Mammalian DNA Ligases

SEROLOGICAL EVIDENCE FOR TWO SEPARATE ENZYMES* (Received for publication, April 1, 1975)

STEFAN SÜDERHÅLL AND TOMAS LINDAHL
From the Department of Chemistry, Karolinska Institutet, Stockholm, Sweden

Mammalian cells contain two DNA ligase activities with different chromatographic properties, referred to as DNA ligase I and II. The major ligase activity present in calf thymus cell extracts, DNA ligase I, has been purified 1000-fold. After repeated injections of this enzyme with complete Freund's adjuvant into a rabbit, antibodies were induced that inhibit DNA ligase I from calf, human, mouse, and rabbit tissues. This antisem did not affect DNA ligase II from the same sources to a detectable extent, even at a concentration 10-fold higher than that required for 98% inhibition of DNA ligase I. These data strongly indicate that the two mammalian DNA ligase activities are due to two separate enzymes, and not to two forms of the same enzyme. Both enzymes are present in the nuclear fraction, but are also found in the cytoplasmic fraction. Rapidly dividing cells (mouse ascites tumor cells and calf thymus) contain higher amounts of DNA ligase I than other cells (calf liver and spleen, human placenta, and rabbit spleen), while no such correlation was observed for DNA ligase II.

The major DNA ligase activity present in cell extracts from mouse embryonic fibroblasts (1), calf thymus (2), and the human heteroploid cell line EUE (3) is an ATP-requiring enzyme with a molecular weight of 175,000 to 220,000. This DNA ligase, which we call mammalian DNA ligase I, apparently acts by the same mechanism as the phage T4-induced DNA ligase in Escherichia coli (4, 5), because a covalently bound ligase-AMP complex (6) and a DNA-AMP complex (7) are formed during the interaction between the enzyme and DNA containing single strand breaks. On prolonged storage in solution, the DNA ligase I dissociates into an active species of one-half of the original size (3).

In addition to DNA ligase I, a second DNA ligase activity is present in calf thymus cell extracts (2). This enzyme, which is referred to as DNA ligase II, also requires ATP, but it has different fractionation properties and is more heat-labile than DNA ligase I. Each of the separated enzymes is active in a standard DNA joining assay and can catalyze the conversion of circular DNA molecules containing single strand breaks to a form that remains acid-insoluble after incubation with alkaline phosphatase (10). [5'-32P]Phosphoryl-DNA was prepared according to Weiss et al. (11). Reaction mixtures (150 µl) contained 10.5 µmol of Tris-HCl (pH 7.5), 1.5 µmol of MgCl₂, 0.15 µmol of dithiothreitol, 0.05 µmol of EDTA, 0.05 µmol of ATP, 1.5 µg of [5'-32P]Phosphoryl-DNA (initially 30,000 cpm), and a limiting amount of enzyme (0.002 ligase unit). With crude enzyme fractions (cell extracts and ammonium sulfate fractions), the reaction mixtures were supplemented with 15 µmol of NaCl to suppress nuclease activity (12). When antibodies were added, the enzyme-containing reaction mixtures (without ATP and [5'-32P]phosphoryl-DNA) were first incubated for 5 min at 0°C with a rabbit γ-globulin fraction (up to 600 µg of protein), followed by addition of the ligase substrate and ATP and transfer to 20°C. Preincubation of ligases with antibodies for longer time periods or at higher temperatures (10 min at 23 or 37°C), or both, did not cause increased inhibition of ligase activity. The reaction mixtures were incubated for 30 min at 20°C. The reactions were stopped by addition of 4.5 µmol of EDTA, 10.5 µmol of Tris-HCl (pH 8.5), 120 µg of Sarkosyl, and 23 µg of preincubated pronase, followed by incubation for 60 min at 37°C. Determinations of the alkaline phosphatase-resistant 32P in the DNA then were performed according to Weiss et al. (10). Under the conditions used, 1 ligase unit catalyzes the conversion of 1 nmol of 32P to phosphatase resistance.

