The Interaction of Aminoacyl Transferase II and Ribosomes*

Richard P. Sutter and Kivie Moldave†

From the Department of Biochemistry, Tufts University School of Medicine, Boston, Massachusetts 02111

SUMMARY

The kinetics of aminoacyl transfer from aminoacyl soluble ribonucleic acid to ribosomal protein has been examined with rat liver preparations. A lag in the initial rate of incorporation with resolved aminoacyl-transferring enzymes is observed with low (4 μm) concentrations of reduced glutathione; this lag is abolished when transferase II is incubated with a sulfhydryl compound, such as glutathione or 2-mercaptoethanol, prior to the addition of the other reaction components. The sulfhydryl activation is dependent on time and on glutathione concentration, and is inhibited by oxidized glutathione. The total extent of amino acid incorporation is also dependent on sulfhydryl concentration. A sulfhydryl requirement in aminoacyl transfer, other than for the activation of transferase II, was not detected. The initial rate of amino acid incorporation is markedly stimulated when the sulfhydryl compound and between the sulfhydryl-activated enzyme and ribosomes, prior to the participation of aminoacyl-sRNA. It should be emphasized that the sulfhydryl requirement is satisfied by a variety of compounds and is not specific for glutathione (1, 2). Although glutathione has been used in the experiments described here, similar results have been obtained with 2-mercaptoethanol.

EXPERIMENTAL PROCEDURE

Isolation of Ribosomes and Transfer Factors—After removal of mitochondria, ribosomes were prepared from the supernatant fraction of rat liver homogenates by sedimentation of the microsomes at 100,000 × g for 90 min, extraction of crude ribosomes from microsomes with 0.25% deoxycholate (17), and purification of the ribosomes by repeated centrifugation in high (0.01 M) magnesium ion solutions (3).

After removal of the microsomes the supernatant fraction was adjusted to pH 5.2 and the pH 5-insoluble amino acid-activating enzyme and sRNA complex (“pH 5 enzymes” fraction) were removed by centrifugation (18, 19). The protein in the pH 5 supernatant solution was partially purified by chromatography on calcium phosphate gel and ammonium sulfate fractionation, and the two aminoacyl transferases (I and II) were then resolved from this partially purified soluble protein fraction by gel filtration on columns of Sephadex G 200 (3).

* This investigation was supported in part by Research Grants P-177 from the American Cancer Society and AM-01397 from the United States Public Health Service.
† Career Awardee of the United States Public Health Service.
‡ The abbreviation used is: sRNA, soluble ribonucleic acid.
of the purified aminoacyl-sRNA preparations used were approximately 125,000 cpm per mg of RNA.

Incubation Procedures—Incubations of the complete system, accomplished at 37° in a total volume of 2 ml, contained the following components: approximately 1 mg of purified ribosomes (3), 0.2 mM GTP, 6 mM MgCl₂, 80 mM NH₄Cl, 60 mM Tris buffer, pH 7.4, and 30 to 60 μg of transferase I. Varying concentrations of ¹⁴C-aminoacyl-sRNA, glutathione, and transferase II were added as noted below. At the end of the incubation period the hot (90°) 5% trichloroacetic acid-insoluble fraction was prepared and collected on Millipore filters for radioactivity determinations (3).

In experiments in which transferase II was preincubated, the first incubation contained transferase II, 6 mM MgCl₂, 60 mM Tris buffer, pH 7.4, and varying concentrations of glutathione in a total volume of 0.25 ml. In some experiments, ribosomes, GTP, and NH₄Cl were included in the incubation mixture. Incubation was performed at 37° for 15 min. Transferase I, ¹⁴C-aminoacyl-sRNA, and ribosomes, GTP, or NH₄Cl, if absent from the first part of the incubation, were added; the glutathione concentration was adjusted as noted and the incubation in the complete system was continued at 37° in a total volume of 2 ml. At the end of the second incubation period trichloroacetic acid was added and treated as described above.

