Nucleoside Diphosphokinase of *Salmonella typhimurium*

(Received for publication, October 29, 1973)

CHARLES L. GINTHER AND JOHN L. INGRAHAM

From the Department of Bacteriology, University of California, Davis, California 95616

SUMMARY

Nucleoside diphosphokinase from *Salmonella typhimurium* has been purified and characterized. In many respects, the enzyme is similar to those from higher organisms in that it has a broad specificity for both phosphate donor and recipient and that it functions via a ping-pong mechanism. The enzyme activity of cells is very high at all growth rates but decreases as growth rate increases. Evidence is presented that nucleoside diphosphokinase is sufficient to account for the synthesis of all nucleoside triphosphates required for the polymerization of nucleic acids and that it is probably the only enzyme that catalyzes the synthesis of triphosphates from diphosphates and the γ-phosphate of ATP.

Nucleoside triphosphates, the direct precursors of nucleic acids, are synthesized from the corresponding diphosphates by a reaction catalyzed by nucleoside diphosphokinase (ATP: nucleoside diphosphate phosphotransferase EC 2.7.4.6) according to the following reaction:

\[
\text{Nucleoside, triphosphate} + \text{nucleoside, diphosphate} \rightarrow \text{nucleoside, diphosphate} + \text{nucleoside, triphosphate.}
\]

Although nucleoside diphosphokinase is well studied in eucaryotes including yeast (1–5), pea seeds (6), artichokes (7), several beef tissues (8–16), pig tissues (17), and human erythrocytes (18–20), the enzyme from procaryotes has received little attention. Only *Bacillus subtilis* (21) has been examined, and although it is known that *Escherichia coli* contains nucleoside diphosphokinase (22), there are no detailed studies on nucleoside diphosphokinase from enteric bacteria. Because the pathways of biosynthesis of nucleosides and nucleotides and their interconversion are best understood in enteric bacteria (23–25), and the genetic tools necessary for an analysis of nucleoside diphosphokinase are also available with these organisms, an investigation of nucleoside diphosphokinase from *Salmonella typhimurium* was undertaken.

MATERIALS AND METHODS

Media

Basal salts medium 007 (26) was used with glucose (0.2%), or sodium succinate (0.2%) added as carbon source. Casamino Acids-supplemented media contained 0.15% Norit-treated vitamin-free casein hydrolysate (Nutritional Biochemical Corp.). Other supplements, when added, were at the following concentrations: amino acids, 50 μg per ml; nucleic acid bases, 10 μg per ml; vitamins, 1 μg per ml. L broth contained per liter at pH 7.0: tryptone (Difco), 10 g; yeast extract (Difco), 5 g; NaCl, 10 g; with medium methanol for y-amino, diph and diphosphate.

Liquid cultures of less than 2 liters were incubated at 37° on a rotary shaker. Larger batches were sparged with air at 37°.

Buffers

Two buffers were used. Triethanolamine buffer (Buffer A) contained 100 mM triethanolamine-HCl (pH 8.0), 1 mM MgCl₂, and 2 mM mercaptoethanol; Tris buffer (Buffer B) contained 100 mM Tris-HCl (pH 7.8), 10 mM MgCl₂, and 2 mM mercaptoethanol.

Nucleoside Diphosphokinase Assays

Two methods were used: one employing [2-14C]UDP and another employing [γ-32P]ATP.

In the 14C assay the reaction mixture contained in 40 μl of Buffer A: 6.5 mM ATP, 1 mM UDP, 20 to 50 nCi of [2-14C]UDP, and enzyme. Reactions were initiated by the addition of enzyme, incubated at 20° for 10 min or 37° for 3 min, and stopped by applying 25 μl of the reaction mixture to polyethyleneimine-Avicel cellulose thin layer plates which were prepared by the method of Randerath (27), but substituting 32 g of Avicel-PH.105 for the 22 g of NM 300 cellulose powder. The applied spots were dried immediately and the plates were developed in: (a) a mixture of 4 M sodium formate and 22 g of NM 300 cellulose powder; (b) a mixture of 4 M sodium formate and 22 g of NM 300 cellulose powder. Following drying with hot air, the plates were placed against x-ray film (Kodak Royal Blue) for 8 to 18 hours. The developed radioautograms were used to locate the position of [2-14C]UTP and UDP. These areas were cut from the chromatograms, placed in 7 ml of Bray’s solution (28), and counted in a Nuclear Chicago scintillation spectrometer.