Cells and Tissues—Bovine tissues were obtained from freshly slaughtered calves (less than 6 months old) at the local slaughterhouse. The tissues were packed in ice and used for enzyme preparations within 2 hours. Rabbit spleens were obtained from locally killed animals. Cells from the mouse TAgHa ascites tumor were a gift from Professor G. Klein, Karolinska Institutet, Stockholm. This ascites tumor was originally derived from a spontaneous mammary carcinoma. A human placenta was obtained immediately after delivery at a local hospital.

Subcellular Distribution—Cell nuclei were prepared from calf thymus according to Gottesman and Canellakis (13). The sucrose/NaCl-containing supernatant solution after the first low speed centrifugation was further subdivided by differential centrifugation into a mitochondrialfraction (pelleted by 11,000 x g for 20 min), a fraction containing smaller particles (pelleted by 100,000 x g for 2 hours), and a...
cytoplasmic fraction. The mitochondria were further purified by isopycnic sucrose gradient centrifugation (14), and mitochondria were also prepared from calf liver by the same procedures. Cell nuclei were directly extracted as described below for disintegrated whole tissue, and the extract was fractionated and analyzed for DNA ligase activities. Purified mitochondria were disrupted by ultrasonic treatment. Active fractions were pooled and concentrated by dialysis against a saturated ammonium sulfate solution containing 1% NaCl in the same buffer (2 x 400 ml). The DNA ligase I activity from the column, and the most active fraction contained 0.27 m mol of DNA ligase I and DNA ligase II extracted were approximately 70% and 60%, respectively.

Separation of DNA Ligases—Calf and human tissues were processed in 100-g amounts, while the rabbit and mouse material was analyzed by the same methods but at a smaller scale (1 to 4 g). Here, the fractionation of 100 g of tissue is described. All buffers contained 0.1 M NaCl/0.05 M Tris-HCl (pH 7.4/1 M EDTA. The tissue fragments were homogenized in a Waring Blendor with 500 ml of the same buffer by treatment at full speed three times for 30 s. Between the treatments, the homogenizer was chilled in an ice bath for 2 min. The homogenate was gently stirred for 60 min at 0°. After centrifugation, the supernatant (Fraction I, 505 ml) was diluted with 1 volume of 1 mM EDTA. To the diluted extract, 0.1 volume of 5% streptomycin sulfate was slowly added with continuous stirring, and the mixture was gently stirred for an additional 30 min. The precipitate was removed by centrifugation and discarded. To the supernatant (Fraction II, 1000 ml), 21% of cold ammonium sulfate was slowly added, and the resulting suspension was brought to pH 7.5 by addition of 1 M Tris base. After 30 min, the precipitate was removed by centrifugation. Additional ammonium sulfate (160 g/liter) was added to the supernatant, and the resulting suspension was again neutralized and left for 30 min. After centrifugation, the supernatant was discarded. The precipitate was suspended in 50 ml of 0.015 M potassium phosphate (pH 7.2/1 mM EDTA and dialyzed against this buffer for 10 to 14 hours. The dialyzed material (Fraction III, 100 ml) was applied to a phosphocellulose column (4 x 10 cm) equilibrated with the same buffer. The column was washed with 250 ml of this buffer, and the adsorbed protein was subsequently eluted with 0.8 M NaCl/0.015 M phosphate buffer (pH 7.2). This eluate (Fraction IV, 40 to 80 ml) was applied to a hydroxyapatite column (2 x 7 cm) equilibrated with 0.15 M phosphate buffer (pH 7.2). The column then was eluted with potassium phosphate buffer (pH 7.2) as follows: 160 ml of 0.05 M buffer (Fraction Va), 400 ml of 0.14 M buffer (Fraction Vb), and 160 ml of 0.40 M buffer (Fraction Vc). Fig. 1 shows a typical elution pattern and indicates how the fractions were pooled for assay. The recovery of DNA ligase activity in the phosphocellulose and hydroxyapatite chromatography steps were approximately 70% and 60%, respectively.

