Casein Kinase from the Golgi Apparatus of Lactating Mammary Gland

ELIZABETH W. BINGHAM AND HAROLD M. FARRELL, JR.
From the Eastern Regional Research Center, Agricultural Research Service, United States Department of Agriculture, Philadelphia, Pennsylvania 19118

SUMMARY

A casein kinase that catalyzes the phosphorylation of dephosphorylated \(\alpha_{II} \)-casein by ATP has been found in the Golgi apparatus of lactating rat mammary gland. Dephosphorylated \(\beta \)- and \(\kappa \)-caseins are also phosphorylated by this enzyme, while other milk proteins (\(\beta \)-lactoglobulin, \(\alpha \)-lactalbumin, native \(\alpha_{II} \)-, \(\beta \)-, and \(\kappa \)-casein, and proteins of the fat globule membrane) are phosphorylated to a limited extent. Histones, phosvitin, and lysozyme are not appreciably phosphorylated. The optimum pH for phosphate incorporation into dephosphorylated casein is 7.6. The \(K_m \) for dephosphorylated \(\alpha_{II} \)-casein is 12 \(\mu \)M (27 mg per ml), whereas the \(K_m \) for ATP is 80 \(\mu \)M. The casein kinase requires a divalent cation for maximum activity; both \(Ca^{2+} \) and \(Mg^{2+} \) can satisfy this requirement. Adenosine 3':5'-monophosphate (cyclic AMP) has no effect on casein kinase activity. The protein inhibitor from rabbit skeletal muscle, which inhibits adenosine 3':5'-monophosphate-dependent protein kinases, is also without effect. These findings suggest that phosphorylation of casein, a food protein, is quite different from the phosphorylation of cellular enzymes, which requires cyclic AMP, is inhibited by \(Ca^{2+} \) and is involved in control mechanisms.

Although phosphorylation of proteins has been studied in many species and tissues, very little is known about the phosphorylation of casein, a group of phosphoproteins secreted in large amounts by the lactating mammary gland. Through sequence analysis (1), it is known that \(\alpha_{II} \)-casein, the major protein of cow's milk, has eight phosphate groups attached to specific serine residues and 8 additional serine residues that are not phosphorylated. Because this protein has been well characterized, it is an appropriate choice for studies on the phosphorylation of casein.

Gaye et al. (2) showed that the biosynthesis of casein occurs on the polyribosomes of the endoplasmic reticulum and in this respect resembles the biosynthesis of other proteins. Turkington and Topper (3) provided evidence that the synthesis of the polypeptide chain of casein occurs prior to phosphorylation and that phosphorylation of casein takes place by utilizing a pool of unphosphorylated casein. Bingham et al. (4, 5) tested this theory by using dephosphorylated \(\alpha_{II} \)-casein as a substrate.

They examined subcellular fractions from the lactating mammary glands of rats seeking to find an enzyme with a preference for dephosphorylated casein over native casein. An enzyme from Golgi apparatus appeared to have the required characteristics. These preliminary studies have been extended to better characterize the casein kinase from Golgi membranes.

EXPERIMENTAL PROCEDURES

Materials—The following proteins were isolated from cow's milk of known genetic composition. \(\alpha_{II} \)-Casein B and dephosphorylated \(\alpha_{II} \)-casein B were prepared as described by Bingham et al. (6). \(\beta \)-Casein A was a gift from Dr. R. F. Peterson (Eastern Regional Research Center). \(\kappa \)-Casein B was isolated by the method of Zittle and Custer (7). \(\beta \)-Casein and \(\kappa \)-casein were dephosphorylated by the same procedure used for \(\alpha_{II} \)-casein. \(\beta \)-Lactoglobulin A and \(\alpha \)-lactalbumin were prepared by the method of Aschaffenburger and Drewry (8). The fat globule membrane protein was a gift of Dr. E. B. Kalan (Eastern Regional Research Center).

Calf thymus histone, arginine- and lysine-rich histones and cyclic AMP were purchased from Sigma. Phosvitin was obtained from Shwarz-Mann and lysozyme was obtained from Difco. \([\pm^{32P}]ATP \) was obtained from Amersham-Searle. The protein inhibitor from rabbit skeletal muscle (9), which inhibits cyclic AMP-dependent protein kinases, was a gift of Dr. Donald A. Walsh (University of California, Davis).

The protein kinase of rabbit skeletal muscle was partially purified by the procedure of Walsh et al. (10) through the first DEAE-cellulose chromatography step.

