Binding Properties of the Human Complement Protein Clq*

(Received for publication, September 25, 1972)

CARLOS R. SLEDGE† AND DAVID H. BING§

From the Department of Microbiology and Public Health, Michigan State University, East Lansing, Michigan, 48823

SUMMARY

The interaction between human Clq and immunoglobulins was measured quantitatively by determining the ability of IgG, IgM, and (Fc)± to inhibit the binding of 125I-labeled Clq to IgM covalently linked to cyanogen bromide activated Sepharose. The following inhibition constants were determined: $K_i$ for IgM = $6.42 \times 10^{-4}$ M; $K_i$ for (Fc)± = $4.35 \times 10^{-4}$ M; and $K_i$ for IgG = $1.10 \times 10^{-4}$ M. The heat aggregation of IgM and IgG increased the ability of these proteins to bind 125I-labeled Clq, but had no significant effect on the binding properties of (Fc)±. The binding between the 125I-labeled Clq and the IgM-Sepharose complex was inhabitable with aromatic and alky diamino compounds. The most potent inhibitor was 2,5-diaminotoluene.

The binding of the human complement protein Clq to immunoglobulins is the initiating event in the complement sequence. Previous studies have demonstrated that Clq binds to IgM and IgG, and the binding site is located in the Fc region of the immunoglobulins (1-4).

We were interested in measuring quantitatively the binding of IgM and IgG by Clq, and in analyzing various small molecular weight compounds for their ability to inhibit the interaction. We found that these phenomena could be studied by using a system in which one of the components, IgM, was insolubilized by covalently coupling to cyanogen bromide activated Sepharose. It was then possible to measure the binding of 125I-labeled Clq to this complex, and to inhibit the binding using monomeric and aggregated IgM, IgG, and (Fc)±. Inhibition constants and relative free energy changes were calculated for the interaction of Clq with monomeric IgM, IgG, and (Fc)±. With this system it was also possible to study the inhibition of Clq-immunoglobulin interaction by various small molecular weight diamino compounds. The ability of the diamines to inhibit the binding appears to be related to the aromatic and alky nature of the compounds.

EXPERIMENTAL PROCEDURE

**Protien Preparations**—Human Clq was purified according to the procedure of Sledge and Bing (5). Human IgG was isolated from pooled human serum by chromatography on DEAE-cellulose (6) and by precipitation with (NH₄)₂SO₄ at 40% saturation (w/v). Human Waldenstrom macroglobulin was kindly supplied by Dr. Poulik, Beaumont Hospital, Detroit, Michigan, and was purified by anion exchange chromatography (7) and ultracentrifugation in a 10 to 40% sucrose gradient. The (Fc)± fragment of IgM was prepared according to the method of Sledg and Bing (5). Human IgG was isolated from pooled human serum by chromatography on DEAE-cellulose (6) and by precipitation with (NH₄)₂SO₄ at 40% saturation (w/v). Human Waldenstrom macroglobulin was kindly supplied by Dr. Poulik, Beaumont Hospital, Detroit, Michigan, and was purified by anion exchange chromatography (7) and ultracentrifugation in a 10 to 40% sucrose gradient. The (Fc)± fragment of IgM was prepared according to the method of Sledge and Bing (5).

Heat aggregation of proteins was performed at 60°C for 10 min in phosphate buffered saline (1). Protein concentrations were determined according to the procedure of Lowry et al. (9).

**Sucrose Gradient Ultracentrifugation**—Ultracentrifugation was conducted in a SW-27 rotor with a Beckman L2-65B ultracentrifuge. The sample was layered on a linear 10 to 40% (w/v) sucrose gradient buffered with 0.15 ionic strength Tris-HCl, pH 8.1, and centrifuged for 15 hours at 27,000 rpm. Fifty drop fractions were collected.