Further Purification of DNA Ligase I—Calf thymus DNA ligase I was further purified by applying Fraction Vb, isolated from 900 g of calf thymus, to a phosphocellulose column (2.2 x 20 cm) equilibrated with 0.015 M potassium phosphate buffer (pH 7.2/1 mM EDTA) after dialysis against the same buffer for 16 hours. The ammonium sulfate precipitation and separately chromatographed on Sephadex G-150 as described (Ref. 2; see also the Fraction VI ... purification step in this work). This purification step was necessary to obtain DNA ligase II essentially free from DNA ligase I. The DNA ligase I fraction obtained had a specific activity three times higher than that of the DNA ligase II fraction, and either of the two ligases could catalyze the conversion of a maximum of 30% of the total 32P in the ligase substrate to an alkaline phosphatase-resistant form. The DNA ligase then were assayed under the standard conditions in reaction mixtures containing 10-4 unit of DNA ligase (2.5 μg of DNA ligase I or 7 μg of DNA ligase II) and increasing amounts of γ-globulin from immunized or nonimmunized rabbits. As shown in Fig. 2, DNA ligase I was inhibited to more than 98% by addition of the DNA ligase I antiserum to a protein concentration of 0.6 mg/ml. Addition of a corresponding γ globulin fraction from nonimmunized rabbits (referred to below as control serum), or from the immunized rabbit prior to immunization, did not cause significant inhibition (<5%) at protein concentrations up to 4 mg/ml. DNA ligase II was not inhibited by addition of either the ligase I antiserum or the control serum at protein concentrations up to 4 mg/ml (Fig. 2). As a further control, the phase T4-induced DNA ligase was assayed with and without antiserum under the same conditions. This microbial enzyme was not detectably inhibited by the DNA ligase I antiserum (less than 5% inhibition at 0.6, 2, or 4 mg/ml of antiserum). When DNA ligase I and II were mixed in different proportions in the same reaction mixture, ligase activity equivalent to the amount of DNA ligase I added was inhibited by addition of antiserum, while activity corresponding to ligase II was unaffected. In a typical experiment, a reaction mixture containing 11 x 10-4 unit of ligase I and 4 x 10-4 unit of ligase II yielded 16 x 10-4 unit of ligase activity in the presence of control serum (2 mg/ml), and 4.5 x 10-4 unit of ligase activity in the presence of ligase I antiserum (2 mg/ml). The lack of inhibition of DNA ligase II by the DNA ligase I antiserum strongly indicates that DNA ligase II is a separate
Table I

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Protein concentration (mg/ml)</th>
<th>Specific activity (ligase units/mg protein)</th>
<th>Total activity (ligase units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I Crude extract</td>
<td>19.5</td>
<td>0.906</td>
<td>530</td>
</tr>
<tr>
<td>II Streptomycin supernatant</td>
<td>4.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>III Ammonium sulfate</td>
<td>4.1</td>
<td>0.080</td>
<td>310</td>
</tr>
<tr>
<td>IV Phosphocellulose</td>
<td>1.9</td>
<td>0.60</td>
<td>250</td>
</tr>
<tr>
<td>V Hydroxyapatite</td>
<td>0.70</td>
<td>1.2</td>
<td>160</td>
</tr>
<tr>
<td>VI Second phosphocellulose</td>
<td>11.2</td>
<td>5.2</td>
<td>105</td>
</tr>
<tr>
<td>VII Sephadex G-150</td>
<td>1.1</td>
<td>5.5</td>
<td>75</td>
</tr>
<tr>
<td>VIII Heat treatment</td>
<td>2.0</td>
<td>5.7</td>
<td>45</td>
</tr>
</tbody>
</table>

a Protein was determined in Fractions I to III by the biuret reaction and in Fractions IV to VIII by ultraviolet absorption.

b In assays of Fractions I to III the reaction mixture was supplemented with NaCl (to 0.1 M). The values in the table have been corrected for the 50% inhibition caused by this addition (see Footnote 2 in the text).

c The data on Fractions I to IV include ligase II activity and are therefore approximately 10% too high.

d Heat treatment of Fraction VII was performed in aliquots suitable for immunization. The data given here for Fraction VIII represent the sum of these aliquots.

enzyme and not a derivative form of DNA ligase I.

