Concerning the Mechanism of Ester Hydrolysis by Proteases

C. E. Stauffer and E. Zeppfen
From the Miami Valley Laboratories, The Procter and Gamble Company, Cincinnati, Ohio 45209

SUMMARY

We have shown conclusively that during the hydrolysis of N-acylamino acid esters by proteases the substrate bond cleaved is the acyl-carbon-etheral oxygen bond. This was done by hydrolyzing the ethyl esters in H$_{2}^{18}$O-enriched water, isolating the ethanol formed, and determining the 18O:16O ratio. The amount of ethanol-18O found was that of natural abundance. This result supports what has hitherto been an assumption as to the site of bond cleavage. We discuss the implications of this for various "rack," or bond angle distortion, mechanisms which have been proposed.

A number of workers have addressed themselves to elucidating the mechanism of hydrolysis of N-acylated amino acid ester substrates by serine and sulfhydryl proteases. From this work, a general picture has emerged involving a tetrahedral intermediate (1, 2) formed during attack on the acyl carbon of the substrate by a nucleophilic center such as the active site serine hydroxyl in the serine proteases (3, 4). In this mechanism, the alkyl moiety of the substrate leaves as an alcohol, with bond cleavage between the acyl carbon and the ethereal oxygen. This corresponds to the site of cleavage during hydroxyl-catalyzed ester hydrolysis (5).

During base-catalyzed hydrolysis of lactones, a similar situation obtains, i.e. normally the acyl carbon-etheral oxygen bond is the one broken. However, in certain strained rings, such as β-lactones, the ring may be opened via $S_{N}2$ attack of neutral nucleophiles such as water on the alkyl carbon (6, 7). In this case, the alkyl-oxygen bond is cleaved as the $S_{N}2$ transition state breaks down into alcohol and acid. The oxygen of the resultant alcohol hydroxyl group is derived from the solvent, i.e. water.

One proposed general mechanism of enzyme action is the "rack" mechanism (8, 9) in which the susceptible substrate bonds are strained during the formation of the activated enzyme-substrate complex just prior to breakdown into products. If this strain were physical, i.e. involving actual bond angle distortion, then hydrolysis of esters by proteases might proceed by a mechanism similar to hydrolysis of β-lactones by water. The alcohol resulting from such a hydrolysis would derive its hydroxyl group from the solvent. A mechanistic scheme which involves such a possibility is shown in Scheme 1. While the details depicted (i.e. general base catalysis by imidazole, presence of a tetrahedral intermediate, and potentiation of the serine hydroxyl by hydrogen bonding to an imidazole nitrogen) are in general consistent with proposed mechanisms (1), the important feature is that cleavage of the alkyl carbon-oxygen bond may still yield the acylenzyme intermediate, and is consistent with all information which we could find pertaining to the mechanism of hydrolysis of amino acid esters by proteases. In order to test this possibility we hydrolyzed N-acylated amino acid esters with various enzymes, using as solvent water containing an excess of H$_{2}^{18}$O. Determination of the 18O content of the resulting alcohol provided the test of the hypothesis.

Bender and Kemp (10) studied the reaction of chymotrypsin with methyl β-phenylpropionate labeled with 18O in either the carbonyl or the alkoxyl oxygen. In the presence of 10 to 30% methanol extensive transesterification as well as hydrolysis occurred. After a period of reaction, reisolated ester was examined. If the starting substrate was labeled in the carbonyl oxygen the label was retained, while 18O originally present in the alkoxyl oxygen was lost. Ethyl N-benzoyl-β-phenylalanine-carbonyl-18O retained its label in a similar experiment. These results imply acyl oxygen fission during the enzyme catalyzed hydrolysis. However, they are also fully compatible with the reaction scheme presented above. Determination of the 18O content of the freed alcohol remains the only unequivocal differentiation between the possibilities of acyl oxygen and alkyl oxygen fission.

