An Effect of Puromycin on Galactosyltransferase of Golgi-rich Fractions from Rat Liver

MARGARET TRELOAR, JENNIFER M. STURGESS, AND MARIO A. MOSCARELLO
From the Research Institute, The Hospital for Sick Children, Toronto, Ontario, Canada M5G 1X8

Summary

Some of the properties of galactosyltransferase of Golgi membrane-rich fractions from rat liver were investigated. The kinetic properties of the enzyme were determined from the initial rates of reaction under various conditions of incubation. Puromycin, a known inhibitor of protein synthesis, was shown to inhibit the galactosyltransferase activity in vitro. The inhibition depended on the concentration of puromycin and on the duration of exposure of Golgi membranes to the drug. A number of compounds, structurally related to puromycin, were unable to produce the inhibition. A combination of the aminonucleoside and amino acid portions of the puromycin molecule was equally ineffective. Binding of puromycin to the membranes was demonstrated with [3H]puromycin. It was concluded that this binding to the membrane disrupted the enzymatic activity.

Most plasma glycoproteins are synthesized by the liver, except immunoglobulins which are synthesized in plasma cells. Glycoproteins are conjugated proteins in which the prosthetic groups are oligosaccharide chains covalently linked to the functional group of the side chain of an amino acid in the protein. In liver, the protein portion of glycoproteins intended for secretion is synthesized on polysomes bound to the rough endoplasmic reticulum and is subsequently transported through the smooth endoplasmic reticulum and the Golgi apparatus (1-3). Addition of carbohydrates during this passage is catalyzed by glycosyltransferases enzymes located in these smooth membranes (4-8). These enzymes catalyze the transfer of a sugar from its nucleotide-sugar donor to an acceptor which is the appropriate side chain of an amino acid in the protein or a sugar in the terminal position of an oligosaccharide side chain. Galactosyltransferase catalyzes the transfer of galactose from UDP-galactose to an N-acetylglucosamine residue on the oligosaccharide side chain of a partially completed glycoprotein molecule in vivo. The enzyme has been demonstrated in vitro by measuring the transfer of [³H]galactose from exogenous UDP-[³H]galactose to endogenous glycoprotein acceptors containing terminal N-acetylglucosamine residues (7). The reaction has been shown to be catalyzed by isolated Golgi membranes (6, 6, 8). Golgi membrane-rich fractions also catalyze the transfer of [³H]galactose to exogenous acceptors, desialylatedgalactosylglycoproteins or to N-acetylglucosamine forming N-acetyl lactosamine (4-6).

The inhibition of protein synthesis by puromycin has been shown both in vivo and in vitro (9-14). The mechanism of action of puromycin depends on the structural similarity of puromycin to the terminal aminoacyladenosine residue of aminoacyl-tRNA. It interrupts protein synthesis by preventing peptide chain elongation at the ribosomal level (11, 14-16, 17). In addition to its effect on protein synthesis, however, many other changes in cellular metabolism have been described subsequent to puromycin treatment. Among these effects are the ultrastructural changes in intracellular membranes of rat and mouse hepatocytes, particularly in the endoplasmic reticulum and the Golgi apparatus (18-20), where distorted Golgi sacules and tubules have been described. Ultrastructural changes in the Golgi apparatus have been shown to persist for up to 24 hours, long after protein synthesis and the morphology of the endoplasmic reticulum have returned to normal (18). In vivo studies have also indicated inhibition of incorporation of carbohydrates into glycoproteins in puromycin-treated animals (21-24).

In order to separate the effects of puromycin on protein and glycoprotein synthesis, the isolated Golgi membrane fraction was used to study the actions of puromycin. Previously, the inhibitory effects of puromycin on glycoprotein biosynthesis have been related to a lack of precursors (21, 24, 25). In these studies, a direct effect of puromycin on the galactosyltransferase activity of the Golgi apparatus was demonstrated and investigated. A necessary requirement for these studies was the establishment of kinetic parameters such as K_m and V_{max} values for galactosyltransferase from rat Golgi. Similar studies have been reported for the pork liver enzyme (5).

Material and Methods

Isolation of Golgi—Golgi-rich fractions were isolated from the livers of male Wistar rats according to the method of Sturgess et al. (26). The purity of each preparation was monitored by electron microscopy and assays for galactosyltransferase. Galactosyltransferase activity was determined according to the method of Schachter et al. (5).