Isolation of Golgi Apparatus Fraction—Golgi membranes from lactating mammary glands were prepared by the procedure of Keenan et al. (11). Sprague-Dawley rats, 10 to 15 days postpartum, were killed by exsanguination following ether inhalation. Mammary glands from three rats were excised, chilled, and minced. The cold minced tissue (20 g) was suspended in 60 ml of 0.5 M sucrose containing 37.5 mM Tris-maleate buffer (pH 6.5), 1 mM EDTA, and 1% dextran (homogenization buffer). All operations were performed at 0-4°C. Following homogenization for 1 min at medium speed with a Polytron 10 ST homogenizer (Brinkman Instruments, Westbury, N.Y.), the homogenate was squeeched in rapid succession through two, four, and six layers of cheesecloth. The filtrate was centrifuged for 15 min at 4000 \(\times \) g in a Sorvall HII-D4 rotor. The floating lipid and supernatant were removed by aspiration and discarded. The loose, upper one-third of the pellet was removed, suspended in 10 ml of the homogenization buffer, and subjected to centrifugation at 10,000 \(\times \) g for 30 min. The resulting supernatant was removed and used for phosphorylation studies.

1 The abbreviations used are: cyclic AMP, cyclic adenosine 3':5'-monophosphate; MES, 2-(N-morpholino)ethanesulfonic acid; EGTA, ethylene glycol bis(2-aminoethyl ether)-N,N'-tetraacetic acid.

2 Reference to brand or firm name does not constitute endorsement by the United States Department of Agriculture over others of a similar nature not mentioned.
tation buffer and resuspended with one stroke in a glass-Teflon homogenizer. The suspension was layered over 1.5 volumes of homogenization buffer containing 1.25 M sucrose and centrifuged for 30 min at 100,000 × g in a Beckman SW 39 rotor. The material at the interface of the two sucrose solutions was removed, diluted with the 0.5 M sucrose homogenization medium and centrifuged at 40,000 × g for 15 min in a Beckman SW 50 rotor to obtain the Golgi membranes as a pellet. The pelleting procedure was repeated twice. A sample of the pellet was then examined with the electron microscope (Fig. 1).

For enzyme studies, the pellet containing the Golgi membranes was suspended in approximately 0.4 ml of 37.5 mM Tris-maleate buffer (pH 6.5) containing 1 mM EDTA and was diluted with an equal volume of 1% Triton X-100. The extract was sonicated for 2 min at 20 Hz using a Branson Sonifier and centrifuged at 50,000 × g for 30 min in a Beckman SW 50 rotor. The supernatant solution, containing the casein kinase, was stored at −20° and retained full activity for 2 months. The casein kinase preparation contained 1 to 5 mg of protein from 20 g of mammary gland tissue.

Enzyme Assay—Casein kinase was measured at pH 7.6 in a 100-μl reaction mixture, containing 10 μmoles of Tris-HCl buffer (pH 7.6), 0.8 μmole of MgCl₂, 0.3 mg of dephosphorylated α-casein, 5 μl of enzyme solution, and 0.02 μmole of ATP having 4 × 10⁶ cpm of γ-[32P]ATP. The reaction was started by the addition of ATP. After incubation for 20 min at 30°, a 50-μl aliquot of reaction mixture was pipetted onto squares (2 × 2 cm) of Whatman No. 31ET chromatography paper. The papers were washed according to the procedure described by Reimann et al. (12), transferred to scintillation vials containing 15 ml of Aquasol (New England Nuclear), and counted. The endogenous protein kinase activity was measured in the absence of casein and this value was subtracted from the value obtained in the presence of casein to determine the amount of phosphate incorporated. When the enzyme was omitted, the amount of phosphate incorporated into casein was insignificant. A unit of protein kinase activity is defined as the amount of enzyme which catalyzes the incorporation into protein of 1 μmole of phosphate per 20 min.

For rabbit muscle protein kinase, the assay mixture described by Reimann et al. (12) was used with minor modifications. The protein kinase was measured at pH 7.0, in a 100-μl reaction mixture containing the following: 5 μmoles of glycerol-P, 2 μmoles of NaF, 0.03 μmole of EGTA, 0.2 μmole of theophylline, 0.3 mg per ml of casein (vitamin-free casein from Nutritional Biochemicals), 1 μmole of MgCl₂, 0.2 μmole of cyclic AMP, 5 μl of rabbit muscle protein kinase solution, and 0.02 μmole of ATP having 4 × 10⁴ cpm of γ-[32P]ATP.

