Mechanism of the Biosynthesis of Vitamin A from β-Carotene*

DeWitt S. Goodman,‡ Helen S. Huang,§ and Tatsuji Shiratori

From the Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York 10032

SUMMARY

Experiments were conducted to determine whether the hydrogen atoms attached to the 2 central carbon atoms of β-carotene are retained or are lost during the conversion of β-carotene to vitamin A. Doubly labeled β-carotene, uniformly labeled with 14C throughout the molecule but specifically labeled with 3H only at the central carbon atoms (C-15 and C-15'), was fed to each of two lymph fistula rats. Lymph was collected and the retinyl esters isolated. The ratio of 3H to 14C in the retinyl esters from lymph, and in the retinol obtained from these esters by saponification, was identical with the ratio of 3H to 14C in the dietary β-carotene. This indicated that there was no loss of 3H relative to 14C during the conversion of β-carotene to vitamin A. Complete retention of 3H relative to 14C was also found during the conversion in vitro of doubly labeled β-carotene to retinal with homogenates of rat intestinal mucosa. The hydrogen atoms attached to the central carbon atoms of β-carotene must therefore be retained completely during the biosynthesis of vitamin A.

In order to verify that the 3H label was attached only to the central carbon atoms of β-carotene, the retinol (from lymph) was oxidized to retinoic acid by a two-step procedure. This oxidation was accompanied by a complete loss of 3H label from the molecule.

The biosynthesis of vitamin A from β-carotene is most likely a dioxygenase reaction, in which molecular oxygen reacts with the 2 central carbon atoms of β-carotene, followed by the cleavage of the central double bond of β-carotene to yield 2 molecules of retinal.

β-carotene was fed to vitamin A-deficient rats. Subsequent examination of these rats showed that the feeding of β-carotene had produced a definite increase in the vitamin A content of their livers.

Since then, the conversion of β-carotene to vitamin A has been shown with a variety of preparations, including lymph fistula rats and pigs, rat intestinal loops, rat intestinal slices, and isolated perfused rat livers. Despite these studies, however, detailed information about the mechanism of the conversion of β-carotene to vitamin A has not been available.

We have recently reported the active conversion of β-carotene to retinal with cell-free homogenate fractions from rat intestinal mucosa. Molecular oxygen and bile salts were required for the reaction to take place. Calculations based on the stoichiometry of the results indicated that the reaction mechanism involved the central cleavage of β-carotene into 2 molecules of retinal.

We now report the results of experiments designed to examine the question of whether the hydrogen atoms attached to the 2 central carbon atoms of β-carotene are retained or are lost during the conversion of β-carotene to vitamin A.

EXPERIMENTAL PROCEDURE

Labeled β-Carotene—Uniformly labeled 14C-β-carotene was produced biosynthetically from a mixture of 1-14C-acetate and 2-14C-acetate by the fungus Phycomyces blakesleeanus according to the method of Lilly et al. (8). The β-carotene was isolated and purified as described previously (9), including chromatography on alumina (grade III) followed by crystallization from hexane. The specific radioactivity was 0.107 μC per μg.

β-Carotene-15, 15'-3H₂ was the generous gift of Dr. R. Blomstrand of Stockholm, Sweden, who had previously received it as a gift from Dr. U. Gloor of Hoffmann La Roche of Basle, Switzerland. The β-carotene-15, 15'-3H₂ had been prepared by partial hydrogenation with tritium gas of carotinin, the 15, 15'-acetylenic derivative of β-carotene. The specific radioactivity of this preparation was 1.09 μC per μg. It was chromatographed on a column of alumina just prior to its use.

The biosynthesis of vitamin A from β-carotene was first conclusively shown by Moore by means of experiments in which
mately 3×10^8 cpm of the above 14C-β-carotene, 1.1 $\times 10^6$ cpm of the above 3H-β-carotene, and 300 μg of puv, unlabeled, recently recrystallized β-carotene. The carotene was then serially crystallized twice without change in its specific radioactivity or in its ratio of 3H to 14C counts per min.

A second preparation of doubly labeled β-carotene, for use in incubations in vitro, was subsequently prepared in an identical manner. This second preparation had a slightly lower ratio of 3H to 14C counts per min.

Experiment in Viva—Doubly labeled β-carotene (first preparation). 220 μg, and 2 mg of α-tocopherol were dissolved in 0.7 ml of olive oil, and 0.3 ml of the resultant mixture was fed by gastric intubation to each of two rats whose cisternae chyli had been cannulated the previous day. Lymph was collected on ice for 47 hours. A carrier mixture of nonradioactive retinol, retinal, retinoic acid, β-carotene, and a mixture of retinyl esters (see Reference 9) was added to each sample, and the entire lymph sample was extracted with chloroform-methanol (2:1, v/v) as described previously (9). The total lipid extract contained 3 to 4% of the fed radioactivity in each case.