Galactosyltransferase Activity—For the measurement of galactosytransferase activity toward N-acetylglucosamine (GlcNAc), the incubation medium contained 5 μmoles of GlcNAc, 0.05 μmoles of UDP-galactose (UDP-Gal) (Calbiochem) containing 10^4 dpm of UDP-[³H]Gal (New England Nuclear), 3 μmoles of MnCl₂,

5 μmoles of 2-(N-morpholino)ethanesulfonate buffer, pH 5.7, 5 μl of 2% Triton X-100, and 25 μl of a sonicated enzyme suspension, in a total volume of 45 μl. For the measurement of activity toward desialyldegalactosylorosomucoid, the incubation medium was the same as above except for the replacement of GlnAc by 1 mg of desialyldegalactosylorosomucoid (kindly supplied by Dr. H. Schachter, University of Toronto).

The assay mixtures were incubated for 2 hours at 37°, and the reaction was stopped by the addition of 5 μl of 2% sodium tetraborate, pH 9.2, containing 0.25 M EDTA. Product formed was separated by high voltage electrophoresis and counted by liquid scintillation as in Schachter et al. (5). Protein concentration was measured by the method of Lowry et al. (27). The specific activity was calculated as disintegrations per min transferred per mg of protein per 2 hours of incubation. The purification factor was computed as the ratio of the specific activity of the Golgi-rich fraction to that of the liver homogenate from which it was isolated.

For the determination of kinetic parameters, the incubation was carried out for 3 min at 37°. Since the rate had been shown to be linear for up to 30 min, the 3-min assay represented the initial rate.

Table I

<table>
<thead>
<tr>
<th>Component omitted from complete assay mixture</th>
<th>Complete activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>GlnAc</td>
<td>5</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>24</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>62</td>
</tr>
<tr>
<td>MES buffer, pH 5.7</td>
<td>95</td>
</tr>
</tbody>
</table>

Fig. 1 (left). The initial rate was plotted as a function of increasing concentration of UDP-Gal. The assay contained Golgi membranes (0.03 mg), 0.05 μmole of UDP-[³²P]Gal, 0.25 mg of GlnAc, 5 μmoles of 2-(N-morpholino)ethanesulfonate buffer, pH 5.7, and 25 μl of enzyme suspension containing 0.03 mg of protein in a total volume of 45 μl. All assay mixtures were incubated for 2 hours at 37°.

Fig. 2 (right). A, initial rate of transfer of UDP-[³²P]Gal to desialyldegalactosylorosomucoid (Curve 1) and GlnAc (Curve 2) as a function of concentration of acceptor. The assay contained Golgi membranes (0.03 mg), 0.05 μmole of UDP-[³²P]Gal, varying concentrations of glycoprotein or GlnAc, 5 μmoles of 2-(N-morpholino)ethanesulfonate buffer, pH 5.7, 5 μl of 5% Triton X-100, and 3 μmoles of MnCl₂ in a volume of 50 μl. After incubation for 3 min at 37°, the reaction was stopped with 5 μl of 2% sodium tetraborate containing 0.25 M EDTA.

RESULTS

Requirements for Galactosyltransferase Activity—The requirements for galactosyltransferase in rat liver Golgi were studied by omitting one component at a time from the complete assay mixture. The residual activity was expressed as per cent of activity obtained when all components were present. The data are shown in Table I. When the exogenous acceptor GlnAc was omitted, 5% of the activity was found, which represents transfer to endogenous acceptor present in the membrane fraction. A requirement for MnCl₂ and Triton X-100 was noted, although less marked than that for the exogenous acceptor. In the absence of buffer, 95% of the activity was measured.

Table II

<table>
<thead>
<tr>
<th>Component</th>
<th>Complete activity [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>100</td>
</tr>
<tr>
<td>GlnAc</td>
<td>5</td>
</tr>
<tr>
<td>MnCl₂</td>
<td>24</td>
</tr>
<tr>
<td>Triton X-100</td>
<td>62</td>
</tr>
<tr>
<td>MES buffer, pH 5.7</td>
<td>95</td>
</tr>
</tbody>
</table>

Millipore Filtration—A Millipore microanalysis system was used in which membrane-containing suspensions were separated from soluble components through filters of 0.3-μm pore size (Millipore Corp.). Golgi suspensions were diluted to 0.5 ml with 0.1 M 2-(N-morpholino)ethanesulfonate buffer, pH 5.7, filtered under reduced pressure and washed three times with buffer. Filters were dried and counted by liquid scintillation.