**Organic Compounds**—Ethylendiamine was purchased from Eastman Kodak Co., and 1,4-diaminobutane from K and K Laboratories, 3,7-diaminoheptane, 1,8-diaminoctane, 1,10-diaminodecane, 1,12-diaminododecane, 1,4-diaminopiperazine dihydrate, 3,5-diamino-1,2,4-triazole, and 2,5-diaminotoluene dihydrochloride were obtained from Aldrich Chemical Co. The following compounds were recrystallized as the hydrochloride salt: 1,7-diaminohexane, m.p. 262°C (m.p. 250°C lit. (10)); 1,8-diaminooctane, m.p. 275-277°C (m.p. 274°C lit. (10)); 1,10-diaminodecane, m.p. 294°C (m.p. 288-289°C lit. (10)); 1,12-diaminododecane, m.p. > 300°C. The 2,5-diaminotoluene di-

* The work was supported by United States Public Health Service Training Grant GM-09111-04, Research Grant I-RO1-AM-13679-04, and by a grant from the Elsa U. Pardee Foundation, Service Training Grant GM-01911-04, Research Grant 1-RO1-AM-13679-04, by a grant from the Elsa U. Pardee Foundation, Service Training Grant GM-01911-04, Research Grant 1-RO1-AM-13679-04, and by a grant from the Elsa U. Pardee Foundation.

† Present address, Division of Biology, California Institute of Technology, Pasadena, CA 91109.

‡ Recipient of Research Career Development Award I-K04-AMF034i.10-ALY, to whom reprint requests should be sent.

§ Termination for the complement system is conventional (1968) World Health Organ. Bull. 39, 935. Thus, Cl± designates the activated form of CI, the first component of complement. The subunit of Cl± are Clq, Clr, and Cls. The terminology for the immunoglobulins is that described in (1964) World Health Organ. Bull. 30, 447.

IgG is immunoglobulin with y heavy chains; IgM is the immunoglobulin with p heavy chains; (Fc)± is the Fc fragment of the intact IgM.
hydrochloride, m.p. 300°, and the 3,5-diamino-1,2,4-triazole, m.p. 209° (m.p. 206° lit. (10)) were recrystallized five times from ethanol. Thin layer chromatography (butanol-acetic acid-water, 120:30:50 v/v/v) was performed on all compounds. The compounds were prepared at a final concentration of 10⁻³ m in 0.075 ionic strength Tris-HCl, pH 8.1. 1,4-[¹⁴C]Diaminobutane dichloride was obtained from Amersham-Searle Corp. This was diluted with unlabelled 1,4-diaminobutane to yield a specific activity of 50 μCi per mgmmole.

Preparation of IgM Sepharose Resin—The coupling of IgM to Sepharose was performed according to the procedure of Cuatrecasas (11). Fifteen milligrams of settled Sepharose 4-B were mixed with 4.0 g of cyanogen bromide dissolved in 15 ml of H₂O and the pH maintained at 11 by addition of 4 x NaOH for 15 min or until the pH remained constant. The cyanogen bromide activated Sepharose was then reacted with 168 mg of IgM for 36 hours at 4° in 0.1 m sodium phosphate buffer (pH 7.0). The macroglobulin-Sepharose resin was washed extensively with 0.015 ionic strength Tris-HCl, pH 8.1. The absorbance at 250 nm of the wash was determined, and using a $E_{1%}^{1%}$ for 1.2 for IgM, the amount of IgM bound to the resin was calculated. A more analytical determination of the amount of IgM bound to the resin involved the analysis of 1 ml of lyophilized resin for protein using a modified ninhydrin procedure (12).

Induction of Clq—Clq was iodinated with Na¹²⁵I (New England Nuclear) according to the method of Helminkamp et al. (13), and had a specific activity of 1.1 x 10⁶ cpm per mg.