Protein Concentration—Protein was estimated according to Lowry et al. (13) with bovine serum albumin as the standard.

Results

Fig. 1 shows the appearance of Golgi membranes as viewed with the electron microscope. On the basis of morphological analyses, 80 to 90% of the fraction consists of material derived from the Golgi apparatus. Enzyme assays, previously reported, showed that the Golgi membranes have a high specific activity for lactase synthetase and casein kinase (4). Lactose synthetase activity was measured in the absence of casein and this value was subtracted from the value obtained in the presence of casein to determine the amount of phosphate incorporated. When the enzyme was omitted, the amount of phosphate incorporated into casein was insignificant. A unit of protein kinase activity is defined as the amount of enzyme which catalyzes the incorporation into protein of 1 μmole of phosphate per 20 min.

Time Course—When dephosphorylated α-casein is used as a substrate for the casein kinase, reaction rates are linear for 25 min (Fig. 2). When casein is omitted from the reaction mixture, a small but measurable amount of phosphate is incorporated into the Golgi apparatus preparation (Fig. 2), indicating endogenous phosphorylation.

Enzyme Concentration—The effect of enzyme concentration on the rate of casein phosphorylation is shown in Fig. 3. The reaction rate is linear up to 130 μg of enzyme protein per 100 μl of reaction mixture.

pH Optimum—Fig. 4 illustrates the effect of pH on phosphate incorporation into dephosphorylated casein, using 50 mM buffers (Tris and MES). Maximum activity was observed at pH 7.6.

Table I

General properties of casein kinase from Golgi apparatus extract of lactating mammary gland

Incubation conditions were as described under "Experimental Procedures."

<table>
<thead>
<tr>
<th>Reaction mixture</th>
<th>Relative activity %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Complete</td>
<td>100</td>
</tr>
<tr>
<td>MgCl₂</td>
<td>1</td>
</tr>
<tr>
<td>MgCl₂ + NaCl (7.5 mM)</td>
<td>4</td>
</tr>
<tr>
<td>MgCl₂ + NaCl (30 mM)</td>
<td>5</td>
</tr>
<tr>
<td>+ cyclic AMP (10⁻⁴ M)</td>
<td>100</td>
</tr>
<tr>
<td>+ cyclic AMP (10⁻³ M)</td>
<td>105</td>
</tr>
<tr>
<td>+ cyclic AMP (10⁻² M)</td>
<td>94</td>
</tr>
<tr>
<td>+ β-mercaptoethanol (10 mM)</td>
<td>103</td>
</tr>
<tr>
<td>+ dithiothreitol (1 mM)</td>
<td>84</td>
</tr>
</tbody>
</table>
Apparent K_m for Casein—The effect of varying casein concentration on enzyme activity is shown in Fig. 5. The concentration of dephosphorylated α_{s1}-casein needed for half-maximum activity is 0.27 mg per ml (12 μM) and was calculated from the double reciprocal plot.

Apparent K_m for ATP—The effect of ATP concentration on the incorporation of phosphate into dephosphorylated casein is depicted in Fig. 6. The K_m value for ATP is 80 μM, which was evaluated from the double reciprocal plot.

Effect of Divalent Metal Ions—There is an absolute requirement for divalent cations as shown in Table I. At 2 mM concentration this requirement can be satisfied by four cations, Co^{2+}, Mn^{2+}, Mg^{2+}, and Ca^{2+} (Table II). At a higher cation concentration (10 mM) only Ca^{2+} and Mg^{2+} are effective. The activities in the presence of several cations at a concentration of 10 mM were not reported because dephosphorylated α_{s1}-casein precipitated in the presence of these metals. The cations causing precipitation at the higher concentrations were Co^{2+}, Mn^{2+}, Cu^{2+}, and Zn^{2+}.

Effect of Varying Calcium and Magnesium—The fact that calcium ions as well as magnesium ions can activate the casein kinase prompted us to examine this effect in more detail. The effect of cation concentration on the incorporation of phosphate into dephosphorylated α_{s1}-casein is shown in Fig. 7. Although the curves for calcium and for magnesium differ slightly, it would be difficult to interpret the difference at this time. It is significant that both cations (Ca^{2+} and Mg^{2+}) activate the casein kinase.