Fig. 1 (right). A, reciprocal plot l/V X l/S for GlcNAc; B, reciprocal plot l/V X l/S for UDP-Gal; C, reciprocal plot l/V X l/S for GlnAc.
Fig. 2A represents a plot of initial rate against acceptor sites for the two acceptors, GlcNAc (Curve 2) and desialyldegalactosylorosomucoid (Curve 1). When desialyldegalactosylorosomucoid was used as acceptor, the initial rate rose rapidly to a maximum at about 2 mM and fell sharply. With GlcNAc as acceptor, the initial rate was slower than with desialyldegalactosylorosomucoid and the maximum rate was not obtained until about 15 mM. Fig. 2, B and C, represents the reciprocal plots for the two acceptors, desialyldegalactosylorosomucoid and GlcNAc, respectively. The K_m values were 0.7 mM for desialyldegalactosylorosomucoid and 3.9 mM for GlcNAc. The corresponding V_{max} values were 370 and 600 dpm per min, respectively. Corresponding K_m values for pork liver enzyme were 0.1, 4.6, and 1.0 for UDP-Gal, GlcNAc, and desialyldegalactosylorosomucoid, respectively (5).

TABLE II

Inhibition of galactosyltransferase by puromycin

Golgi membranes were preincubated with different concentrations of puromycin for 5 min at 37°C and then assayed to determine initial rate. The assay contained 0.05 μmole of UDP-[14C]Gal, 0.25 mg of GlcNAc, 5 μmoles of 2-(N-morpholino)ethanesulfonate buffer, pH 5.7, 5 μl of 5% Triton X-100, and 3 μmoles of MnCl$_2$. Two different Golgi suspensions were used, of protein concentrations 1.4 and 2.6 mg/ml, respectively.

<table>
<thead>
<tr>
<th>[Puromycin] in preincubation medium</th>
<th>Initial rate of galactosyltransferase</th>
</tr>
</thead>
<tbody>
<tr>
<td>dial/min</td>
<td>dial/min</td>
</tr>
<tr>
<td>Dialyzed protein, 0.05 mg GlcNAc</td>
<td>Dialyzed protein, 0.055 mg GlcNAc</td>
</tr>
<tr>
<td>0</td>
<td>582</td>
</tr>
<tr>
<td>1.24</td>
<td>425</td>
</tr>
<tr>
<td>1.84</td>
<td>280</td>
</tr>
<tr>
<td>2.45</td>
<td>145</td>
</tr>
<tr>
<td>3.06</td>
<td>50</td>
</tr>
</tbody>
</table>

Effect of Puromycin on Galactosyltransferase Activity in Vitro—When Golgi membranes were preincubated with puromycin for 5 min at 37°C and subsequently assayed for galactosyltransferase activity using GlcNAc as acceptor, inhibition was observed. The degree of inhibition varied directly with the amount of Golgi protein and with the amount of puromycin (Table II). In the absence of puromycin the galactosyltransferase activity was 582 and 916 dpm per min for the two concentrations of Golgi used, 0.035 and 0.065 mg of protein per assay, respectively. Increasing the concentration of puromycin from 0 to 3.06 mM resulted in a progressive loss of activity so that at 3.06 mM the initial rate was only 8.6% of that of the uninhibited enzyme when the amount of protein was 0.035 mg. The effect was less marked at the higher concentration of Golgi protein, 0.065 mg. When the concentration of puromycin was 3.06 mM the initial rate was 31% of that of the uninhibited system for the higher concentration.

The effect of puromycin on galactosyltransferase was determined for the two substrates GlcNAc and desialyldegalactosylorosomucoid. Golgi membranes (0.035 mg of protein) were preincubated with puromycin for 5 min at 37°C. Initial rates were determined in the 3-min assay. The data are plotted as initial rate versus concentration of puromycin, and are shown in Fig. 3. Curve A shows the effect of puromycin on the initial rate when GlcNAc was used as acceptor; Curve B shows the effect when desialyldegalactosylorosomucoid was used.