Binding Assays—The binding of ¹²⁵I-labeled Clq to the macroglobulin-Sepharose resin was assayed using the following procedure: 0.2 ml of macroglobulin resin was pipetted from a stock solution, which was kept continually stirring to maintain the homogeneity, into a test tube containing 0.1 ml of an appropriate dilution of ¹²⁵I-labeled Clq. The mixture was incubated for 30 min with continual shaking in a water bath maintained at 37° ± 0.1°. The entire sample was then transferred to a suction filter apparatus and filtered on Whatman No. 1 filter paper. The sample test tube was rinsed three to four times with a total of 1.5 ml of buffer. Finally, the resin trapped on the filter paper was washed with 1.5 ml of buffer to remove residual unbound ¹²⁵I-labeled Clq. Pilot binding experiments were conducted with incubation times of 15 min at 37°. Extended incubation periods up to 1 hour did not result in any increase in binding ¹²⁵I-labeled Clq, and thus for technical convenience 30 min was chosen as the time of incubation in all binding experiments. The resin and filter paper were counted in a Packard Gamma Liquid Scintillation Counter. A control containing an equal amount of cyanogen bromide activated Sepharose was included as a blank. All assays were done in triplicate and the values averaged. The variation between identically treated samples ranged from 4.6 to 6.3%. The buffer used for the assay was 0.075 ionic strength Tris-HCl, pH 8.1 containing 3 mg per ml of bovine serum albumin to minimize nonspecific binding. Control studies indicated that the washes did not detectably alter the binding of ¹²⁵I-labeled Clq to the resin, but did decrease approximately 75% the nonspecific binding of iodinated Clq to the filter paper. The amount of ¹²⁵I-labeled Clq bound was expressed as the difference between the blank and the experimental values. The following equation describes the interaction between ¹²⁵I-labeled Clq and macroglobulin:

$$\frac{1}{[\text{Clq}]} = \frac{1}{[\text{Clq}]}_I \times \frac{K_d}{[\text{IgM}]} + \frac{1}{[\text{IgM}]}$$

where [Clq]ᵢ = bound Clq, [Clq]ᵢ = free Clq, [IgM] = total number of IgM sites available for binding, and $K_d$ = dissociation constant of the complex (14).² Plots of (cpm experimental tubes - cpm control tubes) versus (free Clq)⁻¹ were linear and the intercepts at the abscissa and ordinate represent $K_d$⁻¹ and [total IgM sites]⁻¹ respectively.

Inhibition of the binding of ¹²⁵I-labeled Clq to the macroglobulin-Sepharose resin by IgG, IgM (Fc), and the heat-aggregated forms of these proteins was studied by incubating various concentrations of the proteins with a constant amount of ¹²⁵I-labeled Clq for 30 min at 37°. IgM-Sepharose resin (0.2 ml) was added to the mixture and incubation proceeded at 37° for 30 min. The sample was then filtered and counted. The following two tubes were included as controls: (a) ¹²⁵I-labeled Clq plus 0.2 ml of cyanoogen bromide activated Sepharose (blank); and (b) ¹²⁵I-labeled Clq plus 0.2 ml of IgM-Sepharose. The amount of ¹²⁵I Clq bound was obtained by subtracting the counts per min in the blank tube (a) from the counts per min in the control (b) and the experimental tubes. Assigning a 100% bound value to control (b) the percent inhibition values were calculated according to the equation:

$$\% \text{Inhibition} = \left(1 - \frac{\text{cpm experimental tubes}}{\text{cpm control tubes}}\right) \times 100$$

Inhibition studies with the various small molecular weight amino compounds were conducted according to the same procedure that was employed for the proteins.

Binding of ¹⁴C-Clq to Clq—Various dilutions (0.2 ml) of ¹⁴C-diaminobutane were added to 0.2 ml of either 2.0 x 10⁻⁶ m Clq or 2.0 x 10⁻⁶ m IgM and the mixture incubated at 37° for 30 min. Control tubes containing only 1,4-diaminobutane were included in all assays. Following incubation the samples were treated with 50% saturated (NH₄)₂SO₄ to precipitate the protein, and centrifuged at 2000 rpm for 30 min. The supernatant fractions were removed and 0.2 ml placed on Whatman filter paper and allowed to dry in a hot air oven. The scintillation fluid was composed of 4 g of 2,5-di-phenylxazolone and 50 mg of 1,4-bis-[2-(5-phenylxazolyl)]benzene in 1 liter of toluene. Ten milliliters of scintillation fluid was added to each sample and the vials counted in a Packard Tri-Carb Liquid Scintillation Counter.

