Molecular Size and Conformation of Chloroplast Deoxyribonucleic Acid from Pea Leaves*

(Received for publication, March 27, 1972)

RICHARD KOLODNER and K. K. TEWARI

From the Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92664

SUMMARY

The molecular size and conformation of chloroplast (ct-) DNA has been studied by renaturation kinetics and electron microscopy. Ct-DNA of buoyant density 1.698 ± 0.001 g per cm³ showed a T_m of 84°C and a homogeneous melting pattern. Denatured and sheared ct-DNA renatured as a single kinetic class with no suggestion of repeating sequences. Ct-DNA is found to have a molecular weight of 95 × 10^6 by renaturation rate, assuming a value of 106 × 10^6 for T4 DNA. The lysed chloroplasts are shown to contain 37% of the total DNA in circular molecules of 37 to 42 μ. The remaining DNA is found to be in linear form ranging from 1 to 30 μ. Ct-DNA has been isolated by deproteinization and shown to contain 25% of the DNA in circular form. Supercoiled molecules constitute 30% of the circular molecules. Three percent of the circular DNA is found in circles of dimer lengths. ϕX174 RF II DNA and circularized phage λ DNA have been used as internal standards, and the molecular weight of ct-DNA is calculated to be 91 × 10^6.

Chloroplast DNA from algae and higher plants has been shown to differ from nuclear DNA in buoyant density and in base composition. Further, ct-DNA, unlike n-DNA, has been shown to readily renature to its native density after denaturation (1). This property has been utilized to calculate the genome size of ct-DNA. Wells and Birnstiel (2) reported that ct-DNA of lettuce was kinetically heterogeneous consisting of “fast” and “slow” renaturing fractions. The fast fraction had a molecular weight of 3 × 10^6 and constituted 25% of the total ct-DNA; the slow fraction had a molecular weight of 120 × 10^6. Tewari and Wildman (3) carried out a detailed analysis of ct-DNA from tobacco leaves and showed it to renature as a single homogeneous species with a molecular weight of 114 × 10^6. No evidence for a fast renaturing component in tobacco et-DNA was found. Recently, Bastia et al. (4) have shown ct-DNA from Chlamydomonas to renature homogeneously with kinetic complexity of 194 × 10^6.

Molecular size and conformation of ct-DNA have also been studied by electron microscopy. Woodcock and Fernández-Morón (5) reported two conformations of DNA in osmotically shocked spinach chloroplasts. “Linear” forms had threads of 20 to 50 A in diameter, and “mesh” forms had diameters of about 15 A. Ct-DNA molecules ranging in length from 40 to 150 μ were observed. However, studies on chloroplasts from enucleated cells of Acetabularia revealed threads of uniform diameter (6), but the maximum length of free lying threads of DNA was only 4 μ. In other studies, strand length of ct-DNA has been reported to range from 200 to 400 μ (7, 8). Molecular weight calculated from these length measurements of ct-DNA will correspond to approximately 80 × 10^6 to 150 × 10^6 in spinach chloroplast and 400 × 10^6 to 800 × 10^6 in Acetabularia. These values are in great variance to those found by renaturation kinetics (9).

We have now studied ct-DNA from pea leaves by electron microscopy of lysed chloroplasts and of deproteinized DNA. Our results conclusively show that DNA molecules in the chloroplast exist as circular molecules with a contour length of 39 μ. The molecular weight of circular ct-DNA is calculated to be 90 × 10^6 using ϕX174 RF II DNA and λ DNA as standards. Manning et al. (10) were the first to report circular ct-DNA in E. gracilis. Our results show the occurrence of circular ct-DNA in higher plants and agrees with the molecular weight of 83 × 10^6 reported for ct-DNA from Euglena gracilis (10). The molecular weight of ct-DNA has also been analyzed by renaturation kinetics and found to be 95 × 10^6. Renaturation analysis has further shown that ct-DNA from pea leaves exists as a single homogeneous species with no evidence of inter- or intramolecular compositional heterogeneity.