Portions of the total lipid extract of each sample were chromatographed on columns of alumina as described previously (9). Five fractions were collected from each column, namely: Fraction 1, β-carotene; Fraction 2, retinyl esters; Fraction 3, retinal; Fraction 4, retinol; Fraction 5 (+6), more polar compounds including retinoic acid. Portions of each fraction were assayed for radioactivity.

Part of the retinyl ester fraction of one of the samples was saponified under nitrogen at 60$^\circ$ for 14 hours in 2.2% KOH in 80% ethanol. After addition of an equal volume of water and of 0.8 mg of pure carrier retinol, the nonsaponifiable fraction was extracted with hexane followed by purification of retinol by chromatography on a column of alumina. Retinol was oxidized to retinal with MnO$_2$ (10) and the retinal was purified by chromatography on a column of alumina.

Retinal was enzymically oxidized to retinoic acid with rat liver aldehyde oxidase with the use of a modification of the method described by Mahadevan, Murthy, and Ganguly (11). The enzyme preparation consisted of that portion of the soluble protein fraction (104,000 \times g supernatant) of a rat liver homogenate which precipitated with ammonium sulfate between 0 and 45% saturation. In order to oxidize retinal, an incubation was carried out containing 48 mg of enzyme protein (dialyzed extensively against 0.01 M potassium phosphate buffer, pH 7.4, just before use), 300 mmoles of potassium phosphate buffer, pH 7.4, 90 mmoles of nicotinamide, 12 mmoles of MgCl$_2$, 200 mmoles of glutathione, and 3 mmoles of NADH. Substrate (labeled retinal, 0.4 mg) was added in solution in 100 μl of acetone. The final volume was 3 ml. After incubation at 37$^\circ$ for 2 hours in the dark, with room air as gas phase, the incubation mixture was extracted with the solvent mixture described by Dole (12), but containing n-hexane instead of heptane. Retinoic acid was separated from unreacted aldehyde by extracting the hexane solution with 0.1 \times NaOH in 50% ethanol. The retinoic acid was subsequently recovered by acidification of the ethanol-NaOH solution followed by extraction of acids therewith in light petroleum ether.

Experiment in Vito—Incubations were carried out as described elsewhere (1) in order to effect the conversion of doubly labeled β-carotene to retinal. Each incubation flask contained, as enzyme, 10 mg of protein of a 10,000 \times g supernatant of a homogenate of rat intestinal mucosa plus 200 mmoles of potassium phosphate buffer, pH 7.7, 30 mmoles of nicotinamide, 12 mmoles of sodium taurocholate, 10 mmoles of glutathione, and 1 mg of α-tocopherol added in solution in 50 μl of acetone. The final volume was 2 ml. Substrate doubly labeled β-carotene (1 μg of the second preparation) was added in solution in 50 μl of acetone, and the mixture was incubated at 37$^\circ$ in the dark with room air as gas phase. After 1 hour, the incubation mixture was extracted (see Reference 1) and the lipid extract chromatographed on alumina.

Radioassay—Samples were dissolved in 15 ml of 0.5% diphenyloxazole in toluene and assayed with a Packard Tri-Carb liquid scintillation counter. All of the samples were re assayed twice, after the addition of 14C-toluene, and then after addition of 3H-toluene, as internal standards, in order to obtain a quantitatively accurate simultaneous assay for 14C and for 3H. The observed counting efficiency was 50% for 14C and 18% for 3H. The sources of all of the materials and compounds used in this study were described previously (9).

RESULTS

Experiment in Vito—The retinyl ester fractions (Fraction 2) contained 91% and 87%, respectively, of the radioactivity recovered in the two lymph extracts. Radioassay of portions of each retinyl ester fraction showed that in both cases the ratio of 3H to 14C was almost the same as that found in the dietary doubly labeled β-carotene (see Table I). Part of the retinyl ester fraction from one of the lymph samples was saponified, and retinol was subsequently isolated from the nonsaponifiable fraction. This retinol contained the same ratio of 3H to 14C as was seen in the dietary β-carotene (see Table I). These results indicate that there was no loss of 3H relative to 14C during the conversion of doubly labeled β-carotene into vitamin A.