The results above do not exclude the possibility that the two DNA ligases could be antigenically related, as the rabbit antiserum might interact with DNA ligase II without causing inhibition of enzyme activity. To investigate this point, the rabbit antibodies against DNA ligase I (600 µg of protein) were incubated together with purified goat anti-rabbit IgG (820 µg of protein) in 50 µl of 0.15 M NaCl/0.01 M sodium phosphate (pH 7.0) at 0° for 60 min. A visible precipitate was formed, which was removed by centrifugation. The supernatant solution had a ligase I-inhibiting activity (amount needed for 50% inhibition) 6-fold lower than that of rabbit antibodies incubated in an identical fashion but without goat anti-rabbit IgG. Thus, the goat antiserum had apparently precipitated 80 to 85% of the DNA ligase I antibodies. If an enzymatically active complex between DNA ligase II and rabbit anti-ligase I antibodies was formed, it should also be precipitated by the goat anti-rabbit IgG under the same conditions. Therefore, DNA ligase II (6 × 10⁻³ unit) was first incubated with either ligase I antibodies or rabbit control serum (600 µg of protein) at 0° for 30 min. Anti-rabbit IgG from goat (820 µg of protein) then was added, and the incubation was continued at 0° for 60 min. A visible precipitate was again formed, which was removed by centrifugation, and the supernatant solutions were assayed for DNA ligase activity. There was no significant difference (<10%) in ligase activity between the supernatant solutions from DNA ligase II incubated with ligase I antibodies or rabbit control serum (600 µg of protein) at 0° for 30 min. Anti-rabbit IgG from goat (820 µg of protein) then was added, and the incubation was continued at 0° for 60 min. A visible precipitate was again formed, which was removed by centrifugation, and the supernatant solutions were assayed for DNA ligase activity. There was no significant difference (<10%) in ligase activity between the supernatant solutions from DNA ligase II incubated with ligase I antibodies or control serum, showing that no DNA ligase II had been co-precipitated with the rabbit antibody-goat anti-rabbit IgG complex. In separate control experiments, it was found that goat anti-rabbit IgG did not affect either DNA ligase I or ligase II activity at the concentrations used here. It is concluded that DNA ligase I and DNA ligase II do not seem to be antigenically related.

Presence of DNA Ligase I and II in Different Tissues—Several different tissues and cells from different mammals were surveyed for DNA ligase I and II activity. Due to their relatively high DNA ligase activity, crude cell extracts from calf thymus could be directly assayed in a quantitative fashion in the presence of neutral salt (0.1 M NaCl) in the reaction mixture. Thus, addition of 45 µg of a thymus extract (Fraction IV), was fractionated on a hydroxyapatite column by stepwise elution with increasing amounts of phosphate buffer as described under "Experimental Procedure." The indicated fractions were assayed for ligase activity. Fractions were pooled as indicated. Fraction Vb contains DNA ligase I and Fraction Vc, DNA ligase II. O---O, enzyme activity.

FIG. 1. Hydroxyapatite chromatography of DNA ligases from human placenta. A partly purified enzyme fraction, containing both ligases (Fraction IV), was fractionated on a hydroxyapatite column by stepwise elution with increasing amounts of phosphate buffer as described under "Experimental Procedure." The indicated fractions were assayed for ligase activity. Fractions were pooled as indicated. Fraction Vb contains DNA ligase I and Fraction Vc, DNA ligase II. O---O, enzyme activity.
I) to the standard reaction mixture yielded 2×10^{-4} unit of ligase activity. After simultaneous addition of 2.0 or 4.5×10^{-4} units of purified ligase II, respectively, together with 2×10^{-4} unit of Fraction I, 4.0 or 7.5×10^{-4} units of ligase activity were found. When ligase I antibodies were added to the latter mixtures, 2.1 and 5.3×10^{-4} units of ligase activity, respectively, were observed. On addition of ligase I antibodies to crude thymus extracts, approximately 90% of the total ligase activity was inhibited. It is concluded that thymus cell extracts contain approximately 10 times higher amounts of ligase I than ligase II activity. Different batches of calf thymus have yielded extracts containing 0.003 to 0.010 ligase unit per mg of protein. This variation may depend on the age of the animals.

Tissue extracts from several sources other than calf thymus contained considerably less DNA ligase activity, and it was therefore necessary to perform a partial purification and separation of the ligases prior to quantitative estimations. The procedures were first investigated with calf thymus extracts. When cell extracts were purified by streptomycin treatment, ammonium sulfate fractionation, and phosphocellulose chromatography as described under "Experimental Procedures," the proportion of ligase I to ligase II in the different fractions was not markedly changed. In control experiments on the discarded fractions, only very small amounts of DNA ligase activity could be detected in the material precipitated with streptomycin (after extensive dialysis against a buffer containing 1 M NaCl), in the ammonium sulfate side fractions, and in the phosphocellulose eluate. Therefore, large selective losses of either DNA ligase I or II in the simple purification procedure employed apparently did not occur. The extracts from the other tissues were therefore subjected to the same purification procedure.