MATERIALS AND METHODS

Isolation of Chloroplast DNA—In a typical experiment, 1 kg of 12- to 15-day-old pea leaves was homogenized with 4 liters of buffered medium (Medium A) containing 0.3 M mannitol, 0.05 M Tris, pH 8.0, 3 mM EDTA, 0.1% bovine serum albumin, and 1 mM mercaptoethanol. The homogenates were filtered through four layers of cheese cloth and centrifuged for 10 min at 100 × g in the Sorvall centrifuge. The supernatant was centrifuged at 1020 × g for 15 min and the chloroplast pellet (containing broken nuclei and some mitochondria) was suspended in 80 ml of Medium A containing 10 mM MgCl₂. DNAse I (50 μg per ml) was added and the suspension was incubated for an hour at 4°C. At the end of the incubation, 240 ml of a medium (Medium B) containing 0.15 M NaCl and 0.1 mM EDTA were added and the mixture was

* This work was supported by National Science Foundation Grant GR-29674.
† Predoctoral Trainee of National Institute of General Medical Sciences (Grant GM-02063-01).
centrifuged for 15 min at 1020 \times g. The pellet was washed twice by suspending it in 120 ml of Medium B. The pellet was finally suspended in 10 ml of Medium B, sodium deoxycholate was added to a final concentration of 2\%, and the lysed chloroplasts were extracted with an equal volume of phenol buffered with 0.1 M Tris, pH 12.0. The aqueous phase was re-extracted with an equal volume of phenol. Two volumes of 95\% alcohol were added to the aqueous phase, the mixture was kept in a freezer overnight, and the precipitate was collected by centrifugation and dissolved in 5 ml of Medium A. The solution was incubated for 2 hours at 37^\circ with 50 g per ml of RNase and 50 units per ml of RNase T\textsubscript{1} followed with 5 mg per ml of Pronase and a further incubation of 2 hours. At the end of incubation, two phenol extractions were carried out and the aqueous phase was dialyzed against a total volume of 10 liters of SSC with five changes in 24 hours.

Lysis of Chloroplasts for Electron Microscopy—The crude chloroplast fraction was obtained from 100 g of leaves as described above and suspended in 20 ml of Medium A. After DNase treatment, chloroplasts were washed twice with 3 volumes of 0.35 \textit{molar} EDTA, pH 8.0 (Medium C), and finally suspended in 4 ml of Medium C. An aliquot of 0.05 ml of this suspension was added to 0.05 ml of 4\% sodium-sarcosyl, 20 mM EDTA, and 30 mM NaCl and allowed to stand for 30 min. To this mixture, 0.2 \mu g of \phi X RF II DNA was added for marker DNA when desired. The solution was diluted with 1.0 ml of 1 M ammonium acetate containing 0.05\% formaldehyde and 0.1 ml of 1 mg per ml of cytochrome c. After centrifugation at 12,000 \times g for 30 min, the supernatant was spread on a hypophase of 0.3 \textit{molar} ammonium acetate containing 0.5\% formaldehyde for 15 min, picked up on carbon-coated Filmvar mounted on copper mesh (200) grids, and rotary shadowed with 80\% Pt:20\% Pd wire.

Isolation of DNA for Electron Microscopy—The DNase-treated and washed chloroplasts from 100 g of leaves were suspended in 4 ml of Medium C, and 1 ml of 10\% sodium-sarcosyl containing 30 mM NaCl and 20 mM EDTA was added. After 30 min the mixture was gently extracted twice with chloroform-isomyl alcohol (95:5). The supernatant was dialyzed against 1.05 M NaCl-0.1 M EDTA, pH 8.0, for 24 hours. An aliquot of 0.1 ml of ct-DNA was added to 1.0 ml of 1 M ammonium acetate (pH 5.5) and 0.1 ml of 1 mg per ml of cytochrome c. In the above spreading mixture, 0.2 \mu g of \phi X RF II DNA or 0.1 \mu g of circularized \lambda phage DNA, or both, was included. The solution was spread on 0.3 \textit{molar} ammonium acetate (pH 5.5) for 15 min and prepared as described under "Lysis of Chloroplasts for Electron Microscopy."

