The Characteristics of Inhibition of Protein Synthesis by Double-Stranded Ribonucleic Acid in Reticulocyte Lysates*

(Received for publication, October 1, 1973)

TONY HUNTER,† TIM HUNT, AND RICHARD J. JACKSON
From the Department of Biochemistry, University of Cambridge, Cambridge, England

HUGH D. ROBERTSON‡
From the Medical Research Council Laboratory of Molecular Biology, Cambridge, England

SUMMARY

All types of double-stranded RNA (dsRNA) tested inhibit protein synthesis in rabbit reticulocyte lysates. The inhibition is characterized by its strongly biphasic kinetics, and can be enhanced by preincubation of the lysate with dsRNA in the absence of protein synthesis. Only properly and extensively matched dsRNA (greater than about 50 base pairs) has this property; no form of DNA, single-stranded RNA or even RNA-DNA hybrids act as inhibitors in this way. The cause of the inhibition appears to be a failure of initiator tRNA to associate with native ribosomal subunits in the initiation process (Darnbrough, C., Hunt, T., and Jackson, R. J. (1973) Biochem. Biophys. Res. Commun. 48, 1556-1564). We have shown that this block is not accompanied by stable association of dsRNA with the ribosomes. There are several reasons to believe that the mechanism of action of dsRNA may be complex with the possible involvement of at least one catalytic step. First, the lysate is inhibited by levels of dsRNA at which ribosomes are present in 100-fold excess over base pairs of dsRNA present. Second, high concentrations of dsRNA (greater than 10 µg per ml) are not inhibitory, but can in some, but not all experiments, reverse the inhibition caused by lower levels of dsRNA. Third, a lysate which has been inhibited by dsRNA, when mixed with a fresh lysate will inhibit synthesis in the mixture much more severely than would be expected from the concentration of dsRNA now present. These results indicate that low levels of dsRNA promote the formation of an inhibitor which may exist in two forms: one that is reversible by high levels of dsRNA and one that is irreversible.

Double-stranded RNA is an extremely potent inhibitor of the initiation of protein synthesis in reticulocyte lysates (1, 2). This effect is not a peculiarity of cell-free systems from reticulocytes, since other mammalian cell-free extracts are also inhibited by dsRNA, albeit at somewhat higher concentrations (3, 4). This property of dsRNA is interesting not only for its obvious relevance in the mechanism of initiation of protein synthesis in mammalian cells, but also for its possible relevance to the numerous other biological effects of dsRNA: the induction of interferon (5, 6), enhancement of the immune response (7), the causation of tumor regression (8), and general cytotoxicity (9-11).

In this paper we describe experiments designed to elucidate the mechanism of action of dsRNA on the reticulocyte lysate. We have already shown that the inhibition of protein synthesis is characterized by loss of 40 S/Met-tRNA initiation complexes (12) and that the inhibition can be reversed by 3':5'-cAMP and a variety of adenine derivatives (13). We now present evidence that although this form of inhibition is highly specific for dsRNA (although without regard to its composition or sequence of bases), dsRNA is not the proximate cause of the inhibition. We suggest that dsRNA acts by promoting the formation of an agent which probably inhibits protein synthesis by a catalytic mechanism. This agent may be closely related to that which inhibits globin synthesis in the absence of added hemin (14, 15).

MATERIALS AND METHODS

Preparation of Reticulocytes

Rabbit reticulocytes were obtained as described by Darnbrough et al. (16).

Preparation of Lysates

Lysates were prepared from washed reticulocytes as described by Hunt et al. (17) and stored frozen as lysates from individual rabbits in liquid nitrogen.

Incubation Conditions

Lysates were incubated at 30° together with a one-fifth volume of a master mix containing the components necessary for protein synthesis as previously described (16). dl-[1-14C]Phenylalanine was added in a concentration of 1.5 µCi/ml.

* This research was supported by grants from the Cancer Research Campaign and the Medical Research Council of Great Britain.

† This work was carried out while T. Hunter was a Research Fellow of Christ's College, Cambridge; T. Hunt, a research fellow of Clare College, Cambridge; and H. D. Robertson, a Helen Hay Whitney Foundation Fellow.

‡ To whom all correspondence should be addressed.

§ Present address, The Rockefeller University, New York, New York 10021.