RESULTS

Binding of ¹²⁵I-labeled Clq to IgM-Sepharose Resin—The amount of macroglobulin bound to the Sepharose resin was determined by two separate procedures and the values agreed quite well. Based on the amount of protein present in the wash from the resin it was calculated that 5.2 mg of IgM had been coupled per ml of Sepharose. Analysis of the resin using the modified ninhydrin procedure yielded a value of 5.9 mg of IgM per ml of resin.

The results of two separate experiments on the interaction of ¹²⁵I-labeled Clq with the IgM resin are illustrated in Fig. 1. The agreement between the two sets of data is good and dissociation constants were determined to be 8.69 x 10⁻⁵ M and 7.04 x 10⁻⁷ M.

Inhibition of Binding of ¹²⁵I-labeled Clq to IgM-Sepharose Resin by Immunoglobulins—Due to the fact that the IgM-Sepharose resin was not characterizable in terms of the molecular form of IgM present on the resin, it was decided not to assume that the binding properties of the macroglobulin-Sepharose complex were wholly characteristic of IgM. Instead, the ability

²The $K_d$ values may not represent a true $K_d$ since the resin was washed and the system cannot be treated as an equilibrium one.
of known molecular forms of IgM, (Fc)_\mu, and IgG to inhibit the binding of 125I-labeled C1q to the IgM-Sepharose complex was determined and used as a quantitative measure of the interaction between C1q and immunoglobulins. The sedimentation properties of the monomeric proteins used in these experiments were determined in a sucrose density gradient and IgM, (Fc)_\mu, and IgG exhibited sedimentation coefficients of 19 S, 11 S, and 7 S, respectively, when compared to known standards (Fig. 2).

The ability of IgM, (Fc)_\mu, and IgG to inhibit the binding of 125I-labeled C1q to the IgM-Sepharose complex is shown in Fig. 3. Both IgM and (Fc)_\mu were quite effective in binding the radiolabeled C1q and thereby inhibiting its binding to the IgM resin. The (Fc)_\mu, however, was slightly more effective on a molar basis as a binding agent than the IgM. IgG was capable of interacting with the 125I-labeled C1q, but it was a much poorer binding agent than either IgM or (Fc)_\mu. When various concentrations of bovine serum albumin were substituted for the immunoglobulins in the inhibition assay, no inhibition was detected. This strongly suggested that the inhibition exhibited by the immunoglobulins was not due to nonspecific protein-protein interactions.

Inhibition constants (K_i) were determined according to Dixon and Webb (15) using a previously determined 1/[IgM]. The ΔF' was calculated using the relationship ΔF' = -RT ln K_i. Inhibition constants were calculated for IgG, IgM, and (Fc)_\mu, respectively (Table I). The ΔF' values ranged from 5.60 Cal per mole for IgG to 7.60 Cal per mole for (Fc)_\mu.

Heat-aggregated IgM, (Fc)_\mu, and IgG were also tested for their ability to bind the radiolabeled C1q (Fig. 4). The heat aggregated IgG was a considerably more effective binding agent than the monomeric protein. Heat aggregation of IgM also increased its ability to bind C1q, however, heat treatment of (Fc)_\mu did not considerably alter its binding affinity for C1q.

Inhibition of Binding of 125I-labeled C1q to IgM-Sepharose Resin by Small Molecular Weight Amino Compounds—Previous studies had demonstrated that 1,4-diaminobutane was capable of inhibiting the binding of both macromolecular C1 and C1q (5, 16) to \gamma globulin. To investigate the nature of this inhibition more carefully it was decided to determine with which of the two