Electron Microscopy—Preparations were examined in a Zeiss EM 9A with a 30-\mu objective aperture. Photographs were taken on 7 cm \times 7 cm sheet film at a magnification of 8250 \times which was calibrated with a diffraction grating (Laud 25,200 lines per inch). Tracings were made from negatives projected at a final magnification of 250,000 \times with a Besseler projector, and these tracings were measured.

RESULTS

Characterization of Chloroplast DNA—The isolated ct-DNA was analyzed in an analytical CsCl centrifugation to determine the purity and the homogeneity of the sample (Fig. 1). The profile of DNA obtained from the 12,000 \times g pellet (after removing the nuclear fraction by centrifuging at 100 \times g for 10 min) without DNase treatment is also presented in Fig. 1. There are two major bands, one at a density of 1.694 g per cm3 and another at a density of 1.697 g per cm3. In addition, a minor band at a density of 1.705 g per cm3 is also present (Fig. 1A). The DNase-treated chloroplast fraction showed only one band at a density of 1.694 g per cm3. Although the difference in densities between nuclear and chloroplast DNA is only 0.003 g per cm3, the banding pattern clearly shows two components. B, DNA from chloroplast fraction after DNase treatment (see "Materials and Methods"). C, DNA from mitochondrial fraction after DNase treatment.

Melting Pattern of Chloroplast DNA—Thermal denaturation of ct-DNA was performed in SSC. The melting profile of ct-DNA is presented in Fig. 3. The ct-DNA showed a sharp transition with a T\textsubscript{m} of 84^\circ \pm 0.5^\circ, maximal hyperchromicity of 0.36 (H\textsubscript{m} = (A\textsubscript{m}/A\textsubscript{0}) - 1) and a dispersion (\sigma) of 6.6^\circ (A\textsubscript{\alpha} =
optical density at 260 nm of denatured DNA; A_{260} = optical density at 260 nm of native DNA at 20°C; σ = temperature range in which the increase in optical density takes place). There was no evidence of any other component in the melting pattern. T4 DNA was similarly treated and was found to have a T_m of 84°C, h_{max} of 0.34, and σ of 6.6°C. The melting behavior of ct-DNA from Chlamydomonas (4) is in complete contrast to the results obtained in this investigation. The ct-DNA from Chlamydomonas (4) was found to melt over a broad range of temperatures, and within the melting temperature range the cooperative transition of the double helix of the ct-DNA appeared to be nonhomogeneous. The experiments presented in Fig. 3 were carried out with a temperature rise of 1°C per min. It occurred to us that this rate of rise in temperature might be too fast to observe inter- or intramolecular microheterogeneity, or both, during the melting of DNA. Therefore, the melting pattern of ct-DNA was studied using a temperature rise of 1°C per 10 min. The results of such a melting are presented in Fig. 4. There appears to be no suggestion of heterogeneity, and the melting patterns of T4 DNA and ct-DNA are very similar. In an effort to investigate the possibility of heterogeneity, the T_m of ct-DNA was determined in SSC/100. There was a drop of 20°C in T_m to 65°C but the molecules still melted sharply with a σ of 6°C and h_{max} of 0.32. On the other hand, n-DNA which showed a σ of 6°C in SSC showed a σ of 10°C in SSC/100.