When GlcNAc was used as acceptor (Curve A) only a small inhibition was observed up to a puromycin concentration of 1.5 mM. This was followed by a sharp fall in rate to less than 20% of the original rate when the puromycin concentration was 3 mM. From this concentration to 5.7 mM the initial rate remained constant at 6 to 7% of the original value. The inhibition observed when desialyldegalactosylorosomucoid was used as acceptor was different from that observed with GlcNAc. The...
After 30-min incubation at 37° the dpm transferred were measured as described in methods. 3% Triton X-100, and 3 pmoles of MnCl₂ in 45-μl total volume.

<table>
<thead>
<tr>
<th>Addition to the preincubation medium (μmoles)</th>
<th>Galactosyltransferase activity dpm/30 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>5300</td>
</tr>
<tr>
<td>Puromycin (0.37)</td>
<td>70</td>
</tr>
<tr>
<td>Aminonucleoside (0.68)</td>
<td>6100</td>
</tr>
<tr>
<td>Aminonucleoside (1.37)</td>
<td>7000</td>
</tr>
<tr>
<td>Aminonucleoside (0.68) + phenylalanine</td>
<td>6080</td>
</tr>
<tr>
<td>6-Dimethyladenosine (0.68)</td>
<td>7050</td>
</tr>
<tr>
<td>6-Dimethyladenosine (1.37)</td>
<td>6960</td>
</tr>
<tr>
<td>6-Dimethyladenosine (0.68) + phenylalanine</td>
<td>7340</td>
</tr>
<tr>
<td>3'-Amino-3'-Deoxyadenosine (0.76)</td>
<td>4900</td>
</tr>
<tr>
<td>3'-Amino-3'-Deoxyadenosine (1.52)</td>
<td>4230</td>
</tr>
<tr>
<td>3'-Amino-3'-Deoxyadenosine (0.76) + phenylalanine</td>
<td>3710</td>
</tr>
<tr>
<td>Ribose (1.34)</td>
<td>4970</td>
</tr>
<tr>
<td>Ribose (2.67)</td>
<td>4950</td>
</tr>
<tr>
<td>Phenylalanine (1.21)</td>
<td>8180</td>
</tr>
<tr>
<td>Phenylalanine (2.42)</td>
<td>7400</td>
</tr>
</tbody>
</table>

The action of puromycin at the ribosomal level has been shown to involve the release of nascent peptide chains by replacing aminoacyl-tRNA (17). Ultrastructural studies showed that puromycin causes disaggregation of polysomes in vitro and in vivo, but the effect was reversed rapidly (19).

In addition to its effect at the ribosomal level, puromycin has an effect on the assembly of sugars into glycoprotein. In the thyroid gland, puromycin completely inhibits the assembly of the oligosaccharide side chain (28). Sugars, such as mannose, near the peptide core were inhibited more than those farther away such as galactose (20).

The enzymes responsible for the sequential addition of sugars to the oligosaccharide chain are located in the Golgi apparatus. The addition of each sugar is accomplished by a specific glycosyltransferase. In this report, we have studied the effect of puromycin on galactosyltransferase of isolated Golgi fractions in vitro. We observed a direct effect of the drug on the enzyme activity, unrelated to the well known effect of puromycin on protein synthesis. The effect of puromycin was to cause a rapid inhibition of the enzyme activity when either N-acetylglucosamine or desialylgalactosylorosomucoid were used as acceptors of galactose. The inhibition was observed only when Golgi membranes were preincubated with puromycin. Addition of puromycin to the complete assay mixture after the addition of all components failed to elicit the inhibition. Studies with rat serum galactosyltransferase showed that puromycin was not an inhibitor of the soluble form of this enzyme (30).

A number of compounds structurally related to puromycin, such as the aminonucleoside portion (6-dimethylaminoo-9-[3'-amino-3'-deoxy-β-D-ribofuranosyl] purine), 3'-amino-3'-deoxyadenosine, 6-dimethyladenosine were unable to mimic the effect of puromycin, either alone or in combination with phenylalanine. The entire puromycin molecule appeared to be important for this effect.

The glycosyltransferases are tightly bound to the membranes of the Golgi apparatus (1), and this environment is important for the activity of the enzyme. This intimate association is supported by attempts to purify sialyltransferase from liver.