† The abbreviations used are: dsRNA, double-stranded RNA; dsDNA, double-stranded DNA; ssRNA, single-stranded RNA; ssDNA, single-stranded DNA; RE, replicative ensemble.
was used at a final concentration of 1.0 μCi per ml, while [35S]-methionine was used at 75 μCi per ml. Samples withdrawn from incubations were treated as described (27) for estimation of acid-precipitable alkali-stable radioactivity. In cases where pre-incubation was carried out, everything except the hemin was omitted from the incubation. All incubations were carried out with [3H]phenylalanine unless otherwise stated.

Preparation of Polynucleotides

RNAs from RNA Bacteriophages

f2 RNA was prepared by phenol extractions from f2 phage grown and purified as described by Engelhardt et al. (18). Pure 28 S phage RNA was prepared by fractionation of total f2 RNA on sucrose density gradients (19) and is termed f2 ssRNA. Alternatively, f2 ssRNA could be prepared by treatment of f2 RNA with RNase III (see below). f2 dsRNA is defined as f2 replicative ensemble (or RE) (18) from which ssRNA tails have been removed by mild pancreatic RNase digestion as described below.

High specific activity 32P-labeled f2 bacteriophage were grown according to the methods of Engelhardt et al. (18). Unlabeled f2 bacteriophage were the gift of Dr. R. E. Webster, The Rockefeller University, New York. The RE fraction from Escherichia coli cells infected with f2 was grown and purified according to Engelhardt et al. (18) and Robertson and Lodish (21). This material is a mixture of all structures which contain dsRNA, whether or not they contain single-stranded f2 ssRNA, could be prepared by treatment of f2 RNA with RNase III (see below). f2 dsRNA is defined as f2 replicative ensemble (or RE) (18) from which ssRNA tails have been removed by mild pancreatic RNase digestion as described below.

DNA-RNA hybrid—An aliquot of the RNA polymerase reaction was incubated with phenol for 1 min and extracted with chloroform before being precipitated by ethanol and layered onto a 5 to 20% sucrose gradient and centrifuged as described (25). The 18 S peak containing DNA-RNA hybrids was further purified by Cs2SO4 equilibrium density gradient as described by Colby et al. (27).

Double-stranded RNA—An aliquot of the RNA polymerase reaction was diluted to 0.1 ml in 0.01 M Tris-HCl (pH 7.4), 0.1 M magnesium acetate, 0.1 M NaCl, and treated with 3.7% formaldehyde before annealing. In the presence of 5 μg per ml of pancreatic DNase (Worthington DPFF) for 15 min at 37°; then the mixture was mixed with 60 pg of unlabeled f2 RNA, and boiled for 3 min in 1 ml of distilled water. The mixture was then made 0.05 to 0.1 M in Tris-HCl (pH 7.0), 0.1 M in NaCl, and 0.001 M in EDTA (Buffer A) and heated for another 3 hours. The material was made 20% in ethanol and layered onto a cellulose C11 column (20, 23). On such a column, DNA and small molecular weight material elute in Buffer A containing 35% ethanol; ssRNA, in 15% ethanol; and dsRNA (plus any stably attached ssRNA), in Buffer A alone. Whereas, greater than 99% of the 32P-labeled f2 RNA eluted from the column in 15% ethanol before annealing, 25% eluted in 15% ethanol and 75% in Buffer A alone after annealing. In other words, 75% of the single strands had been eluted from the double-stranded complex.

Since some of the labeled material would be expected to have unlabeled "tails," the material chromatographing as dsRNA was treated with pancreatic RNase to remove remaining single strands as follows: 1. f2 RNA was digested with Worthington pancreatic RNase was added to 1 ml of 32P-labeled material in Buffer A, and incubated at 37°. After 5 min 50.5% of the RNA was solubilized, and only an additional 3.7% in the next 10 min. dsRNA shows complete resistance to pancreatic RNase digestion under these salt conditions (23). Digestion was terminated with 0.4 ml of Buffer A saturated with phenol. After extraction and centrifugation to separate the layers, the process was repeated twice more; between the second and the third extraction, the aqueous layer was made 0.1% in diethyl pyrocarbonate and incubated for 15 min at 25°. Following the final phenol extraction, the aqueous layer was made 35% in ethanol and layered onto another cellulose C11 column. Fifty-three per cent of the material flowed through the column in 35% ethanol (representing the small molecular weight fragments from the digested single strands), while 4% remained attached to the column in 35% and 15% ethanol, eluting in Buffer A alone. This material was greater than 95% resistant to pancreatic RNase digestion in Buffer A, but completely sensitive in distilled water. This behavior is characteristic of f2 dsRNA (23). In addition, 25% of this material was solubilized by Escherichia coli RNase III, which is specific for the digestion of dsRNA (24). The final specific activity was 2.4 × 10⁵ cpm per μg.

dsRNA was isolated by phenol extraction from RNA grown and purified as described by Robertson et al. (24).