In the experiments involving a three-step incubation procedure, the first incubation contained transferase II, 16 mM reduced glutathione, 0.4 mM GTP, 6 mM MgCl₂, 80 mM NH₄Cl, and 60 mM Tris buffer, pH 7.4; the incubation was performed at 37° for 10 min in a total volume of 0.25 ml. For the second incubation the contents of the first incubation were diluted and GTP, MgCl₂, NH₄Cl, and Tris buffer were added to maintain the same concentrations. The concentration of glutathione in this incubation was approximately 2 mM, and some incubations received 22 mM oxidized glutathione. The second incubation was carried out at 37° for 5 min in a total volume of 1.85 ml. For the third incubation approximately 0.1 mg of transferase I and 52 μg of ¹⁴C-aminoacyl-sRNA (7000 cpm, labeled with a ¹⁴C-amino acid hydrolysate) were added to the contents of the second incubation. GTP, MgCl₂, NH₄Cl, and Tris buffer were added to maintain the same concentrations, and any component omitted during the first two steps was added. The complete system was then incubated at 37° in a total volume of 2 ml for varying periods of time. At the end of the third incubation period the hot 5% trichloroacetic acid-insoluble fraction was prepared and collected on Millipore filters for radioactivity determinations.

RESULTS

The resolution of high molecular weight RNA and aminoacyl-sRNA (obtained from ¹⁴C-amino acid-labeled “pH 5 enzymes” fractions) by gel filtration on Sephadex G-200 is shown in Fig. 1. Radioactive amino acids were associated only with the sRNA peak, which was retarded by the gel (Fractions 40 to 70). Rechromatography or sucrose density gradient analysis of the sRNA revealed only one component, while the material emerging with the void volume (Fractions 15 to 30) revealed a pattern similar to that of ribosomal RNA. Aminoacyl-sRNA purified on Sephadex G-200 was used in all of the experiments described below. The purification of sRNA by similar gel filtration procedures has been reported (15, 22).

Preliminary studies (4) indicated that the initial lag in amino acid incorporation, observed in incubations with the resolved transferases, was not abolished by increasing the concentration of either transferase; however, preincubation of transferase II and glutathione, prior to the addition of the other reaction components, eliminated the initial lag. Fig. 2 shows that the early lag is markedly reduced and the total extent of incorporation is increased by increasing the concentration of glutathione in the incubation (O—O). When transferase II is first incubated in 4, 8, or 20 mM glutathione, prior to its addition to the incubation.
Aminoacyl Transferase II-Ribosome Interaction

Vol. 241, No. 8

Fig. 3. The effect of glutathione on the initial rate of aminoacyl transfer. Incubations were carried out for 5 min at 37°, as described in Fig. 2. One series was incubated directly in varying concentrations of glutathione (○—○); others contained transferase II preincubated for 15 min with similar concentrations of glutathione.

Fig. 4. The effect of glutathione on the preincubation of transferase II. A, varying amounts of transferase II were incubated for 15 min at 37° in 60 mM Tris buffer and 0 (Line 1), 4 (Line 2), 8 (Line 3), 12 (Line 4), 20 (Line 5), and 32 (Line 6) mM glutathione; the reaction mixtures were then diluted to a final concentration of 4 mM glutathione and 54 µg of transferase II per sample; transferase I, ribosomes, GTP, NH₄Cl, MgCl₂, Tris buffer, and 23 µg of ³⁵S-leucyl-sRNA (3060 cpm), as described in the text, were added and incubations at 37°, in a total volume of 2 ml, were continued for varying periods of time. Line 2 (○—○) represents a non-preincubated control series in 4 mM glutathione. B, transferase II was incubated for 15 min at 37° in 60 mM Tris buffer and 20 mM glutathione. One series was then maintained at 20 mM glutathione (Line 4, □—□) or 0.5 mM (Curve 5, ■—■) glutathione. Transferase I, ribosomes, GTP, NH₄Cl, MgCl₂, Tris buffer, as described in the text, and 55 µg of ¹⁴C-leucyl-sRNA (7000 cpm) were then added. All samples contained 54 µg of transferase II in a final volume of 2 ml. Incubations were continued at 37° for varying periods of time. ●—● (Line 1), non-preincubated control in 0.5 mM glutathione.