The ct-DNA was heated to 100°C at the rate of 1°C per min and kept at 100°C for 15 min. The temperature of the cuvette in the spectrophotometer was equilibrated to 60°C. Optical density was continuously recorded. The data of this experiment are presented in Fig. 3. Denatured DNA incubated at 60°C showed hypochromicity and in 200 min had regained the optical density corresponding to native DNA. That the hypochromicity observed resulted from actual formation of native base pairs and not stacking of bases is seen in the data where renatured DNA is again melted. A sharp melting of DNA with a T_m of 84.5°C is observed instead of the melting over a broad range of temperatures characteristic of unpaired structures. It is to be noted that even renatured DNA molecules did not show a heterogeneous melting pattern. The sample of DNA was renatured and melted again. The T_m was still 85°C with a σ of 6°C and an h_{max} of 0.31.

Renaturation Rate and Size of ct-DNA It has been reported that heat-denatured ct-DNA showed two component kinetics, whereas alkali-denatured DNA gave only one kinetic class (3). We considered the possibility that thermal denaturation is not sufficient to completely eliminate some nucleation sites which would favor faster reassociation during the early part of the renaturation process. All of our renaturation studies have, therefore, been performed on alkali-denatured DNA samples. The ct-DNA was fragmented by passing through a number 27 gauge needle and $s_{20,w}$ determined in band centrifugation (12). The alkali-denatured and neutralized samples were added to cuvettes which had been equilibrated to 60°C. The maximum time required for temperature equilibration was 2 min. The kinetics of renaturation using three different concentrations of ct-DNA is plotted in Fig. 5. This plot showed a second order rate. It is seen that no rapidly renaturing component is present. Eighty percent of the total DNA was found to renature as a single kinetic class. From the slope of the curve in Fig. 5, the renaturation rate constant k_r was calculated according to Wetmur and Davidson (13). Using this method the renaturation of T4 DNA was studied and its k_r was calculated. The k_r values for five different preparations of ct-DNA and T4 DNA, obtained using fragments of 17 to 18 S ($s_{20,w}$), are given in Table I. The rate constants for T4 ranged from 11.4 moles⁻¹ s⁻¹ to 12.4 moles⁻¹ s⁻¹, whereas k_r for ct-DNA ranged from 12.9 moles⁻¹ s⁻¹ to 13.8 moles⁻¹ s⁻¹. The molecular weight of ct-DNA was calculated using an analytically determined value for the molecular weight of T4 DNA as a standard. The molecular weight of T4 has been reported to be of the order of 130 × 10⁶ (14). The molecular weight of T4 DNA has been determined (15, 16) and found to be about 106 × 10⁶. We have calculated molecular weights of ct-DNA using both values of molecular weights (Table I). The mean molecular weight of ct-DNA was found to be 116 × 10⁶ using the T4 value of 130 × 10⁶ and 95 × 10⁶ using a molecular weight of 106 × 10⁶ for T4 DNA. The value of 116 × 10⁶ is in agreement with the molecular weight previously reported for
TABLE II
Renaturation rates at different concentrations of ct-DNA

The renaturation rates were studied at different concentrations of DNA. All the other details are described in the legend of Table I.

<table>
<thead>
<tr>
<th>Concentration of ct-DNA</th>
<th>Rate constant, k_z</th>
<th>Mol wt of ct-DNA ($\times 10^{14}$) calculated from T4 DNA assuming a mol wt of</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu g/ml$</td>
<td></td>
<td>130×10^6</td>
</tr>
<tr>
<td>12</td>
<td>12.4</td>
<td>125.8</td>
</tr>
<tr>
<td>18</td>
<td>13.5</td>
<td>115.5</td>
</tr>
<tr>
<td>24</td>
<td>13.7</td>
<td>113.8</td>
</tr>
<tr>
<td>32</td>
<td>12.2</td>
<td>127.8</td>
</tr>
<tr>
<td>38</td>
<td>14.1</td>
<td>110.6</td>
</tr>
<tr>
<td>44</td>
<td>13.3</td>
<td>117.3</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td>118.4</td>
</tr>
</tbody>
</table>

TABLE III
Renaturation rate constants of chloroplast DNA at different molecular weights

The renaturation rate constant of ct-DNA was found to be independent of the concentration of DNA used. For example, the k_z value obtained at 12 μg per ml was found to be 12.4 $\text{mole}^{-1} \text{s}^{-1}$, and at 44 μg per ml it was found to be 13.3 $\text{mole}^{-1} \text{s}^{-1}$ (Table II). The rate of renaturation of ct-DNA was dependent on the single-stranded molecular weight of DNA and exhibited the square root relationship between the second order rate constant and the molecular weight (Table III).