The 32P assay contained in 40 μl of Buffer A: 1 mM nucleoside diphosphate, 6.25 mM ATP, 0.45 μCi of [γ-32P]ATP, and enzyme. Reactions were started by the addition of enzyme, incubated at 20° for 10 min and stopped by applying 25 μl of polyethyleneimine-Avicel plates with drying by hot air. The plates were washed with absolute methanol for 20 min, dried, and developed successively in: (a) 10% trichloroacetic acid in methanol; and (b) 0.5% potassium hydroxide (pH 3.4) to 15 cm above the origin (29). Radioautography and counting was done as in the 14C assay except that exposure was only 4 to 8 hours.

Other Assays

Uridine monophosphokinase was assayed at 20° by the method of Ingraham and Neuhard (30), and protein by the method of Lowry et al. (31).

Specific Activities

Unless noted, all specific activities were calculated from the linear portion of plots relating enzyme activity to protein concentration.
Enzymatic Synthesis of [γ-32P]ATP

A method based on that of Glynn and Chappell (32) was used. The reaction mixture contained in 1 ml of Buffer A: 2 mM ATP, 2.5 mM 3-phosphoglycerate, 220 μg of rabbit muscle glyceraldehyde dehydrogenase (Sigma Chemical Co.), 6 mCi of [32P]orthophosphate, and 30 μg of yeast 3-phosphoglycerate phosphokinase (Sigma Chemical Co., type IV). After 25 min at 20°, 84% of the 32P was transferred to [γ-32P]ATP (1.4 × 10⁶ cpm per μmole). Just before use, the [γ-32P]ATP was purified by chromatography on polyethyleneimine-Avicol thin layer plates with 2 mM sodium formate (pH 3.4) for 5 cm above the origin followed by 4 mM sodium formate (pH 3.4) for an additional 8 cm. The areas containing [γ-32P]ATP were cut from the plates and suspended in 0.1 to 0.5 ml of Buffer B.

Preparation of Crude Extracts

For kinase assays the frozen cells were resuspended in Buffer A, suspended in 4 × 20 ml at 0° using a Biosonic II oscillator at 90% max., and centrifuged for 20 min at 15,000 × g. The supernatant fluids were treated in 2% streptomycin sulfate at 0° for 20 min, centrifuged at 15,000 × g for 10 min, and dialyzed against two changes of 50 volumes of buffer.

Purification of Nucleoside Diphosphokinase from Salmonella typhimurium

Step 1: Growth of Cells and Preparation of Extracts—A total of 77 g (wet weight) of S. typhimurium J3/86 (pale) was harvested from 40 liters of Casamino acid-supplemented basal-glucose medium, washed in 200 ml of 0.9% NaCl, resuspended in Buffer B, sonicated in 50-ml portions for 10 × 30 s, and clarified by centrifugation at 15,000 × g for 10 min.

Step 2: Calcium Phosphate—Four 80- to 100-ml portions of 2% aged calcium phosphate (Calbiochem) in Buffer B were added successively to the crude extract, stirred at 0° for 30 min, and centrifuged at 5000 × g for 10 min.

Step 8: Ammonium Sulfate—Protein in the supernatant fluid from the calcium phosphate treatment was fractionated by ammonium sulfate precipitation; the 40 to 60% saturation fractions were pooled, dissolved in Buffer B, and dialyzed for 5 hours against 20 volumes of the same buffer.

Step 4: DEAE-cellulose Chromatography—The dialyzed solution from Step 3 was applied to a DEAE-cellulose column (2.5 × 40 cm) equilibrated with Buffer B. Activity was eluted with a concave gradient of 0 to 0.275 M KCl in Buffer B at a flow rate of 18 ml per hour. The fractions from the column (4.8 ml) were assayed, and those containing significant nucleoside diphosphokinase activity (those fractions eluting between 0.25 to 0.27 M KCl) were pooled.

Step 5: Ammonium Sulfate—The pooled fractions from Step 4 were again fractionated by ammonium sulfate. The protein that precipitated between 50 and 85% saturation was dissolved in 2 ml of Buffer B.