Calf spleen and liver, rabbit spleen, human placenta, and mouse ascites tumor cells were studied. The results are summarized in Table II. In all cases, DNA ligase activity was present both in hydroxyapatite Fractions Vb (0.14 M phosphate eluate) and Vc (0.40 M phosphate eluate). All fractions showed an absolute dependence on the addition of a divalent metal ion (Mg$^{2+}$ or Mn$^{2+}$) and ATP to the reaction mixtures, except that traces of ATP-independent activity in some cases were observed in Fraction Vb, presumably due to the presence of ligase-AMP complexes (6). Fractions Vb and Vc were assayed both in the presence and absence of antiserum against ligase I (2 mg/ml of protein). Large variations in the amounts of Fraction Vb ligase activity were found in different tissues, but in all cases this activity was effectively inhibited by addition of the ligase I antiserum (Fig. 3). In comparison with the results obtained on Fraction Vb, the amounts of DNA ligase activity found in Fraction Vc were more similar among the different tissues. The activity in Fraction Vc was in general not inhibited by ligase I antiserum, but with tissues containing much more ligase I than ligase II, a minor part of the activity was in several experiments inhibited by addition of the ligase I antiserum. Thus, more than 98% of the ligase activity in Fraction Vb and 10 to 30% of the ligase activity in Fraction Vc from calf thymus were inhibited by the antiserum, while less than 5% of the Fraction Vc activity from calf spleen or liver could be similarly inhibited. The amount of antibody-inhibitable material in Fraction Vc from thymus was ascribed to a small amount of tailing of ligase I from Fraction Vb during hydroxyapatite chromatography. The fraction of DNA ligase eluting in Fraction Vc which was active in the presence of antiserum (2 mg/ml) was considered as DNA ligase II (Table II). With calf tissues, this activity also had the heat lability typical of bovine DNA ligase II (2). Thus, heating of Fraction Vc from calf thymus, spleen, or liver for 5 min at 45$^\circ$ in 0.3 M NaCl/0.05 M Tris-HCl (pH 7.4)/1 mM EDTA/1 mM dithiothreitol resulted in loss (>95% inactivation) of the ligase active
in the presence of the ligase I antiserum, while identical heat
treatment only slightly affected (<25% inhibition) the ligase
activity in Fraction Vb.

Crude cell extracts (Fraction I) from all cells and tissues
examined were assayed in parallel with the hydroxyapatite
fractions (Vb and Vc). The relative proportions of DNA ligase
activity in Fractions I and V appeared to be similar in all cases.
Consequently, the low amounts of DNA ligase I detected in
several tissues, in comparison with calf thymus, did not seem
to be due to a selective loss of this enzyme during purification.

Calf thymus and mouse ascites tumor contained more ligase
activity than the other tissues. This was due to high levels of
DNA ligase I, while these two sources did not contain signifi-
cantly larger amounts of DNA ligase II than other tissues. It is
noted that the mouse tumor was rapidly proliferating, and that
the thymus in young animals contains a large proportion of
very rapidly dividing cells (15).

Subcellular Distribution—It was previously reported that
DNA ligase activity is present both in the nuclei and cytoplasm
of mammalian cells (12, 16). In order to study the individual
subcellular distribution of DNA ligase I and ligase II, isolated
cell nuclei, mitochondria, and cytoplasm from calf thymus, as
well as mitochondria from calf liver, were separately processed
as described above for whole tissues, and the hydroxyapatite
Fractions Vb and Vc were assayed for DNA ligase activity. In
several experiments, 30 to 60% of the total DNA ligase I
activity and 60 to 80% of the total DNA ligase II activity were
found in the nuclear fraction. The remaining DNA ligase
activity was recovered in the cytoplasmic fraction. The mito-
chondrial fractions from thymus or liver did not contain
detectable amounts of ATP-dependent DNA ligase activity.