Fig. 5. Dependence of aminoacyl transfer on the concentration of transferase II. A, incubations, as described in the text and Fig. 2, in 4 mM glutathione with 11 µg of ¹³C-leucyl-sRNA (1500 cpm) and varying concentrations of transferase II (○—○) or of transferase II preincubated for 15 min at 37° in 8 mM glutathione (●—●); incubation time at 37°, 25 min. B, incubations, in 0.5 mM glutathione, contained 52 µg of ¹³C-leucyl-sRNA (7000 cpm) and varying concentrations of transferase II preincubated for 10 min at 37° in 20 mM glutathione; incubation time at 37°, 60 min.
higher concentrations of transferase II were required in control incubations (O—O) as compared to incubations with transferase II previously incubated for 15 min in 8 mM glutathione. Fig. 5B shows the effect of transferase II concentration in experiments in which the first incubations contained the enzyme and 20 mM glutathione, and the second incubation was carried out in 0.5 mM glutathione. As described in Fig. 4B (Line 1) and in Fig. 6 (Δ—Δ), glutathione with a concentration of 0.5 mM or lower does not support aminoacyl transfer in control incubations with non-preincubated enzymes. It is interesting to note, however, that the addition of transferase II to incubations in 0.3 mM glutathione with sulfhydryl-activated transferase II (Fig. 6) did not inhibit the activity of the preincubated enzyme; indeed, incorporation in the presence of transferase II plus glutathione-activated transferase II (A—A) was slightly but significantly greater than the sum of the individual activities of activated transferase II (O—O) or non-preincubated transferase II (Δ—Δ).

Experiments in which transferase II and glutathione were preincubated in the presence of other reaction components but in the absence of transferase I and 14C-aminoacyl-sRNA indicated that markedly higher initial rates of incorporation were obtained when transferase II, glutathione, ribosomes, GTP, MgCl₂, and NH₄Cl were present in the first incubation (Fig. 7, Line 1). Preincubation of these components in the absence of GTP (Line 5) or ribosomes (Line 4) led to lower reaction rates at early times, which rates were not too different from those for experiments in which only transferase II and glutathione were present in the first incubation (Line 2). Similar data were obtained when ammonium chloride was omitted from the first incubation. Line 8 of this figure represents a series in which transferase II and glutathione were preincubated in one flask, and ribosomes, GTP, MgCl₂, and NH₄Cl were preincubated in another; the two flasks were then combined and transferase I and 14C-aminoacyl-sRNA were added prior to the second incubation. Thus, although the initial lag in aminoacyl transfer (Line 1) is overcome when transferase II is preincubated with glutathione, the presence of ribosomes, GTP, MgCl₂, and NH₄Cl results in a further increase in the initial rate.

Fig. 8 summarizes an experiment in which GTP was allowed to react with ribosomes, transferase II, and glutathione, as described above, and the preincubation mixture was then diluted to lower the GTP concentration before the addition of transferase I and 14C-aminoacyl-sRNA. Incubation of the complete system, in 2.5 x 10⁻⁵ M GTP, did not catalyze aminoacyl transfer (Δ—Δ). Preincubation of transferase II, glutathione, ribosomes, MgCl₂, NH₄Cl, and GTP at 10⁻⁴ M, followed by a second incubation in the presence of 10⁻⁶ M GTP, led to aminoacyl transfer (O—O) similar to that described in Fig. 7, Line 6; however, when the GTP concentration was diluted from 10⁻⁴ M to 2.5 x 10⁻⁵ M, but glutathione, MgCl₂, and NH₄Cl were maintained at the same concentration, the addition of transferase I and 14C-aminoacyl-sRNA did not result in amino acid incorporation (Δ—Δ). Thus, although GTP appears to be essential for the initial interaction observed above between activated transferase II and ribosomes (in the presence of MgCl₂ and GTP, 80 mM NH₄Cl, and 6 mM MgCl₂ (Line 6). Some series did not receive GTP (Line 6) or ribosomes (Line 4). In one series, transferase II and glutathiones were preincubated separately from ribosomes, GTP, NH₄Cl, and MgCl₂, and these were combined prior to the next step (Line 3). Line 2 represents transferase II preincubated with glutathione. All series then received transferase I and 40 µg of 14C-leucyl-sRNA (5200 cpm) and the concentration of the following components adjusted, in a final volume of 2 ml, as follows: glutathione, 4 mM; GTP, 0.3 mM; NH₄Cl, 80 mM; MgCl₂, 6 mM; and Tris buffer, 80 mM. Incubations, at 37°C, were then continued for varying periods of time. Line 1 represents a non-preincubated control series.
It has been observed that the addition of oxidized glutathione to incubations of the complete system completely inhibits the aminoacyl transfer reaction. This inhibition also occurs with sulfhydryl-activated transferase II. When transferase II was preincubated with oxidized glutathione (20 mM), and the oxidized glutathione was then extensively diluted (to 2 mM) prior to the preincubation components, incorporation was not observed unless high concentrations of reduced glutathione were added to maintain the same concentration in 4 ml; the Tris buffer concentration was adjusted to 2.5 x 10^-8 M GTP by the dilution (Δ = Δ, control incubations in 2.5 x 10^-8 M GTP).