Effect of Protein Inhibitor from Rabbit Skeletal Muscle—As shown previously, the protein kinase inhibitor is very effective when used with the cyclic AMP-dependent protein kinase of skeletal muscle (9). At four times the concentration, which completely inhibits the skeletal muscle enzyme, the inhibitor has little effect on the casein kinase from the Golgi membranes (Table III).

Substrate Specificity—The ability of the casein kinase to phosphorylate different protein substrates with ATP as the phosphate donor was tested (Table IV). It is interesting to note that the

Table II

<table>
<thead>
<tr>
<th>Divalent cation</th>
<th>Enzyme activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 mM cation</td>
</tr>
<tr>
<td>Mg^{2+}</td>
<td>283</td>
</tr>
<tr>
<td>Ca^{2+}</td>
<td>918</td>
</tr>
<tr>
<td>Co^{2+}</td>
<td>566</td>
</tr>
<tr>
<td>Mn^{2+}</td>
<td>422</td>
</tr>
<tr>
<td>Cu^{2+}</td>
<td>57</td>
</tr>
<tr>
<td>Ba^{2+}</td>
<td>35</td>
</tr>
<tr>
<td>Sr^{2+}</td>
<td>49</td>
</tr>
<tr>
<td>Zn^{2+}</td>
<td></td>
</tr>
</tbody>
</table>

Fig. 2 (left). Effect of incubation time on phosphate incorporation into dephosphorylated α_{s1}-casein. Casein kinase assays were performed as described under "Experimental Procedures." Samples were removed at the times indicated and tested for phosphate incorporation. The experiment was performed with dephosphorylated casein (O-O) and without dephosphorylated casein (\bullet) in the reaction mixture, using 15 μg of enzyme protein per 100 μl of reaction mixture.

Fig. 3 (right). Effect of casein kinase concentration on the rate of incorporation of phosphate into dephosphorylated α_{s1}-casein. The enzyme was assayed by the method described under "Experimental Procedures," except that the amount of casein kinase was varied.

Fig. 4 (left). Effect of pH on casein kinase activity. Assay conditions are described under "Experimental Procedures." Each assay contained 10 μg of enzyme protein. Buffers were 50 mM MES (0-O) and 50 mM Tris (0-O).

Fig. 5 (center). Effect of the concentration of dephosphorylated α_{s1}-casein on phosphate incorporation into casein. Each assay contained 15 μg of enzyme per 100 μl of reaction mixture. Casein kinase activity was assayed by the method described under "Experimental Procedures," except the concentration of dephosphorylated casein was varied. Inset shows a double reciprocal plot of the data. The line was drawn from a least squares analyses of the data, using the weighting methods of Wilkinson (15).

Fig. 6 (right). Effect of ATP concentration on phosphate incorporation into dephosphorylated α_{s1}-casein. Each assay contained 15 μg of casein kinase. Assay conditions are similar to those described under "Experimental Procedures," except that the concentration of ATP was varied. Inset shows a double reciprocal plot of the data. The slope and the intercept was computed according to the method described in Fig. 5.
caseins and dephosphorylated caseins seemed to vary with the phosphate content. Native α_{s1}-casein has eight phosphate groups, β-casein has five phosphate groups, and κ-casein, one phosphate group. Whether this correlation is significant cannot be said at this time. Other milk proteins (β-lactoglobulin, α-lactalbumin, and the fat globule membrane) are phosphorylated to a limited extent. Histones, lysozyme, and phosvitin are poor substrates.

DISCUSSION

Since Walsh et al. (10) isolated a cyclic AMP-dependent protein kinase from rabbit skeletal muscle, work in this area has progressed rapidly. Because of the widespread distribution of this enzyme in various tissues and species, it seemed relevant to examine the casein kinase of lactating mammary gland and compare its properties to cyclic AMP-dependent protein kinases.

The casein kinase from the Golgi apparatus of lactating mammary glands catalyzes phosphate incorporation into dephosphorylated casein using ATP as a phosphate donor in the presence of divalent cations. Mg^{2+}, Mn^{2+}, Co^{2+}, and Ca^{2+} can stimulate the casein kinase at a concentration of 2 mM, whereas only Mg^{2+} and Ca^{2+} are effective when the concentration is raised to 10 mM due to the precipitation of the dephosphorylated casein in the presence of Co^{2+} and Mn^{2+}. It is significant that Ca^{2+} activates the enzyme as well as Mg^{2+}. Kuo et al. (16) examined cyclic AMP-dependent protein kinases from 15 bovine tissues and showed that in the presence of Mg^{2+}, Mn^{2+}, or Co^{2+} enzyme activity was stimulated, whereas Ca^{2+} inhibited the activity. The inhibition of cyclic AMP-dependent protein kinases by Ca^{2+} has been confirmed by others (17, 18). Thus, the activation of casein kinase by Ca^{2+} suggests that this enzyme has unusual properties.