Nucleic Acids from Bacteriophage f1

Unlabeled f1 bacteriophage and double-stranded RF DNA were the kind gift of Dr. P. Model, The Rockefeller University, New York. During extensive synthesis of DNA-RNA hybrids and ssRNA by E. coli RNA polymerase with f1 ssDNA as template, dsRNA is synthesized as a side product (25). In a 10-ml reaction in 0.02 M Tris-HCl (pH 7.9), 0.0001 M dithiothreitol, 0.001 M EDTA, 0.01 M magnesium acetate were placed 0.4 μg of f1 ssDNA; 10 μmole each of unlabeled UTP and GTP; 0.5 μmole of [α-32P]-CTP (the kind gift of Dr. G. H. Dixon, M. R. C. Laboratory of Molecular Biology, Cambridge, specific activity 6000 mCi per mmole); 2 μg of E. coli RNA polymerase (prepared according to Burgess (26); the kind gift of Dr. A. A. Travers, M. R. C. Laboratory of Molecular Biology, Cambridge). After 3 hours of incubation, precipitation of an aliquot of the reaction in 5% tri-chloroacetic acid revealed that a 2.2-fold excess of RNA over input DNA had been synthesized. The various polynucleotides present in the mixture were separated and purified as follows.

DNA-RNA hybrid—An aliquot of the RNA polymerase reaction was mixed with phenol, treated with chloroform, and extracted with ethanol and layered onto another cellulose C11 column. The vast majority of the material flowed through the column in 35% ethanol, indicating that it had been solubilized by pancreatic RNase and was therefore either free ssRNA or RNA released from the DNA-RNA hybrids by pancreatic RNase. However, 2 to 3% of the RNA chromatographed in the position of dsRNA (eluting in Buffer A alone). This RNA was pooled and its double-stranded properties were confirmed by tests with pancreatic RNase and E. coli RNase III. The final specific activity was 1.2 × 10⁶ cpm per μg. The ds RNA was extensively dialyzed against water and lyophilized.

Synthetic Polynucleotides

Poly(U) was obtained from British Drug Houses. Poly(A), poly(I) (which was always boiled in solution for 2 min before use), and poly(I)-poly(C) were all obtained from Miles Laboratories. Poly(C) was obtained from Boehringer and Soehne. Poly(A)-U and poly(C)-C were prepared as described by Robertson et al. (24).

Other Polynucleotides

dsRNA obtained from a virus grown in Penicillium chrysogenum was the kind gift of Dr. D. Planterose, Beecham Research Laboratories, Betchworth, Surrey, England. TMV virus was the kind gift of Dr. J. J. Skehel, National Institute for Medical Research, Mill Hill, London. TMV virus was the kind gift of Dr. R. N. Perham, Department of Biochemistry, University of Cambridge. Calf thymus DNA and total yeast RNA were obtained from British Drug Houses, Escherichia coli ribosomal RNA was prepared from ribosomes purified from E. coli K 12800 by phenol extraction. Sendai RNA was a gift of Dr. B. Mahy, Department of Virology, University of Cambridge.

Enzymes and Enzyme Assays

RNase III

RNase III was prepared as described by Robertson et al. (24) with the modifications described by Robertson and Hunter (19).
The conditions for digestion of nucleic acids with RNase III have been reported previously (21).

DNase

DNase was obtained from Worthington Biochemical Corp. and was DPFF grade. Conditions used for DNase digestion are described above.

Sucrose Gradients

Sucrose gradients were run as described in the appropriate figure legends and were fractionated through a flow cell which was monitored at 260 nm. Gradient fractions were precipitated with cold 8% trichloroacetic acid together with the addition of 200 μg of carrier serum albumin for estimation of radioactivity.