Electron Microscopy of Chloroplast DNA—The chloroplast preparations were lysed and DNA spread as described under “Materials and Methods.” The DNA was examined in the electron microscope and was found to contain circular forms. The frequency distribution of lengths of DNA molecules is presented in Fig. 6. Thirty-seven per cent of the total DNA measured was found in the form of circles with contour lengths of 38 to 42 μ. The remaining DNA was in the form of linear molecules that ranged in sizes from 1 to 30 μ. No linear DNA molecule larger than 31 μ was found. These circular molecules could only be from chloroplasts since it has already been shown that under our experimental conditions pure ct-DNA is isolated. The nuclear fraction was not found to contain any circular molecules. The circular molecules found in the lysate cannot be of mitochondrial origin because mitochondrial DNA from pea leaves has been found to exist as circular molecules of 30 μ and a molecular weight of 70×10^6 (18). No circular molecule of this size was found in the lysed chloroplast fraction.

The ct-DNA from the DNase-treated chloroplast fraction was isolated as described under “Materials and Methods” and studied by electron microscopy. Circular molecules in such a prepara-
Figure 6. Frequency distribution of the DNA released from lysed chloroplasts. The values expressed are the percentages of the total DNA lengths measured. All of the molecules in one grid square were measured. Thirty-seven per cent of the DNA is found to be circular. ■, circles; □, linear.

Figure 7. Electron micrograph of a typical DNA molecule isolated from chloroplasts. The molecule is 38.4 μ. Bar length equals 1 μ. The arrows denote marker φX174 RF II DNA, which was isolated by the method of Rush and Warner (19).
cules of ϕX174 RF II DNA ranged in length from 1.40 to 1.54 μ. In 15 molecules the measured average contour length of ϕX174 RF II DNA was found to be 1.48 μ (S.D. ± 0.05 μ). In the same preparation et-DNA molecules ranged in contour length from 38 μ to 42 μ. The mean average length of et-DNA was found to be 39.2 μ (S.D. ± 1.1).

The et-DNA obtained after deproteinization was also spread along with ϕX174 RF II DNA. The distribution of the lengths of circular et-DNA molecules obtained under these conditions is presented in Fig. 11B. Fourteen et-DNA molecules ranged in length from 35.6 to 38.2 μ (S.D. ± 0.7 μ) compared to ϕX174 RF II DNA of 1.25 to 1.52 μ (S.D. ±0.09 μ). The et-DNA was also co-spread with circularized λ DNA. Nineteen molecules were found to range from 13.0 to 14.0 μ (S.D. ± 0.2 μ), and fourteen et-DNA molecules ranged from 37.6 to 39.6 μ (S.D. ± 0.6 μ) (Fig. 11C).

It is clear from length measurements that both et-DNA and ϕX174 RF II DNA molecules give different contour lengths when spread under different conditions. However, calculation of the ratio of lengths of et-DNA and ϕX174 RF II DNA from lysed chloroplast preparations gave a value of 26.5 and a value of 29.8 was obtained from isolated DNA. The difference in the values is only of the order of 1.1%.

The molecular weight of et-DNA has been calculated from the ratios by taking ϕX174 RF II DNA as 3.4×10^6 (28). In the lysed chloroplast preparations, et-DNA is found to be 90.0×10^6 and 91.2×10^6 in deproteinized DNA. It may be pointed out that the value obtained using isolated DNA is probably more reliable because it was easier to measure molecules in these preparations. In lysed preparations, it was harder to measure lengths accurately because these preparations often resulted in tangled molecules. However, the S.D. ± 1.1 μ in measured length showed reliability and reproducibility in measurements.