The mammary gland casein kinase was not affected by cyclic AMP. However, by this criteria alone, one cannot conclude that the enzyme is not a cyclic AMP-dependent kinase. Tao (19) has pointed out that the degree of stimulation by cyclic AMP seems to depend on the phosphoryl acceptor used and that stimulation can be low in the presence of casein, phosvitin, and protamine. He showed that protamine alone without cyclic AMP can react with the regulatory subunit, thereby releasing the catalytic subunit. Thus, it could be suggested that dephosphorylated casein reacts with the casein kinase to release the catalytic subunit or that casein kinase is a catalytic subunit devoid of its regulatory subunit. However, if the casein kinase was a catalytic subunit of a holoenzyme which is normally cyclic AMP-dependent, then the protein inhibitor from rabbit skeletal muscle would probably inhibit its activity (9, 20), but the inhibitor has no effect. Therefore, it could be suggested that casein kinase is not activated by cyclic AMP nor is it similar to the catalytic subunit of cyclic AMP-dependent protein kinases.

The substrate requirements of the casein kinase are unusual. Dephosphorylated caseins are also unique because the caseins (α_{s1}, β, and κ) are dephosphorylated. There is a small amount of activity with other milk proteins as substrates, e.g., β-lactoglobulin, fat globule membrane protein and α-lactalbumin, all unphosphorylated. Although casein kinase was isolated on the basis of its activity toward dephosphorylated α_{s1}-casein, it is surprising that it is so specific in its substrate requirements. Other mammary gland protein kinases have different properties. Majumder and Turkington (21) isolated two protein kinases from the cytosol of rat mammary gland, which showed a high specificity for histone,

![Fig. 7](image-url)
one of which was activated by cyclic AMP. Waddy and MacKinlay (22) found similar results using bovine mammary glands.

Our results indicate that the Golgi apparatus casein kinase differs from cyclic AMP-dependent protein kinases in several of its properties. There could be a reasonable explanation for these differences. Many of the cyclic AMP-dependent protein kinases are involved in control mechanisms mediated through hormones. These kinases phosphorylate enzymes, such as phosphorylase b kinase (23), glycogen synthetase (24), lipase from adipose tissue (25); as well as proteins, such as histones (26, 27). These phosphorylations are often countered by the action of specific phosphatases. On the other hand, proteins such as casein and phosvitin possess a storage function for phosphorus in milk and in egg yolk. It therefore seems likely that these proteins are phosphorylated by a different mechanism that does not require cyclic AMP-dependent protein kinases. Recently, Goldstein and Hasty (28) characterized the phosvitin kinase, which differs from casein kinase in several of its properties; the phosvitin kinase, like casein kinase, is not activated by cyclic AMP.

The biological significance of the casein kinase remains to be fully elucidated. From the evidence available, casein synthesis in the mammary gland proceeds by a mechanism similar to protein synthesis in other tissues (2, 29). After completion of the synthesis of the polypeptide chain, phosphorylation of casein takes place, utilizing a pool of unphosphorylated casein (3). Our results provide evidence that the polypeptide chain of casein is phosphorylated by the Golgi apparatus enzyme. The phosphorylated casein monomers are formed into colloidal complexes (micelles), containing up to 30,000 monomers, held together by calcium bonds (30) and the casein micelles are secreted by the Golgi vacuoles (31). In view of the role of Ca\(^{2+}\) in micelle formation it is significant that Ca\(^{2+}\) is not inhibitory to the casein kinase. Thus, our results seem to corroborate current views on the biosynthesis of casein.

Acknowledgment—We are indebted to Robert J. Carroll for the electron micrograph.

REFERENCES
Casein Kinase from the Golgi Apparatus of Lactating Mammary Gland
Elizabeth W. Bingham and Harold M. Farrell, Jr.

Access the most updated version of this article at http://www.jbc.org/content/249/11/3647

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/249/11/3647.full.html#ref-list-1