Step 6: DEAE-Sephadex—The concentrated protein solution was applied to a Sephadex G-200 column (1.6 × 100 cm) and eluted with Buffer B. The elution volume for nucleoside diphosphokinase was 112 ml.

Step 7: DEAE-Sephadex—The pooled active fractions were applied to a DEAE-Sephadex column (2.6 × 25 cm) and eluted with a concave gradient of 0 to 0.275 M KCl in Buffer B. The peak of activity eluted at 0.23 M KCl.

RESULTS

Effect of Growth Rate on Cellular Content of Nucleoside Diphosphokinase— Cultures of S. typhimurium were grown in media supporting growth at various rates, and assayed for their content of nucleoside diphosphokinase and UMP kinase (Table I). As growth rate increases the specific activity of UMP kinase remains approximately constant, but surprisingly the specific activity of nucleoside diphosphokinase decreases. This occurs in spite of the fact that the cellular requirements for the products of the enzyme are increased.

Purification of Nucleoside Diphosphokinase—The scheme of purification of nucleoside diphosphokinase resulting in a 686-fold increase in specific activity is summarized in Table II. The purified enzyme can be held at −20° for at least 2 months without detectable loss of activity, but at higher temperatures it is quite unstable. At 25° the half-life in the absence of substrates is only 30 min.

Properties of Purified Enzyme—The addition of mercaptoethanol stabilized the enzyme, suggesting that a thiol group is required for maximal activity. Treatment with p-chloromercuribenzoate rapidly and reversibly inactivates the enzyme, and ATP, ADP, and AMP increase the sensitivity to inactivation (Table III). Taken together these data indicate that a thiol group is required for nucleoside diphosphokinase activity.

Nucleoside diphosphokinase has a broad pH optimum being essentially equally active between pH 6.5 and 9.0; we selected pH 8.0 for subsequent assays.
Table III

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Nucleoside diphosphokinase activity remaining (μmoles/mg/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>1660</td>
</tr>
<tr>
<td>5 mm mercaptoethanol</td>
<td>2150</td>
</tr>
<tr>
<td>0.1 mm PMS</td>
<td>200</td>
</tr>
<tr>
<td>5 mm ATP + 0.1 mm PMS</td>
<td>1660</td>
</tr>
<tr>
<td>5 mm ADP + 0.1 mm PMS</td>
<td>640</td>
</tr>
<tr>
<td>5 mm AMP + 0.1 mm PMS</td>
<td>860</td>
</tr>
<tr>
<td>5 mm mercaptoethanol + 0.1 mm PMS</td>
<td>1030</td>
</tr>
</tbody>
</table>

* p-Chloromercurisulfonate.

Fig. 1. Relationship between ionic weight of certain proteins of known molecular weight (○) and their molecular weight. The K_v for nucleoside diphosphokinase (+) is located on the curve as an estimate of its molecular weight. Purified nucleoside diphosphokinase (3 ml containing 0.02 mg at specific activity of 2500 μmoles/min per mg of protein) was added to a Sephadex G-200 column (16 X 95 cm) along with the following standards: ribonuclease (10 mg), chymotrypsinogen A (5 mg), ovalbumin (10 mg), aldolase (10 mg), and blue dextran (5 mg). Samples of eluate (2 ml) were assayed for nucleoside diphosphokinase activity and absorbance was measured at 280 nm. The values of K_v, were calculated from the formula: K_v = (V_e - V₀)/(V_e - V_t) where V_e is the volume of eluate necessary to remove the enzyme, V_t is the void volume, and V_t is the total column volume.

Determination of K_v values of nucleoside diphosphokinase and various known proteins on a Sephadex G-200 column (Fig. 1) indicates the molecular weight of the enzyme is approximately 85,000. This value is slightly smaller than that reported for nucleoside diphosphokinase from other sources; molecular weights of the enzyme from yeast (2), B. subtilis (21), and human erythrocytes (33) have been reported to be about 100,000.