Additionally, a recent communication has appeared (11) wherein quantum chemical calculations for the hydrolysis of acetylcholine have led to the prediction that the site of bond cleavage by cholinesterase is the alkyl oxygen bond. While we have not studied this particular enzyme, we have studied four
was added, and the pH was kept constant by addition of 2.5
nitrilotriacetic acid (NTA). The enzymes we
have studied are chymotrypsin, trypsin, subtilisin, and papain.

Other pH-stat, enzyme in a small amount of 180-enriched water
Ac-Tyr-OEt). The pH was adjusted to desired pH on a Radiom-
H218O:H2O are given in Table I. The natural abundance of
1 The abbreviations used are: Bz-Arg-OEt, N-benzoyl-L-argi-
nine ethyl ester; Ac-Tyr-OEt, N-acetyl-L-tyrosine ethyl ester.
is not too large for its binding region. Steric hindrance to binding of alkyl moieties does not seem to be the case, since the benzyl ester of N-acetyltyrosine is hydrolyzed even more rapidly than the ethyl ester (13).

One may raise the question of how much bond angle distortion is necessary for enzyme action. If bond angles in lactones may be used as guides for ester distortion, the data in Table II are pertinent. Distortion of the C—O—C bond angle from 116° to 108° produces an order of magnitude increase in the rate of hydrolysis by OH⁻, and at most a similar increase in rate of hydrolysis attack by water. Further distortion to 94° does not appreciably increase the hydroxide rate, but does increase the rate of hydrolysis by water by at least a factor of 10². The 10-fold increase in the rate of hydroxide catalysis is insufficient to explain enzymatic catalysis, while the factor of 10⁴ is the magnitude of rate enhancement often seen in enzymic reactions. However, the S₂N mechanism of attack by water results in alkyl oxygen cleavage, and the experiments reported above show that this does not occur in enzymatic hydrolysis of esters. Thus, one is left with examples of bond angle distortion which, for one mechanism (OH⁻ attack) do not provide rate enhancement corresponding to that seen in enzymes, and in the other mechanism (H₂O attack) provide sufficient enhancement of rate but do not have the pattern of bond cleavage observed in the enzymatic reaction. This leads us to question whether bond angle distortion in the enzyme-substrate complex contributes significantly to catalysis of ester hydrolysis by proteases.

An alternative form of strain might be what we have called "electronic distortion." This merely implies that interactions in the enzyme-substrate complex produce a distortion of the molecular orbitals around the sensitive bonds, thus raising the ground-state energy of the complex and increasing the probability of passage to the transition state. The types of interactions which we envision as responsible for this sort of distortion are dipole-dipole interactions and electrostatic perturbations.

The possible presence of a large electrostatic influence in the active site of chymotrypsin was shown by Zeffren and Reavill (17). They employed nuclear magnetic resonance spectroscopy to study the ¹⁹F chemical shift attendant upon binding N-trifluoroacetyl-DL-phenylalanine to chymotrypsin. In that paper they equated the active site environment in chymotrypsin to a 10 M NaCl solution. Subsequent measurements (18) have shown that equivalent perturbations of the ¹⁹F chemical shift N-trifluoroacetyl-DL-phenylalanine may be produced by small amounts of ionic materials in a nonpolar medium (e.g. 0.0175 M propylammonium acetate in diethyl ether). Consistent with this interpretation of electronic distortion is the general finding of protein crystallographers that "the low dielectric constant of the nonpolar interior of protein molecules facilitates electrical interactions which are many times stronger than in water" (19).

The effect of dipoles in the active site upon enzymatic activity was also pointed out by Stauffer and Etson (20). In this case, introduction of a S — O dipole in place of the nonpolar methionine sulfide very close to the active site serine of subtilisin produced a drastic decrease in the rate of ester hydrolysis. The increased polar nature of the active site of oxidized subtilisin probably lessens the effect of the normal electrical interactions in this usually apolar region.

We have considered two kinds of substrate distortion by the enzyme: perturbation of the energy levels of the ester’s ground-state molecular orbitals; and spatial or bond angle distortion.

We conclude that the former probably contributes more to the enhanced rate of enzymatic hydrolysis than does the latter.

Acknowledgment—We thank Dr. G. G. Engerholm for performing the mass spectral analyses.

REFERENCES