DISCUSSION

In sarcosyl-lysed chloroplasts, 37% of the DNA has been found to be in the form of circular molecules of 39 μ. These circular molecules could not be due to non-DNA links since such molecules amounted to 25% of the DNA isolated after detergent, Pronase, and chloroform-isooctyl alcohol extraction. The percentage of total DNA obtained as circular molecules should be taken as a minimal value. Our efforts are currently directed towards a much higher yield by utilizing centrifugation of lysed chloroplasts in CsCl gradients containing ethidium bromide. None of the linear molecules observed in chloroplast preparations were found to be longer than the length of the circular molecules, and therefore, we conclude that all of the et-DNA is present in the chloroplasts as circular molecules of monomer length of 37 to 39 μ. The contour length of circular et-DNA was not found to be significantly affected by the techniques of isolation as reported by Manning et al. (10). For example, the contour length of et-DNA was only 36 to 42 μ whether measured in lysed chloroplasts, isolated DNA, or DNA spread after digestion with Pronase. Lysis of pea chloroplast with 2% sodium dodecyl sulfate resulted in the breakdown of all circular molecules, whereas in the case of *E. gracilis* (10) a similar treatment gave 34% of the DNA in the form of circles. It appears lysis conditions will have to vary in different organisms to demonstrate the circularity of organelle DNA's. The et-DNA is firmly bound to the membranes of thylakoids (29), and this binding may involve specific sequences of the chloroplast genome. As these molecules are extremely large, the chemical agents to bring about detachment of DNA from the membrane would have to be as gentle as possible to maintain the stability of the circular conformation during isolation. We have come across this problem particularly with isolation of mt-DNA from pea leaves (30), where we had to work out ideal conditions of detergent, Pronase treatment, and solvent extraction for obtaining intact mt-DNA.

Three per cent of the isolated DNA has been found to exist in molecules of dimer lengths. It is difficult to decide between catenated and replicative intermediates in the molecules composed of two circles. However, circular dimers can be unambiguously identified. Fig. 9 shows such a dimer. The contour length of this molecule is found to be 86 μ. This will correspond to a molecular weight of 180×10^6 (see below) which makes it the largest circular molecule yet isolated. The possibility that such large molecules can be isolated intact provides us means to study replicative mechanisms in larger molecules.

The necessity of including an internal standard in molecular weight determinations from contour length measurements of DNA molecules has been discussed. In such experiments, variations arising out of monolayer spreading conditions cancel out, and a good agreement can be obtained in the molecular weight values reported by different investigators. For example,
the ratio of contour lengths between circularized λ DNA and ΦX174 RF II DNA is found to be 9.1 from the data of Fig. 11D. Reliable data for molecular weights can be obtained by electron microscopy using the well characterized value for ΦX174 RF II DNA. From the length ratio of 9.1, the molecular weight of λ DNA is calculated to be 31×10^6 assuming a value of 3.4×10^6 for ΦX174 RF II DNA. Strider and Warner have redetermined the molecular weight of ΦX174 RF II DNA utilizing the CsCl density gradient equilibrium centrifugation technique of Schmid and Hearst (31) and have shown that the correct value for this DNA is probably 3.2×10^6. Utilizing this value and a ratio of 9.1, the molecular weight of λ DNA is calculated to be 29.2×10^6; the value is in excellent agreement with the molecular weight of 29.6×10^6 obtained by sedimentation analysis (22). Therefore, we have used length ratios between ct-DNA and internal standards to determine the molecular weight of ct-DNA. The length ratio between ct-DNA and λ DNA has been found to be 2.85 (Fig. 7C) which yields a molecular weight of 85.5×10^6 for ct-DNA. The relative length between ct-DNA and ΦX174 RF II DNA has been found to be 28.8 (Fig. 7), which yields a molecular weight of 85.7×10^6 and 91.1×10^6 assuming corresponding values of 3.4×10^6 and 3.2×10^6 for ΦX174 RF II DNA. The mean value for the molecular weight of ct-DNA by electron microscopy is found to be 87.4×10^6.