Specificity of Nucleoside Diphosphokinase for Diphosphates—

Crude and purified preparations of nucleoside diphosphokinase were tested for their ability to convert various nucleoside diphosphates to their corresponding triphosphates using ATP as a phosphate donor since these reactions probably have the greatest physiological significance (Table IV). By comparing the relative activities of the crude and purified preparations, it is clear that the activity against each substrate is increased by approximately the same factor. This indicates that nucleoside diphosphokinase is the major, and possibly the only, enzyme capable of ATP-donated phosphorylation of nucleoside diphosphates in S. typhimurium. By this reaction ATP can donate its γ-phosphate to all diphosphates tested including those (XDP, IDP, and dUDP) which do not flow directly to nucleic acids. In all cases nucleoside diphosphokinase is more active with ribonucleotides than with deoxyribonucleotides.

Inhibitor Studies—UTP, ADP, UMP, AMP, NAD, NADH, NADP, NADPH, FAD, and FMN at 5 mM, 0.5 mM, and 0.05 mM were tested for activation or inhibition of the reaction between ATP and UDP (data not shown). ADP and UTP were competitive inhibitors of the reaction; however, the other compounds had no effect on the reaction. This was surprising in that AMP protects the enzyme from inactivation by p-chloromercurisulfonate (Table III).

Kinetic Studies—Mg²⁺ is required for nucleoside diphosphokinase activity. With increasing concentrations of Mg²⁺, activity increases dramatically and peaks at 1 mM free Mg²⁺ (~8 mm total Mg²⁺); beyond 3 mM free Mg²⁺ activity decreases slightly (data not shown). Apparently the true substrate for the enzyme is the nucleotide-Mg²⁺ complex (9).

Measurements of the effect of ATP concentration on the velocity of the reaction indicated normal saturation kinetics (Fig. 2). In the case of UDP (Fig. 3) inhibition occurs at high substrate concentrations.

Double reciprocal plots of ATP concentration against velocity at various concentrations of UDP resulted in a family of parallel curves (Fig. 4) which are typical of a ping-pong mechanism (3). However, at higher concentrations of UDP (above 1 mM), UDP becomes a competitive inhibitor of ATP. By replotted the various values of K_m for ATP against the concentrations of UDP one can determine the true K_m for ATP. From our data this
FIG. 2. Relationship between the reciprocal of the concentration of ATP and the reciprocal of the velocity of the reaction between ATP and UDP. The inset shows the same data in the form of a saturation curve. UDP was kept constant at 0.5 mM.

FIG. 3. Relationship between the reciprocal of the concentration of UDP and the reciprocal of the velocity of the reaction between ATP and UDP. The inset shows the same data in the form of a saturation curve. ATP was kept constant at 6.25 mM.

The above kinetic evidence for a ping-pong mechanism suggests the existence of a phosphorylated enzyme intermediate. This encouraged us to attempt to isolate the intermediate as has been done with nucleoside diphosphokinase from other sources (3, 6, 7, 12, 16, 18), by reacting purified enzyme with \([\gamma-32P]ATP\) in the absence of nucleoside diphosphate. The reaction mixture was applied to a Sephadex G-75 column and developed with Buffer B. Fractions collected from the column were assayed for radioactivity and nucleoside diphosphokinase activity. The peaks of these two activities were coincident (Fig. 5), and the ratio of the activities was constant throughout the peak indicating that a phosphorylated enzyme had been formed. The purified \([\gamma-P]nucleoside\ diphosphokinase\ contained

![Fig. 4. Relationship between the reciprocal of the concentration of ATP and the reciprocal of the velocity of the reaction between ATP and UDP at concentrations of UDP of: (■) 3.05 mM, (△) 2.05 mM, (●) 1.05 mM, (◆) 0.55 mM, (▲) 0.35 mM, (+) 0.25 mM, and (○) 0.15 mM.](image)