The activated transferase II-ribosome-GTP interaction was also examined as a function of ribosomal concentration in a series of three-step incubations (Fig. 10). The first incubation contained transferase II, reduced glutathione (16 mM), NH4Cl, MgCl2, and varying amounts of ribosomes as indicated. Some incubations received GTP, one series received GDP, and another ATP; MgCl2 was omitted from one series containing GTP. The second incubation contained the components present in the first step but the reduced glutathione was diluted to 2 mM, and 22 mM oxidized glutathione was added. The third incubations received transferase I, ^14C-aminoacyl-sRNA, and GTP or MgCl2, if absent from the previous incubations; ribosomes were added to all tubes to an equivalent final concentration. When GTP was absent from the first two phases of these incubations, oxidized glutathione completely inhibited aminoacyl transfer (Line 5). The presence of GTP and the other components (Line 5) protected the system to a certain extent against inhibition by oxid-
were continued for 20 min at 37°. All samples then received transferase I, 52 µg of 1%-
pendent on the concentration of ribosomes in the preincubation

GTP could not be extensively diluted, after its participation in
the transferase II-ribosome interaction, suggests that the
phenomenon responsible for the high initial activity observed
requires GTP in both the preincubation and the incubation
phases. The possibility exists that GTP may participate in the
reversible formation of a complex between ribosomes and the
enzyme, but is dissociated from it at low GTP concentrations.
These results with GTP are in contrast to those in which in-
corporating activity was demonstrated when glutathione was
extensively diluted after being allowed to react with transferase
II during the preincubation period.

Experiments with oxidized glutathione which inhibits the
aminoacyl transfer reaction suggest that its effect is due to the
reoxidation of transferase II, which is inactive, or to the forma-
tion of a mixed disulfide between the enzyme and glutathione.
The finding that the GTP-dependent interaction of transferase
II and ribosomes is less sensitive to inhibition by oxidized
thione is of particular interest. Thus, when sulphhydryl-activated
transferase II is preincubated with ribosomes and GTP, the
resulting preparation catalyzes a very rapid initial rate of amino
acid incorporation and is partially protected from inhibition by
oxidized glutathione. A monovalent cation and MgCl₂ may
also be required, but other nucleotides such as ATP or GDP do
not substitute for GTP.

As mentioned above, binding of rRNA to ribosomes appears
to occur nonenzymatically in the E. coli system, but requires one of the transferring factor and GTP in the reticulocyte system.
Studies in this laboratory with rat liver preparations indicate that
neither transferase I nor transferase II quantitatively in-
fluences or modifies the binding of aminoacyl-sRNA to ribosomes.
Incubations were carried out with ribosomes, MgCl₂, NH₄Cl,

DISCUSSION

The kinetics of the aminoacyl transfer reaction has been ex-
amined in experiments in which combinations of various reac-
tion components were incubated prior to the synthesis of peptide
bonds, which was initiated by the addition of ¹⁴C-aminoacyl-
sRNA and transferase I. The results presented above indicate that
the sulphhydryl requirement in aminoacyl transfer is related to
the sulphhydryl function of transferase II. The initial lag in
amino acid incorporation with resolved enzymes is decreased by
increasing glutathione concentrations. The rate and the total
extent of the reaction are proportional to the concentration of
sulphhydryl compound in the incubation. The early lag is com-
pletely eliminated by preincubation of transferase II with glutathione.
Aminoacyl transfer with sulphhydryl-preincubated trans-
ferase II is also influenced by the concentration of glutathione in
the incubation; however, significant incorporation is obtained
even when the glutathione concentration in the first incubation
step is extensively diluted prior to the addition of the activated trans-
ferase II to the second incubation in the complete system.
The amount of this enzyme required for incorporation is markedly
lower in the presence of relatively high levels of glutathione
(20 mM) or when glutathione-preincubated enzyme is used.
These observations suggest that sulphhydryl compound is only
required for the activation of transferase II.

