α, and one in the β + the 3γ hydrogen fractions. A complete degradation (Table V) has now established that the second deuterium is in the γ position, since it was retained in the acetate formed by oxidation of acetaldelyde. The results of deuterium analysis for glyoxylate were identical with those obtained previously (13), and the sum
of the deuterium present in glyoxylate and acetate exactly equaled that of the original threonine. The small excess of deuterium in acetaldehyde over that in acetate is within analytical error, and it can be concluded that no solvent hydrogen is incorporated into the β position of threonine.

**DISCUSSION**

These results have removed the remaining objections to the view that threonine biosynthesis takes place by Reactions 1 and 2 in *Neurospora* and *E. coli*, as well as in yeast. The possibility that a succinylated intermediate might be involved in the former pathways had been suggested by a report that an *E. coli* mutant blocked in aerobic succinate formation would alternately respond either to succinate, or to a mixture of methionine, lysine, diaminopimelate, and threonine. However, we have found that the mutant responds to the first three amino acids alone, and does not require threonine. Moreover, the succinic ester and amide derivatives of homoserine cannot replace L-homoserine for Reaction 1, or O-phospho-L-homoserine for Reaction 2 in *Neurospora*. Finally, the existence of Reaction 1 has been definitely established in *Neurospora*. Thus, the bacteria and higher fungi share a common path for threonine biosynthesis, although they have evolved different synthetic routes for lysine and methionine.

**REFERENCES**


Marshall M. Kaplan and Martin Flavin

Threonine Biosynthesis: ON THE PATHWAY IN FUNGI AND BACTERIA
AND THE MECHANISM OF THE ISOMERIZATION REACTION


Access the most updated version of this article at
http://www.jbc.org/content/240/10/3928.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/240/10/3928.citation.full.html#ref-list-1