Several experiments were performed to investigate if addi-
tional DNA ligase activity could be extracted from calf thymus
by varying the extraction procedures. When the initial extrac-
tion time (1 hour) was extended, no increase in either DNA
ligase I or ligase II could be detected. Extraction of calf thymus
by the methods used by Chang and Bollum (17) or extraction of
disintegrated calf thymus with a buffer containing 4 M NaCl,
followed by fractionation in an aqueous polymer two-phase
system to remove nucleic acids (18), also did not increase the
yield of either DNA ligase I or II. Consequently, it would
appear that both DNA ligases are efficiently extracted from
disintegrated thymus cells by the standard procedure used in
this work.

Attempts at Interconversion—We have previously reported
(2) that DNA ligases I and II could not be interconverted by
storage in solution, by salt precipitation, by freezing, or by
adenylation. However, these studies did not completely rule
out that the smaller and more labile DNA ligase II could be
generated from ligase I by dissociation or proteolysis, and fur-
ther experiments to investigate this possibility have now been
performed. To exclude that ligase II was generated during
hydroxypatite chromatography, the hydroxypatite fraction
of calf thymus DNA ligase I (Fraction Vb) was concentrated by
ammonium sulfate precipitation, dialyzed against 0.8 M
NaCl/0.015 M potassium phosphate (pH 7.2)/0.01 M 2-mercap-
toethanol, and rechromatographed on hydroxypatite as de-
scribed under “Experimental Procedure.” Fraction Vb con-
tained all DNA ligase activity recovered (78% yield), and this
DNA ligase I was completely inhibited (> 98% inhibition) by
the ligase I antiserum. Fraction Vc contained no detectable
DNA ligase activity (<2% of the activity applied to the col-
mun). Further, exclusion of the phosphocellulose chromatog-
raphy step in the purification procedure did not affect the yields
of either DNA ligase I or ligase II on subsequent hydroxypatite
chromatography.

Pedrali-Noy et al. (3) have shown that the large majority of
DNA ligase activity in extracts from a human heteroploid line,
EUE, is due to an enzyme with the size of DNA ligase I. On
storage of crude enzyme fractions at 0° for 20 days, or after
extensive purification, small amounts of DNA ligase activity
with approximately one-half the molecular weight of DNA
ligase I were generated. These data are consistent with the
association of a dimeric protein into active monomers, the slow
dissociation of a tightly bound non-ligase protein from the
active ligase, or generation of a smaller form by proteolysis.
As the size of these ligase I “monomers” are similar to that of
DNA ligase II, it seemed possible that ligase II could be identical
with the ligase I monomers. We have repeated and confirmed
the results of Pedrali-Noy et al. (3). Thus, on gel filtration of
several preparations of DNA ligase I (Fraction Vb) on Sephadex
G-150, small and variable amounts (0 to 30%) of the ligase
activity were sometimes recovered as a distinct peak with a Kav
value of 0.24, separated from the majority of the activity which
chromatographed as high molecular weight DNA ligase I (Kav
= 0.09, Ref. 2). This calf thymus DNA ligase I monomer,
purified by gel filtration, was studied with regard to stability
and sensitivity to DNA ligase antibodies. It was completely
inhibited by the addition of ligase I antibodies (0.6 mg/ml) to
the reaction mixture, and thus showed similar sensitivity in
this regard to the high molecular weight form of DNA ligase I.
Further, the ligase I monomer had the same heat stability in
solution as the high molecular weight form of DNA ligase I, and
also had the same relative activity in the pH 6 to 7 range as the
larger form. In all these respects, it differs completely from
DNA ligase II (2). We conclude that the DNA ligase I monomer
discovered by Pedrali-Noy et al. (3) and DNA ligase II are two
different proteins.