A marked stimulation of the initial rate of aminoacyl transfer,
3 to 4 times greater than that obtained when transferase II and

FIG. 10. The effect of ribosomal concentration and of various
nucleotides on the protection against inhibition by oxidized gluta-
thione. Approximately 100 µg of transferase II, 15 mM reduced

glutathione, 60 mM Tris buffer, and 80 mM NH₄Cl were incubated
with varying concentrations of ribosomes in the presence or abs-
ence of 0.4 mM GTP or 0 mM MgCl₂ in 0.25 ml for 10 min at 37°;
some vessels without GTP received 0.4 mM ATP or 0.4 mM GDP.

Incubations were carried out with ribosomes, MgCl₂, NH₄Cl, GTP, ATP, and

Discussion of April 25, 1966

R. P. Sutter and K. Moldave 1703

Downloaded from http://www.jbc.org/ by guest on August 28, 2017
of transferase I or II, individually. The ribosomes were sedimented from the incubation mixture through a discontinuous sucrose gradient (24) and analyzed for total radioactivity and their ability to transfer amino acids to protein. The amount of ^{14}C bound noncovalently to the ribosomes was the same as in control incubations in the absence of the transferase; protein-bound radioactivity was negligible in these experiments with the individual transferases until the complementary transferring factor was added. When the transferase omitted from such incubations was then added, together with a large pool of nonisotopic aminoacyl-sRNA, the kinetics and the total extent of incorporation were the same as in experiments in which ^{14}C-aminoacyl-sRNA was not present in the preincubation period but was added at the same time as the pool of unlabeled aminoacyl-sRNA. Nonenzymatic binding of aminoacyl-sRNA to rat liver ribosomes has been obtained in the presence of MgCl; KCl and NH$_4$Cl inhibit this binding and release ribosome-bound aminoacyl-sRNA, although aminoacyl transfer to protein requires a monovalent cation. It has not yet been possible to determine whether aminoacyl-sRNA binding to ribosomes is specific with respect to the coding sequence on the template or the site on the ribosome where peptide synthesis is catalyzed. Studies with E. coli ribosomes and synthetic polynucleotides, however, have shown that the attachment of sRNA is specific with respect to the amino acid acceptor sRNA chains and the synthetic oligonucleotides used as artificial templates (25-27). Attempts are in progress to determine whether aminoacyl-sRNA bound nonenzymatically to ribosomes in this rat liver system, which contains endogenous messenger RNA, is a direct precursor of polypeptides or whether incorporation occurs only after it is released, perhaps from non-specific adsorption sites on ribosomes. The studies presented here represent efforts to elucidate some of the intermediary steps involved in polypeptide biosynthesis prior to the synthesis of the peptide bond. Although the binding of aminoacyl-sRNA does not appear to be influenced by either of the aminoacyl-transfering enzymes, the binding which does occur has not been shown to be an obligatory step. Evidence is presented here, however, for an additional interaction, among activated transferase II, ribosomes, GTP, and NH$_4$, which occurs prior to peptide bond synthesis and which must be considered in terms of the mechanism of the reaction. Evidence to be published subsequently, for an interaction between aminoacyl-sRNA and transferase I prior to the reaction of this factor with ribosomes and transferase II, must also be considered. It is possible that a polyribosomal event occurs prior to the participation of aminoacyl-sRNA and transferase I, and that a sequence of reactions is repeated as single amino acids are incorporated into nascent peptide chains. The stimulatory effect on the initial kinetics described above may reflect a ribosome-messenger RNA event prior to the participation of transferase I and aminoacyl-sRNA and prior to peptide bond synthesis resulting in the priming of active ribosomes for the addition of the next aminoacyl-sRNA to the growing ends of peptidyl-sRNA chains.

REFERENCES