![Fig. 2. Sucrose gradient (10 to 40%) ultracentrifugation of IgM, (Fc)_\mu, and IgG. Ultracentrifugation was conducted under the conditions described under "Experimental Procedures." IgM, ▲; (Fc)_\mu, ■; IgG, ●. Arrows indicate the sedimentation behavior of the marker proteins 7 S IgG, and 19 S IgM. The fractions (1.0 ml) were analyzed in a Hitachi-Coleman 101 spectrophotometer for their absorbance at 280 nm. The fraction number is plotted on the abscissa, and the A280 nm is represented on the ordinate.](http://www.jbc.org/issue/262/47/2520/suppl/fig2)

![Fig. 3. The inhibition of the binding of 125I-labeled C1q to the IgM-Sepharose complex by IgM, (Fc)_\mu, IgG, and bovine serum albumin. The methods described under "Experimental Procedures" were used for the assay and the determination of percent inhibition of binding. IgM, ■; (Fc)_\mu, ●; IgG, ▲; bovine serum albumin, O.](http://www.jbc.org/issue/262/47/2520/suppl/fig3)
TABLE I

Inhibition constants (K_i) and relative free energy values (ΔF') for IgG, IgM, and (Fc)μ.

The K_i and ΔF' values were calculated according to the procedures described under "Experimental Procedures."

<table>
<thead>
<tr>
<th>Protein</th>
<th>K_i (M)</th>
<th>ΔF' (Cal/mole)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IgG</td>
<td>1.10 × 10^{-4}</td>
<td>5.60</td>
</tr>
<tr>
<td>IgM</td>
<td>6.42 × 10^{-6}</td>
<td>7.35</td>
</tr>
<tr>
<td>(Fc)μ</td>
<td>4.35 × 10^{-6}</td>
<td>7.60</td>
</tr>
</tbody>
</table>

Fig. 4. The inhibition of the binding of 125I-labeled Clq to the IgM-Sepharose complex by monomeric and heat treated IgM, (Fc)μ, and IgG. The heat treatment of the proteins and the assays were carried out as described under "Experimental Procedures." IgG, A; heat-treated IgG, B; IgM, C; heat-treated IgM, D; (Fc)μ, E; heat-treated (Fc)μ, F. All proteins were analyzed for inhibition at a concentration of 2 mg per ml.

proteins the 1,4-diaminobutane was interacting. A series of experiments were conducted in which 1,4-[4-C]diaminobutane was allowed to interact directly with either Clq or IgM. The amount of labeled 1,4-diaminobutane bound to these proteins was determined by precipitating the complex with 50% saturated (NH4)2SO₄. The results (Fig. 5) showed that Clq was capable of binding the 1,4-[4-C]diaminobutane, whereas the same molar concentration of IgM was unable to bind the amine. However, the binding of the amine to Clq could be inhibited by the preincubation of IgM (2.0 × 10^{-6} M) with Clq (2.0 × 10^{-6} M).

A set of experiments were performed to measure the inhibitory effect of various diaminoalkyl compounds on the binding of 125I-labeled Clq to the IgM-Sepharose resin. Of the diaminoalkyl compounds tested those having 8, 10, and 12 carbons are the most effective inhibitors of binding (Fig. 6). At a concentration of 10^{-5} M their inhibiting capacities are approximately equal, however, the 1,12-diaminododecane was a much better inhibitor at a concentration of 10^{-3} M. The inhibition observed with 1,4-diaminobutane and 1,7-diaminooctane at 10^{-2} M was similar, while ethylenediamine was the poorest of the alkyl amines in inhibiting the binding.

The relative abilities of 3,5-diamino-1,2,4-triazole, 2,5-diaminotoluene, and 1,4-dimaminopiperazine to inhibit the binding of 125I-labeled Clq to the IgM resin are shown in Fig. 7. The most effective inhibitor compound tested was 2,5-diaminotoluene. At a concentration of 10^{-2} M it inhibited 75% of the binding, while 3,5-diamino-1,2,4-triazole and 1,4-dimaminopiperazine inhibited the binding by 41% and 30.5%, respectively.

**DISCUSSION**

The purpose of the present study has been to obtain quantitative data on the interaction between immunoglobulins and Clq, and to analyze the ability of various amines to inhibit this
this has been used to determine the relative capacity of Clq to bind to known molecular forms of immunoglobulins.