Materials

ATP, GTP, creatine phosphate and creatine phosphokinase were all obtained from Boehringer and Soehne, Mannheim. He-

TABLE I

<table>
<thead>
<tr>
<th>Nucleic acid</th>
<th>Minimum concentration to give detectable inhibition (without preincubation)</th>
<th>Concentration to give maximum inhibition</th>
<th>Sensitivity of inhibition to predigested with DNase III</th>
<th>Potentiation of inhibition on preincubation with poly(1)</th>
<th>Maximum concentration tested</th>
<th>ng/ml</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class A</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poly(A-U)</td>
<td>ND*</td>
<td>10 to 100</td>
<td>ND</td>
<td>+</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>poly(A)+U</td>
<td>ND</td>
<td>10 to 100</td>
<td>ND</td>
<td>ND</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>poly(G)+C</td>
<td>2</td>
<td>50 to 100</td>
<td>ND</td>
<td>+</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>poly(I)+C</td>
<td>ND</td>
<td>10 to 100</td>
<td>ND</td>
<td>ND</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>reovirus RNA</td>
<td>ND</td>
<td>10 to 100</td>
<td>ND</td>
<td>+</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>f2 dsRNA*</td>
<td>1</td>
<td>10 to 100</td>
<td>+</td>
<td>+</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>f1 dsRNA*</td>
<td>1</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Penicillium chrysogenum dsRNA</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sendai RNA</td>
<td>ND</td>
<td>10 to 100</td>
<td>ND</td>
<td>+</td>
<td>10 to 100</td>
<td></td>
</tr>
<tr>
<td>Qs RNA*</td>
<td>20</td>
<td>ND</td>
<td>ND</td>
<td>+</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>f2 RNA*</td>
<td>10^6</td>
<td>ND</td>
<td>+</td>
<td>+</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>R17 RNA*</td>
<td>5 × 10^4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Class B</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>poly(U)</td>
<td>10^4</td>
<td>ND</td>
<td>–</td>
<td>–</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>poly(C)</td>
<td>5 × 10^4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>poly(A)</td>
<td>10^4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>poly(I)</td>
<td>10^4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>f2 ssRNA*</td>
<td>5 × 10^4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>TMV RNA</td>
<td>5 × 10^4</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td></td>
</tr>
<tr>
<td>Class C</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1 hybrid*</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td>See text</td>
<td></td>
</tr>
<tr>
<td>f1 ssDNA*</td>
<td></td>
<td>10^4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f1 RF DNA*</td>
<td></td>
<td>10^5</td>
<td></td>
<td></td>
<td>10^5</td>
<td></td>
</tr>
<tr>
<td>calf thymus DNA (native)</td>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td>10^5</td>
<td></td>
</tr>
<tr>
<td>Escherichia coli rRNA</td>
<td></td>
<td>–</td>
<td></td>
<td></td>
<td>3 × 10^4</td>
<td></td>
</tr>
<tr>
<td>yeast RNA</td>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td>10^5</td>
<td></td>
</tr>
<tr>
<td>T4 DNA</td>
<td></td>
<td>ND</td>
<td></td>
<td></td>
<td>10^5</td>
<td></td>
</tr>
</tbody>
</table>

a ND, Not done.
b See "Preparation of Polynucleotides."

RESULTS

Kinetics of Protein Synthesis—Protein synthesis in rabbit reticulocyte lysates in the presence of poliovirus dsRNA exhibits two distinct phases (2). In the first, latent phase, the initial rate of protein synthesis remains unaffected: an abrupt cessation of protein synthesis marks the onset of the second, inhibitory phase. As can be seen from Table I a wide variety of dsRNAs are capable of causing inhibitions with these characteristics. A typical example of the kinetics of protein synthesis in a rabbit reticulocyte lysate incubated with hemin and f2 dsRNA (see "Preparation of Polynucleotides") is shown in Fig. 1. The level of incorporation achieved in the presence of sodium fluoride, which blocks initiation, indicates that the onset of the second phase occurs only after several complete rounds of protein synthesis have occurred (Fig. 1). In contrast the inhibition of protein synthesis obtained with single stranded polynucleotides such as poly(U) or poly(1) is totally different in kind. In this case the initial rate of protein synthesis was depressed and there was no latent phase (Fig. 1). Also the decrease in the initial rate was roughly proportional to the concentration of polynucleotide used and the lowest concentration of polynucleotide showing inhibition was at least four orders of magnitude greater than the lowest concentrations of dsRNA showing inhibition.