Proteins can sometimes be proteolytically cleaved into
fragments that retain biological activity. In the present con-
text, it could be proposed that DNA ligase II was generated
when all antigenic determinants were digested away from DNA
ligase I by proteases in the cell extract, while catalytic activity
was preserved. In attempts to check this model, we have
treated purified calf thymus DNA ligase I (Fraction Vb, 0.5
mg/ml of protein) in 0.05 M Tris-HCl (pH 7.4)/0.003 M
CaCl2/0.001 M dithiothreitol, with trypsin (0.007 mg/ml, 15
min, 37°) or chymotrypsin (0.007 mg/ml, 15 min, 37°), to cause
19 versus 79% inactivation. The proteolytic reactions were
stopped by addition of Trasylol (0.007 mg/ml). In a separate
concentrations studied here do not show detectable RNA ligase activity in a joining assay employing 5'-32P-labeled poly(dI·poly(dC)), so neither of these DNA ligases seems to be identical with the RNA ligase found in the cytoplasmatic fraction from mammalian cells (22, 23). It may be of significance in the present context that two forms of E. coli DNA ligase apparently exist in vivo (24, 25).

Several physiologically directed studies have appeared on the amounts of DNA ligase activity in cell extracts from lymphocytes stimulated by phytohemagglutinin (26), in rat liver during regeneration (27, 28) and after administration of cycloheximid (29), in rat kidneys after tumor induction with N-nitrosodimethylamine (30), in mouse cells after infection with polyoma, SV40, or vaccinia virus (1, 12), and in DNA repair deficient cells from Xeroderma pigmentosum patients (31). It seems possible that similar experiments, performed under conditions where DNA ligase I and II are separately measured, may provide further insight into the function of these enzymes.

ACKNOWLEDGMENT—We thank Berit Sperens for excellent technical assistance.

REFERENCES

DISCUSSION

The present data, taken together with our earlier results (2), strongly indicate that two different DNA ligases are present in mammalian cells. With the enzymes from calf tissues, it has been shown that: (a) DNA ligase I and II show different chromatographic properties on hydroxypatite and Sephadex G-150; (b) DNA ligase I is more stable on storage at 0° in a variety of buffers and is also considerably more resistant to heat than DNA ligase II; (c) both enzymes have pH optima close to pH 7.8, but DNA ligase I retains 60 to 70% of its maximal activity when assayed at pH 6.4, while DNA ligase II only has 10% of its maximal activity at the lower pH value; (d) a rabbit antiserum against DNA ligase I inhibits this enzyme completely, but does not affect DNA ligase II; (e) an apparently “monomeric” form of DNA ligase I, which is generated on prolonged storage in solution, retains its characteristic heat stability and the property of being inhibited by the ligase I antiserum and is therefore not identical with DNA ligase II; (f) attempts to interconvert the two DNA ligases by a variety of treatments, including limited treatment with proteolytic enzymes, were consistently negative; (g) the relative proportions of the two ligases are different among different tissues. However, final proof that DNA ligase I and II are two separate enzymes will require the isolation of mutants of mammalian cells with defective DNA ligases, or determinations of the amino acid sequences of the enzymes.

The amounts of DNA ligase II activity recovered were relatively similar among different mammalian cells and tissues, while larger variations were observed in the amounts of DNA ligase I activity. We find high levels of DNA ligase I in extracts from calf thymus and mouse ascites tumor cells, but relatively low levels in calf liver, calf spleen, rabbit spleen, and human placenta extracts. Thus, DNA ligase I apparently dominates in tissues with a high proportion of dividing cells and may be present at increased levels as a function of cell proliferation. In agreement with this notion, regenerating rat liver has been found to contain higher levels of DNA ligase I but similar levels of DNA ligase II in comparison with normal rat liver. Neither of the ligases has the almost exclusive localization to the thymus found for the DNA terminal transferase (19). The mammalian DNA ligases studied in other laboratories (1, 3, 20) have usually been isolated from growing cells and tissues and have the general properties of DNA ligase I. A possible exception is the DNA ligase from rat liver nuclei recently purified by Zimmerman and Levin (21), which has the size and strongly reduced activity below pH 7 typical of a DNA ligase II.

It is unknown why mammalian cells have two different DNA ligases. Calf thymus DNA ligase I or DNA ligase II, at the concentrations studied here, do not show detectable RNA ligase activity in a joining assay employing 5'-32P-labeled poly(dI·poly(dC)).
Mammalian DNA ligases. Serological evidence for two separate enzymes.
S Söderhäll and T Lindahl

Access the most updated version of this article at http://www.jbc.org/content/250/21/8438

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/250/21/8438.full.html#ref-list-1