The amount of ct-DNA in higher organisms has been reported to range from 0.5×10^{-14} g to 1.5×10^{-14} g per chloroplast (9). Using the molecular weight of 90×10^6 and the minimum value of 0.5×10^{-14} g, there might be about 30 molecules of DNA per chloroplast. This high frequency of DNA molecules is of con-

² W. S. Strider and R. C. Warner, personal communication.
Fig. 10. Electron micrograph of a molecule showing a supercoiled and an open circle. The length of the open circle is 37 μ and the length of the supercoiled circle is 38.2 μ. The arrows designate the point of crossover between the molecules. It is difficult to decide whether the molecule is a true catenane or a replicative intermediate. The possibility of this molecule being two tangled circles is unlikely because there were only four molecules per grid square in this preparation. The other large piece of DNA at the upper right-hand corner is a part of a λ DNA molecule.
agreement between the molecular weight of 91 x 10^6 obtained by electron microscopy and 94 x 10^6 obtained by kinetic considerations. Therefore, ct-DNA molecules having significantly different base sequences are unlikely. It is also apparent from renaturation rates that no repeating sequences are present in the ct-DNA.

Ct-DNA from E. gracilis has almost the same molecular size as that found in pea leaves even though they are 750 x 10^6 years apart on the evolution scale. Does this mean that chloroplasts from all members of Chlorophyta would have DNA of the same molecular size and conformation? The available data indicate that this is probably the case. Ct-DNA has been studied for its size in only four other organisms (lettuce, tobacco, E. gracilis, and Chlamydomonas). Lettuce ct-DNA was found to be of the order of 120 x 10^6 daltons, using 130 x 10^6 daltons for T4 DNA as a standard. This number reduces to a value of 98 x 10^6, calculated from a revised value of 106 x 10^6 daltons for T4 DNA. Tobacco ct-DNA was similarly calculated and will have to be reduced to 93 x 10^6. Chlamydomonas ct-DNA was analyzed only for its kinetic complexity which was found to be 194 x 10^6. T4 DNA similarly studied gave a kinetic complexity of 207 x 10^6. Thus, the real molecular weight of ct-DNA from Chlamydomonas is around 99 x 10^6. Therefore, the ct-DNA's studied so far show molecular weights of around 90 x 10^6. In addition, we have recently studied ct-DNA from spinach, lettuce, and bean and found it to contain circles (32) of the same size as those present in pea leaves.

The ct-DNA of molecular weight 90 x 10^6 is the largest organelle DNA compared to 10 x 10^6 for animal mt-DNA and 70 x 10^6 for plant mt-DNA. This DNA consists of unique base sequences and within limits of analytical tools, inter- and intramolecular base compositional heterogeneity does not exist between ct-DNA molecules inside of a chloroplast. A maximum of 5% of this DNA is utilized for formation of RNA's (33). The rest of the DNA is available for protein synthesis. The extent and mechanism of genetic information contributed by ct-DNA is presently under intensive study.

Acknowledgments—The authors are thankful to Dr. R. C. Warner for providing helpful discussions and for the liberal use of his research facilities. We are especially thankful to Dr. C. N. Gordon for teaching us the protein-monolayer technique. The excellent technical assistance of Mr. K. Evans and Juta Kietl is gratefully acknowledged.

REFERENCES

Molecular Size and Conformation of Chloroplast Deoxyribonucleic Acid from Pea Leaves
Richard Kolodner and K. K. Tewari

Access the most updated version of this article at http://www.jbc.org/content/247/19/6355

Alerts:
• When this article is cited
 • When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/247/19/6355.full.html#ref-list-1