Maximum inhibition by dsRNA was observed in the range 10 to 100 ng per ml whereas 0.5 ng per ml was the lowest concentration at which inhibition was detectable unless preincubation was carried out (see below). Decreasing the inhibitor concentration from the maximally inhibitory level led to an increase in the length of the latent phase (see Fig. 2A). A puzzling feature of the concentration dependence is that an increase in the dsRNA concentration above the maximally inhibitory level also led to an increasing delay in the onset of inhibition (Fig. 2B), so much so that at the highest concentrations tested (above 10 μg per ml) there was barely any detectable inhibition. When we examined the concentration dependence of inhibition with a number of

Fig. 1. Kinetics of protein synthesis in the presence of f2 dsRNA or poly(I). Samples (15 μl) were taken at the times indicated from 100-μl reactions set up and assayed as described under "Incubation Conditions." All polynucleotides and the sodium fluoride were added at the start of the incubation. Δ—Δ, control; •—•, + 50 ng per ml of f2 dsRNA; ▲—▲, + 10^4 ng per ml of poly(I); ○—○, + 3 × 10^4 ng per ml of poly(I); •—•, + 10 mM sodium fluoride.
were such preincubated lysates significantly more sensitive to the capacity of the lysates to synthesize protein (see Fig. 3C), nor do these conditions without dsRNA only marginally reduce the hemin and dsRNA in the absence of the other components necessary for protein synthesis. Preincubation for up to 1 hour under these conditions without dsRNA only marginally reduced the capacity of the lysates to synthesize protein (see Fig. 3C), nor were such preincubated lysates significantly more sensitive to higher affinity of the p chain mRNA for the few remaining active ribosomes (28).

Effect of Preincubation of Lysates with dsRNA—The inhibition described in the previous section was observed at all temperatures between 20 and 37°C, but the level of incorporation reached before onset of inhibition decreased as the temperature was lowered. This observation prompted us to test whether the length of the latent phase was changed if the lysates were preincubated with hemin and dsRNA. Preincubation for up to 1 hour under these conditions without dsRNA only marginally reduced the capacity of the lysates to synthesize protein (see Fig. 3C), nor were such preincubated lysates significantly more sensitive to dsRNA when this was added after the preincubation (data not shown). In contrast, when the dsRNA was present in the preincubation, the lag before onset of inhibition was greatly reduced by comparison with the lag observed if the same concentration of dsRNA was added at the start of a normal incubation (cf. Fig. 3A with Fig. 3B). At all concentrations tested, preincubation with dsRNA increased the degree of inhibition in a manner directly related to the length of the preincubation (Fig. 3C). With the higher concentrations of dsRNA the inhibition reached a maximal level such that the residual incorporation probably represented run-off of the ribosomes from the pre-existing polysomes. The increase in sensitivity obtained with preincubation enabled us to detect concentrations of dsRNA as low as 0.1 ng per ml (Fig. 3C). The contents of Table I show that only RNAs which would normally be classified as double-stranded show this POTENTIATION of inhibition upon preincubation.

Evidence for Formation of Inhibitor in Lysates Incubated with dsRNA

Further experiments were designed to distinguish between the two distinct ways in which dsRNA could cause inhibition: (a) some component in the lysate essential for initiation may be effectively removed from the system by binding to dsRNA or by...
Fig. 4. Detection of an inhibitor in lysates incubated with dsRNA. A, 10-μl aliquots were withdrawn at the times shown from 100-μl incubations set up as described under "Incubation Conditions" with the following concentrations of *Penicillium chrysogenum* dsRNA: 100, 30, 10, 3, 1, 0.3, 0.1, 0.03, and 0.01 ng per ml. Kinetics of amino acid incorporation into protein (cpm) are shown only for a control and the following concentrations of dsRNA: ---, control; X—X, 10 ng per ml of dsRNA; •—•, 3 ng per ml of dsRNA; □—□, 1 ng per ml of dsRNA; O—O, 0.3 ng per ml of dsRNA. B, after 16 min, the incubations described in A were cooled in ice and 1 volume (30 μl) was mixed with 2 volumes of fresh incubation mixture containing all the components described under "Incubation Conditions," including hemin and radioactive amino acid, thus generating 2-fold diluted incubations containing final concentrations of dsRNA of 33 ng per ml etc. These mixtures were then incubated and 10-μl samples were withdrawn at the times shown for assay of radioactivity. Final dsRNA concentrations were as follows: ---, control (no dsRNA); X—X, 3.3 ng per ml of dsRNA; •—•, 1 ng per ml of dsRNA; □—□, 0.33 ng per ml of dsRNA; O—O, 0.1 ng per ml of dsRNA. C, after 16 min the incubations described in B were cooled in ice and a 3-fold dilution was carried out as described in B. These new mixtures were then incubated and 10-μl samples were taken at the times shown for assay of radioactivity. Final dsRNA concentrations were as follows: ---, control (no dsRNA); X—X, 1.1 ng per ml of dsRNA; •—•, 0.33 ng per ml of dsRNA; □—□, 0.11 ng per ml of dsRNA; O—O, 0.033 ng per ml of dsRNA. D, the results of A, B, and C together with the parallel incubations containing the other dsRNA concentrations described in A but not illustrated, are replotted to show the net synthesis occurring in each of the three 16-min incubation periods against the actual concentrations of dsRNA in the incubations on a logarithmic scale. •—•, data from the first incubation (A); O—O, data from the second incubation (B); X—X, data from the third incubation (C). ---, mean value of the three control incubations (i.e. those lacking dsRNA) which differed by less than 10%.