Table III

<table>
<thead>
<tr>
<th>Effect of puromycin and related compounds on galactosyltransferase activity of rat liver Golgi</th>
</tr>
</thead>
<tbody>
<tr>
<td>Golgi membranes (0.035 mg) were preincubated for 5 min at 37° in distilled water with the additions indicated and then assayed for galactosyltransferase activity. The assay medium contained 0.05 μmole of UDP-[14C]Gal, 0.25 μg of GlcNac, 5 μmoles of 2-(N-morpholino)ethanesulfonate buffer, pH 5.7, 5 μl of 5% Triton X-100, and 3 μmoles of MnCl₂ in 45-μl total volume. After 30-min incubation at 37° the dpm transferred were measured as described in methods.</td>
</tr>
</tbody>
</table>

The rate of puromycin inhibition of galactosyltransferase was less than 1% of the control values. The effect of aminonucleoside, 6-dimethyladenosine, and phenylalanine separately appeared to be to increase the activity to 130 to 150% of the control values.

Binding of Puromycin to Golgi Membranes—The binding of puromycin to Golgi membranes was tested with [3H]puromycin. Golgi membranes (0.05 mg of protein) were incubated at 37° with [3H]puromycin for up to 30 min in a volume of 50 μl. After dilution to 0.5 ml with 0.1 M 2-(N-morpholino)ethanesulfonate buffer, the suspension was put on a Millipore filter. The Golgi membranes retained on the filter were washed 3 times with 0.5 ml of buffer, dried, and counted by liquid scintillation. The radioactivity bound to the membranes plotted against time of incubation is shown in Fig. 4. Curves A and B were obtained by adding 10⁶ dpm of [3H]puromycin to the Golgi suspensions while 1.2 × 10⁶ dpm were used for Curve C. During the first 10 min the binding of puromycin increased with increasing time of incubation. At 1 min approximately 4000 dpm were bound to the membranes in Curve A and 200 dpm in Curve B. The number of counts bound increased rapidly for 5 to 10 min and leveled off at 2200 dpm for Curve A and 1000 dpm for Curve B.

DISCUSSION

The action of puromycin at the ribosomal level has been shown to involve the release of nascent peptide chains by replacing aminoacyl-tRNA (17). Ultrastructural studies showed that puromycin causes disaggregation of polysomes in vitro and in vivo, but the effect was reversed rapidly (19).

In addition to its effect at the ribosomal level, puromycin has an effect on the assembly of sugars into glycoprotein. In the thyroid gland, puromycin completely inhibits the assembly of the oligosaccharide side chain (28). Sugars, such as mannose, near the peptide core were inhibited more than those farther away such as galactose (20).

The enzymes responsible for the sequential addition of sugars to the oligosaccharide chain are located in the Golgi apparatus. The addition of each sugar is accomplished by a specific glycosyltransferase. In this report, we have studied the effect of puromycin on galactosyltransferase of isolated Golgi fractions in vitro. We observed a direct effect of the drug on the enzyme activity, unrelated to the well known effect of puromycin on protein synthesis. The effect of puromycin was to cause a rapid inhibition of the enzyme activity when either N-acetylglucosamine or desialylgalactosylorosomucoid were used as acceptors of galactose. The inhibition was observed only when Golgi membranes were preincubated with puromycin. Addition of puromycin to the complete assay mixture after the addition of all components failed to elicit the inhibition. Studies with rat serum galactosyltransferase showed that puromycin was not an inhibitor of the soluble form of this enzyme (30).

A number of compounds structurally related to puromycin, such as the aminonucleoside portion (6-dimethylaminoo-9-[3'-amino-3'-deoxy-β-D-ribofuranosyl] purine), 3'-amino-3'-deoxyadenosine, 6-dimethyladenosine were unable to mimic the effect of puromycin, either alone or in combination with phenylalanine. The entire puromycin molecule appeared to be important for this effect.

The glycosyltransferases are tightly bound to the membranes of the Golgi apparatus (1), and this environment is important for the activity of the enzyme. This intimate association is supported by attempts to purify sialyltransferase from liver.
Column chromatography of detergent-treated enzyme resulted in large losses of activity in the isolated fractions (1). The action of puromycin on the Golgi enzyme may result from the interaction of the molecule with some component of the membrane secondarily affecting the enzyme. An interaction with the membranes was demonstrated with radioactive puromycin which appeared to bind tightly. Further studies are underway to elucidate the mechanism of this interaction.

REFERENCES
An Effect of Puromycin on Galactosyltransferase of Golgi-rich Fractions from Rat Liver
Margaret Treloar, Jennifer M. Sturgess and Mario A. Moscarello

Access the most updated version of this article at http://www.jbc.org/content/249/20/6628

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/249/20/6628.full.html#ref-list-1