![Fig. 5. Purification of the products of a reaction mixture between \([\gamma-32P]ATP\) and purified nucleoside diphosphokinase. A reaction mixture containing in 2.5 ml of Buffer A: 0.026 mg of nucleoside diphosphokinase (specific activity of 2500 μmoles per min per mg of protein), and 0.014 mM \([\gamma-32P]ATP\) (1.2 × 10^6 cpm), was incubated at 20° for 10 min and then applied to a Sephadex G-75 column (1.6 × 90 cm) and developed with Buffer A at 8 ml per hour. Each fraction (2 ml) was assayed for nucleoside diphosphokinase (●) and for radioactivity (○). Fractions 42 to 44 containing both radioactivity and enzyme activity were pooled (total activity of 23 μmoles per min and 5 × 10^5 cpm). The fractions from the column were also assayed for \([\gamma-32P]ATP\) by applying 50 μl of the sample to a polyethyleneimine-Avicel plate and chromatographing it with formate solvents. The dried chromatograms were exposed to x-ray film for 3 days and developed. No \([\gamma-32P]ATP\) could be detected in the pooled sample.](image)
of the enzyme. We found no evidence for other physiologically significant regulation of the enzyme; but in our survey of inhibitors or activators we found that the enzyme has a rather broad pH optimum and requires both Mg\(^{2+}\) and a sulfhydryl group for maximum activity. Di- and triphosphates are competitive inhibitors as would be expected from the mechanism of the reaction and the loose specificity of the enzyme; but in our survey of inhibitors or activators we found no evidence for other physiologically significant regulation of the enzyme.

The specificity of the enzyme is quite broad with respect to triphosphates as donors (data not shown) and diphosphates as recipients. However, believing that the physiological role of the enzyme is largely concerned with the synthesis of various triphosphates using ATP as a donor, we concentrated our attention on this series of reactions and were able to show that all ribo- and deoxyribonucleoside diphosphates which are precursors of nucleic acid can be phosphorylated to the triphosphate level by this reaction. In addition XDP, IDP, and UDP are good substrates for the reaction. Other data indicate that nucleoside diphosphokinase is also able to phosphorylate hydroxymethyl- and deoxythymidine diphosphate (22). Certain interesting conclusions can be drawn from these results. Firstly, the fact that enteric bacteria do not contain detectable pools of XTP and ITP must depend exclusively on the specificity of the monophosphokinases. Also, it is clear that nucleoside diphosphokinase is sufficient to account for the synthesis of all required triphosphates. Activities for the various diphosphates copurify proportionally (Table IV), and thus it appears that there are no other enzymes in Salmonella with significant activity for transferring the \(\gamma\)-phosphate of ATP to other diphosphates. An unequivocal establishment of this presumption must await the availability of mutant strains deficient in nucleoside diphosphokinase. The lesser activity toward the deoxynucleotides as compared with the corresponding ribonucleotides is consistent with the tentative conclusion that this single enzyme has evolved to synthesize all necessary triphosphates.

The levels of nucleoside diphosphokinase in Salmonella and the effect of growth rate on these levels raises a number of interesting questions. Nucleoside diphosphokinase concentration falls significantly as the growth rate of the culture is increased although the demands for triphosphates must increase dramatically at faster growth rates because both the rate of synthesis of nucleic acids and the fraction of the mass which is nucleic acid increase (34). However, at all growth rates the activity of the enzyme is surprisingly high. Crude extracts of cells grown even at high growth rates contain about 44 times as much nucleoside diphosphokinase as UMP kinase and at slow growth rates this ratio increases to almost 200-fold (Table I). However, there are other monophosphokinases. In enteric bacteria there are probably a total of 5; 1 for UMP (30), 1 for CMP and dCMP (35), 1 for AMP and dAMP (35), 1 for GMP and dGMP (37), and 1 for dTMP (38). Limited data (30) indicate that they are present at about the same specific activities. Thus, the very high ratio of nucleoside diphosphokinase to monophosphokinase activity most certainly indicates that nucleoside diphosphokinase is not rate-limiting even at the fastest growth rates. However, it is reasonable to expect that the ratio of tri- to diphosphates decreases with growth rate and that this change might in turn have very important effects on the regulation of cellular processes.

The precise physiological role of nucleoside diphosphokinase and the impact of changes in the ratio of tri- and diphosphates can only be answered when proper mutants are available.

Acknowledgments—We are grateful to Ahmed Abdelal, Christopher Beck, and Jan Neuhard for helpful advice and discussions.

REFERENCES

\(^{1}\) C. F. Beck, C. L. Ginther, and J. Neuhard, unpublished data.
3411

Nucleoside Diphosphokinase of *Salmonella typhimurium*
Charles L. Ginther and John L. Ingraham

Access the most updated version of this article at http://www.jbc.org/content/249/11/3406

Alerts:
- When this article is cited
- When a correction for this article is posted

[Click here](http://www.jbc.org/content/249/11/3406.full.html#ref-list-1) to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/249/11/3406.full.html#ref-list-1