The detection of the induced inhibitor in the assays described being inactivated in the presence of dsRNA, or (b) the presence of dsRNA in the incubation may lead to the formation of an initiation inhibitor, such as occurs when lysates are incubated without hemin (14, 29). This type of inhibitor may be detected by mixing an inhibited lysate (i.e. one that has been incubated with dsRNA under standard conditions for protein synthesis assays) with a portion of fresh lysate and testing whether the protein synthesis activity of this mixture is more severely restricted than would be expected from a consideration of the amount of dsRNA present. An experiment of this type is illustrated in Fig. 4. First, standard protein synthesis assays were carried out with various concentrations of dsRNA (Fig. 4A). After 16-min incubation, 1 volume of each of these assays was mixed with 2 volumes of fresh incubation mix containing unincubated lysate and all the usual components for protein synthesis assays, but no dsRNA. Protein synthesis in these mixtures was then monitored over a 16-min incubation period (Fig. 4B), and then each assay was diluted again 3-fold in fresh incubation mix and incorporation assayed for another 16 min (Fig. 4C). The total synthesis occurring in the 16 min induction period is plotted against the actual concentration of dsRNA in each incubation (Fig. 4D). The synthesis occurring in the second incubation (Fig. 4B) (where the dsRNA concentration had been reduced 3-fold) is much less than would be expected by comparison with the synthesis occurring in the first incubation (Fig. 4A) even allowing for the possibility that the ribosomes in the portion of the lysate previously incubated with dsRNA might be irreversibly inactivated. We also verified that the characteristics of inhibition were the same in the first, second and third incubations, namely loss of poly-somes and loss of Met-tRNA_{Met} from the 40 S ribosomal subunit.

The detection of the induced inhibitor in the assays described
The addition of high levels of dsRNA to a lysate incubated with low levels of dsRNA. A, incubations were set up as described under "Incubation Conditions" either without added dsRNA or with 10 μg per ml of Penicillium chrysogenum dsRNA. Samples (15 μl) were withdrawn at the times shown to assay for radioactivity. Aliquots (150 μl) were taken from the incubation containing 10 ng per ml of dsRNA at 1, 2, 3, 4, 5, 7, and 10 min after the start of the incubation and the concentration of dsRNA was raised to 10 μg per ml by addition of 1/100 volume of a 1 mg per ml of Penicillium chrysogenum dsRNA solution, before continuing the incubation. The time courses for the incubations where the concentration of dsRNA was raised to 10 μg per ml at 1, 2, 3, and 4 min after the start of the incubation are shown. ■, control; ▲, 10 ng per ml of dsRNA throughout; ▲—▲, 10 μg per ml of dsRNA added at 1 min; △—△, 10 μg per ml of dsRNA added at 2 min; ◦—○, 10 ng per ml of dsRNA added at 3 min; ▲—▲, 10 μg per ml of dsRNA added at 4 min.

B, another set of incubations with a different lysate were set up as described in A, with the following differences. The incubations contained [35S]methionine and 5 S samples were taken for estimation of radioactivity incorporated into protein. In this case the concentration of dsRNA was raised to 10 μg per ml at 5, 8, and 15 min after the start of the initial incubation. ○—● control; ▲—▲, 10 ng per ml of dsRNA throughout; ▲—▲, 10 μg per ml of dsRNA added at 5 min; △—△, 10 μg per ml of dsRNA added at 8 min; ◦—○, 10 ng per ml of dsRNA added at 15 min.