The inhibition constants determined for IgM ($K_i = 6.42 \times 10^{-4}$) and for IgG ($1.10 \times 10^{-4}$) clearly demonstrate that the IgM molecule is more effective in binding Clq. This difference is a direct reflection of the number of sites on the molecules capable of binding Clq. Since Clq binding to immunoglobulins is via the Fe portion of the molecule (3), the arrangement of the five Fe regions within IgM must provide a more suitable binding site for Clq than the one Fe position contained in IgG. The ($Fe\mu$) ($K_i = 4.35 \times 10^{-4}$) was observed to be slightly more effective in binding Clq than the parent IgM molecule. This finding agrees with a recent report by Plaut et al. (17), and suggests that the Clq binding sites in the native IgM molecule are not totally exposed.

Heat aggregation of IgM and IgG increased the capacity of these immunoglobulins to bind Clq, and the most significant change occurred with the IgG. The heat treatment probably increased the proximity of the Fe regions in the molecule, thus making conditions more favorable for binding Clq. Heat aggregation of immunoglobulins under these conditions has previously been shown to affect only the Fab regions (18). This observation is relevant to the present study since the heat treatment of ($Fe\mu$) did not alter its binding properties.

The results obtained in the present study agree well with the findings of Augener et al. (1). These investigators used a complement fixation test to assay the ability of various immunoglobulins to bind whole Cl, and showed that on a weight basis monomeric IgM was approximately 20 times more effective at binding Cl than monomeric IgG. The heat aggregated forms of these immunoglobulins were comparable in complement binding efficiency.

The finding that 1,4-[14C]diaminobutane interacts directly with Clq and inhibits its binding to macroglobulin is of considerable interest. This explains the inhibition phenomenon with 1,4-diaminobutane observed by other investigators (5, 16, 19), and provides a basis for studying other diamine compounds. The fact that the binding is exponential (Fig. 5) indicates there is no discrete binding site on Clq for 1,4-diaminobutane. This suggests that its inhibition of Clq-IgM interaction is mediated by the titration of anionic groups on the Clq binding site.

The finding that 1,4-[14C]diaminobutane interacts directly with Clq and inhibits its binding to macroglobulin is of considerable interest. This explains the inhibition phenomenon with 1,4-diaminobutane observed by other investigators (5, 16, 19), and provides a basis for studying other diamine compounds. The fact that the binding is exponential (Fig. 5) indicates there is no discrete binding site on Clq for 1,4-diaminobutane. This suggests that its inhibition of Clq-IgM interaction is mediated by the titration of anionic groups on the Clq binding site.

The chemical fixation of IgM to Sepharose apparently does block many of the complement binding sites on the molecule. It should be recalled that cyanogen bromide coupling to Sepharose is via free amino groups on the molecule being attached. Other studies have indicated that free e amino groups on the immunoglobulin molecule are important in the interaction with Cl (16). To avoid preferential coupling via the e amino groups on IgM, the coupling reaction was done at pH 7.0 (11). In spite of the precautions, we have calculated that approximately 10% of the IgM attached to the resin is available for binding (Fig. 1, Experiment A). However, this calculation is a lower estimate since it is based on a Clq:IgM molar ratio of 1:1 at saturating conditions of Clq, and one other investigator has determined that for some macroglobulins the ratio is 0.3:1 (2). On the other hand, it can be speculated that the molecular nature of the resin may resemble an antigen-antibody complex, and thus provides a highly efficient Clq binding site. The important factor is that the complex exhibits a specific affinity for Clq and
tant in determining which immunoglobulin is the most effective. Ishizaka et al. (21) have shown that the binding of Cl by IgG-particulate antigen complexes is less effective than IgM-particulate antigen complexes. This situation, however, is reversed when a soluble antigen is employed.

REFERENCES
Binding Properties of the Human Complement Protein Clq
Carlos R. Sledge and David H. Bing


Access the most updated version of this article at http://www.jbc.org/content/248/8/2818

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/248/8/2818.full.html#ref-list-1