In order to verify that the 3H label was in fact originally attached entirely to the 2 central carbons of β-carotene (C-15 and C-15'), part of the doubly labeled retinol, obtained by saponification of the lymph retinyl esters, was oxidized to retinoic acid. This oxidation removes the hydrogen atoms attached to the terminal carbon (C-15) of retinol, and hence should remove all of the 3H originally present at C-15 and C-15' of β-carotene. Because of the very small amount of retinol involved, oxidation to retinoic acid was carried out in a two-step procedure: (a) chem-
The results presented here show that the hydrogen atoms attached to the 2 central carbon atoms of \(\beta \)-carotene are entirely retained during the conversion of \(\beta \)-carotene into vitamin A.

This conclusion derives from the finding that there was no loss of tritium, relative to \(^{14} \)C, during the conversion of doubly labeled \(\beta \)-carotene to vitamin A. Since the \(\beta \)-carotene was uniformly labeled with \(^{14} \)C, but was specifically labeled with \(^3\)H at the 2 central carbon atoms, removal of one or both of the hydrogen atoms attached to the central carbon atoms of \(\beta \)-carotene during the biosynthesis of vitamin A would have been reflected in a corresponding loss of tritium, relative to \(^{14} \)C, in the vitamin A. Complete retention of \(^3\)H, relative to \(^{14} \)C, was, however, found, both during the conversion in vitro of \(\beta \)-carotene to vitamin A in the lymph fistula rat, and during the conversion in vitro of \(\beta \)-carotene to retinal. Furthermore, the fact that the \(^3\)H was specifically attached to the 2 central carbon atoms of \(\beta \)-carotene was verified by oxidation of some of the newly synthesized vitamin A to retinoic acid; as anticipated, this resulted in the complete loss of \(^3\)H from the molecule.

We have recently shown that the over-all reaction of vitamin A biosynthesis consists of the central cleavage of \(\beta \)-carotene into 2 molecules of retinal (1). Retinal is then reduced to retinol, which in turn is esterified prior to its absorption and transport via the intestinal lymphatics (1, 9). The results presented here indicate that the hydrogen atoms attached to the 2 central carbon atoms of \(\beta \)-carotene are not removed during these reactions. Since molecular oxygen is required for the conversion in vitro of \(\beta \)-carotene to retinal (1), it seems highly likely that the mechanism of this reaction involves a direct reaction between molecular oxygen and the 2 central carbon atoms of \(\beta \)-carotene, followed by the cleavage of the central double bond of \(\beta \)-carotene, to yield 2 molecules of retinal. The biosynthesis of vitamin A from \(\beta \)-carotene is hence most likely a dioxygenase reaction, and can be formulated as follows.

![Chemical structure](https://example.com/chemical_structure.png)

The fine details of this dioxygenase reaction, i.e., whether the initial step consists of a hydroperoxylation or of a concerted reaction involving both carbon atoms and molecular oxygen, whether there is a cyclic peroxide intermediate as pictured above, etc., cannot as yet be defined. The outline of the over-all reaction seems, however, clearly established. Complete proof for this formulation will require the demonstration that the oxygen atom in vitamin A is directly derived from molecular oxygen.

Acknowledgments—We are grateful to Mrs. Joan Vormbaum for expert assistance during this work. We wish to thank Dr. Rolf Blomstrand of Stockholm, Sweden, for the gift of \(\beta \)-carotene-15,15\(^{3}\)H\(_2\).

Note Added in Press.—While the above manuscript was awaiting publication, Olsen and Hayashi reported (13) the conversion of \(\beta \)-carotene to retinal in vitro, in yields generally in the range of 5\%, by soluble protein fractions of rat liver and intestinal homogenates. These workers postulated that the mechanism of this conversion involved a dioxygenase reaction between the 2 central carbon atoms of \(\beta \)-carotene and molecular oxygen, followed by the central cleavage of \(\beta \)-carotene into 2 molecules of retinal. We are in agreement with this postulated mechanism which is identical with the one suggested in the present manuscript and is supported by the evidence presented here.
REFERENCES
3. THOMPSON, S. Y., BRAUDE, R., COATES, M. E., COWIE, A. T.,
4. WAGNER, H., WYLER, F., RINDI, G., AND BERNHARD, K.,
7. ZACHMAN, R. D., AND OLSON, J. A., J. Biol. Chem., 238, 541
 (1963).
8. LILLY, V. G., BARNETT, H. L., KRAUSE, R. F., AND LOTSPEICH,
 (1965).
10. BALL, S., GOODWIN, T. W., AND MORTON, R. A. Biochem. J.,
 42, 516 (1948).
 J., 85, 326 (1962).
 (1965).
Mechanism of the Biosynthesis of Vitamin A from β-Carotene
DeWitt S. Goodman, Helen S. Huang and Tatsuji Shiratori

Access the most updated version of this article at http://www.jbc.org/content/241/9/1929

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/241/9/1929.full.html#ref-list-1