The lowest concentration to give detectable inhibition is listed for each nucleic acid in Class a. The concentration giving maximum inhibition is shown for those cases where this was tested and these values are clearly all of the same order of magnitude. It did not seem that natural dsRNAs were better inhibitors than synthetic dsRNAs except in the case of poly(G)−(C) which might reflect a slight variation in the helix structure. It is clear that there is very little specificity with regard to base composition or base sequence in the inhibition of protein synthesis. Note that poly(A U), an alternating copolymer which forms hairpin-like structures, is a perfectly good inhibitor of the dsRNA type. The presence of "tails" on the replicative ensemble of f2 did not alter its effectiveness as an inhibitor if a correction was made for the percentage of the RNA which was single stranded. Surprising inclusions in Class a are RNAs isolated from highly purified preparations of Qβ, f2, and R17 phages. However, it has already been shown by other methods that Qβ phage contains up to 2% dsRNA (24). We have been able to show that f2 and R17 phages also contain appreciable if somewhat lower amounts of dsRNA (Table I) (19). For all three phage RNAs it is possible to separate the inhibitory dsRNA fraction from the 28 S viral RNA by sucrose density gradient centrifugation (19). Purified 28 S viral RNA did not exhibit inhibition of a dsRNA type, and instead, if high enough concentrations were used, inhibition of a rRNA type was seen, as other workers have noted (30). In Class 6 the lowest concentration to give detectable inhibition is listed. All these nucleic acids were tested under conditions of preincubation, but none of them showed enhancement of inhibition. For Class c the highest concentration tested is listed, although a whole range of concentrations was tested to ensure that an inhibition of the dsRNA type was not being masked by concentration dependence. All the nucleic acids in Class c were tested in the preincubation assay, but still showed no inhibition. In the case of the f1 RNA–DNA hybrids, an inhibition of the dsRNA type was observed at high concentrations. However, this inhibitory activity was not susceptible to pancreatic DNase digestion and we feel that this inhibition was due to a contamination of the hybrid preparation with dsRNA generated during the synthesis of the hybrid with E. coli RNA polymerase (see "Preparation of Polynucleotides").

Note that despite the common sequences shared by all the polynucleotides derived from f1 phage, only f1 dsRNA is inhibitory.

Size Requirement—To determine the minimum size of dsRNA effective in inhibition, a preparation of Penicillium chrysogenum dsRNA containing a major 14 S species and a minor fraction of smaller dsRNA molecules of random size was fractionated on a sucrose gradient (Fig. 6). Each fraction was tested for inhibitory activity at the same final RNA concentration (10 ng per ml) and the percentage inhibition caused by each fraction is plotted in Fig. 6. When RNAs from selected regions of the original gradient were rerun, they sedimented with approximately their original S value as judged both by optical density and by inhibitory activity. This indicates that the distribution of dsRNA on the
the use of dsRNA prepared from E. coli infected with the sus3 mutant of f2. This RNA is about 30 to 50 base pairs in size, although it is not known whether all this product exists in a base-paired form.

We have used the abolition of inhibition on predigestion with RNase III as a further diagnostic test for nucleic acids displaying dsRNA type inhibition. None of the dsRNAAs tested in this manner showed inhibition after digestion with RNase III, whereas the inhibition observed with poly(U) was unaffected by predigestion with RNase III (Table I).

A further indication of the size limit for inhibition comes from the use of dsRNA prepared from E. coli infected with the sus3 mutant of f2. This RNA is about 30 to 50 base pairs in size, and while it acts as a good competitive inhibitor of RNase III, it did not inhibit protein synthesis in the lysate.

Fate of dsRNA during Inhibition

In order to test the stability of RNA added to the lysate with a cut-off of effective inhibition occurs at around 4 S as judged by the position of a tRNA marker in a parallel gradient. Using a relationship devised to determine molecular weight from S value for dsRNA (31), the minimum effective size for inhibition would appear to be about 50 base pairs.

In addition, exhaustive RNase III digests of dsRNA did not inhibit over a wide concentration range, even if preincubation was used. The size range of exhaustive RNase III digests has been shown to be 10 to 20 base pairs (32), although it is not known whether all this product exists in a base-paired form.

We have used the abolition of inhibition on predigestion with RNase III as a further diagnostic test for nucleic acids displaying dsRNA type inhibition. None of the dsRNAAs tested in this manner showed inhibition after digestion with RNase III, whereas the inhibition observed with poly(U) was unaffected by predigestion with RNase III (Table I).

A further indication of the size limit for inhibition comes from the use of dsRNA prepared from E. coli infected with the sus3 mutant of f2. This RNA is about 30 to 50 base pairs in size, and while it acts as a good competitive inhibitor of RNase III, it did not inhibit protein synthesis in the lysate.
subunits, which seem likely especially with factors that have anti-association factor activity, these considerations eliminate any models in which dsRNA inhibits initiation by irreversibly binding an initiation factor and effectively removing it from the system. Hypotheses in which the initiation factor binds to the dsRNA but is later released in an inactive form are still tenable, but such models would seem to suggest that addition of dsRNA at 100 to 1000 times the minimum inhibitory level (i.e. at levels where there would be enough binding sites to accommodate all the initiation factor present in the lysate) should cause almost instantaneous inhibition of initiation, rather than the slight reduction in the lag period which is in fact observed.

These considerations lead us to question the hypothesis proposed by Kaempfer and Kaufman (34) that initiation is inhibited because IF-3, an initiation factor with anti-association factor activity (35), is inactivated by direct complexing with dsRNA. This hypothesis is based on the observations that supplementation of the lysate with IF-3 prevented the inhibition caused by dsRNA and that IF-3 itself bound strongly to dsRNA. Although IF-3 bound to DNA less strongly (34), the discrimination between DNA and dsRNA in this binding reaction is nowhere near as great as in protein synthesis assays (Table 1).

Our results suggest that the mechanism of action of dsRNA is more complex than direct inactivation of IF-3. We have shown that lysates which have been incubated with dsRNA contain an inhibitor more potent than the dsRNA itself, and all our observations are consistent with the idea that the effect of dsRNA on protein synthesis is explicable in terms of the formation and action of this inhibitor. We do not as yet know the nature of this inhibitor other than that gel filtration studies have shown it to be macromolecular. It is not impossible that interaction of IF-3 with dsRNA is part of the inhibitor-forming process. It is also possible that the inhibitor inactivates IF-3, although we favor a catalytic rather than stoichiometric relationship between the two.

Since the addition of high levels of dsRNA to lysates incubated with inhibitory concentrations for various times produced two different types of response, depending on the particular lysate used, it seems necessary to postulate that the inhibitor may exist in two possible forms; one reversible by high levels of dsRNA and one irreversible. The results in Fig. 5 suggest that in some lysates the irreversible species is formed significantly more slowly than the reversible species, whereas in other cases the irreversible form is generated very rapidly. Although the existence of two forms of inhibitor and the variability between lysates are puzzling features, they are not unprecedented. There is a close parallel between lysates incubated with low levels of dsRNA and those incubated without hemin. In both situations the kinetics of protein synthesis are biphasic (17, 36) and the 40S/Met-tRNA ** complexes disappear shortly before the abrupt cessation of protein synthesis (29). In addition we have shown elsewhere that a number of compounds can prevent and reverse the inhibition seen in both conditions (13), whereas Kaempfer and Kaufman have shown that addition of excess IF-3 prevents not only the inhibition caused by dsRNA (34) but also that caused by omission of hemin (35). The two types of response, no reactivation or delayed reactivation, noted in Fig. 5, are also seen when hemin is added to lysates incubated for various times without hemin (36, 37). Several lines of evidence have led to the conclusion that incubation without hemin leads to the formation of an inhibitor which may exist in two forms, reversible by hemin or irreversible (29, 37). The reversible species may be a precursor of the irreversible form (37), which has been partially characterized as a large molecule and which may act catalytically since one molecule can apparently prevent the functioning of several hundred ribosomes (38). A further similarity between lysates incubated with low levels of dsRNA or without hemin is that they are committed to stop protein synthesis several minutes after a brief incubation period does not prevent the onset of inhibition although it may render the shut-off transitory (Fig. 5 and Refs. 17, 36, and 37).

In spite of the close similarities described, we do not wish to imply that the mechanism of inhibition of protein synthesis is absolutely identical in the two cases. If this were so, we might expect that high levels of dsRNA could substitute for hemin in preventing inhibition, and we have so far failed to observe this. Also, preliminary gel filtration studies suggest that the inhibitor formed in the presence of dsRNA is larger than that formed in the absence of hemin. It seems clear that in both situations the inhibition involves a complex multi-step process. It is possible that the terminal stages of this process are identical in the two conditions, whereas the early steps are different.

Acknowledgments—We wish to thank Dr. S. Legon for pointing out to us that it is possible to reactivate certain lysates incubated with low concentrations of dsRNA by delayed addition of high concentrations of dsRNA. We would also like to thank Anne Brayley, Jack Brittain, and Jean Turner for their expert help.

REFERENCES

The characteristics of inhibition of protein synthesis by double-stranded ribonucleic acid in reticulocyte lysates.
T Hunter, T Hunt, R J Jackson and H D Robertson

Access the most updated version of this article at http://www.jbc.org/content/250/2/409

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/250/2/409.full.html#ref-list-1