Acid-Base Catalysis in the Yeast Alcohol Dehydrogenase Reaction*

JUDITH P. KLINMAN
From The Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111

SUMMARY

The effect of pH on steady state kinetic parameters for the yeast alcohol dehydrogenase-catalyzed reduction of aldehydes and oxidation of alcohols has been studied. The oxidation of p-CH₃ benzyl alcohol-1,1-H₂ and -1,1-D₂ by NAD⁺ was found to be characterized by large deuterium isotope effects (k_H/k_D = 4.1 ± 0.1) between pH 7.5 and 9.5, indicating a rate-limiting hydride transfer step in this pH range; a plot of kₐₑₜ versus pH could be fit to a theoretical titration curve, pK = 8.25, where kₐₑₜ increases with increasing pH. The Michaelis constant for p-CH₃ benzyl alcohol was independent of pH. The reduction of p-CH₃ benzaldehyde by NAD⁺ and reduced nicotinamide adenine dinucleotide with deuterium in the 4-A position (NADD) could not be studied below pH 8.5 due to substrate inhibition; however, between pH 8.5 and 9.5, kₐₑₜ was found to decrease with increasing pH and to be characterized by significant isotope effects (k_H/k_D = 3.3 ± 0.3). In the case of acetaldehyde reduction by NADH and NADD, isotope effects were found to be small and essentially invariant (k_H/k_D = 2.0 ± 0.4) between pH 7.2 and 9.5, suggesting a partially rate-limiting hydride transfer step for this substrate; a plot of kₐₑₜ/Kₐₑₜ (where Kₐₑₜ is the Michaelis constant for acetaldehyde) versus pH could be fit to a titration curve, pK = 8.25. The titration curve for acetaldehyde reduction has the same pK but is opposite in direction to that observed for p-CH₃ benzyl alcohol oxidation. The data presented in this paper indicate a dependence on different enzyme forms for aldehydye reduction and alcohol oxidation and are consistent with a single active site side chain, pK = 8.25, which functions in acid-base catalysis of the hydride transfer step.

Yeast alcohol dehydrogenase (EC 1.1.1.1) catalyzes the following interconversion of aldehydes and alcohols (1):

R-C\(\overset{\text{O}}{\longrightarrow}\) + NADH + H⁺ ⇌ R-CH₂OH + NAD⁺

* This work was supported by National Science Foundation Grant GB-40663, United States Public Health Service Grants CA-06927, RR-05539, and by an appropriation from the Commonwealth of Pennsylvania.

The equilibrium equation for this interconversion requires a proton, and it is likely that the alcohol product acquires its hydroxyl proton prior to leaving the enzyme. However, the uptake of the proton in the course of the forward reaction could occur directly from the solvent, or alternatively, a catalytic residue at the enzyme active site could function in acid-base catalysis. It is possible to postulate several mechanisms which involve such catalysis. According to Scheme 1, A and B, proton uptake by alcohol dehydrogenase occurs prior to aldehyde reduction; in Scheme 2, proton uptake by alcohol dehydrogenase occurs subsequent to aldehyde reduction. The distinction between Scheme 1A and 1B concerns whether proton transfer from an enzyme catalytic residue to substrate takes place prior to or concomitant with the hydride transfer step (Scheme 1A), as opposed to after hydride transfer (Scheme 1B). Yeast alcohol dehydrogenase is a zinc-metallo enzyme (2) and a possible role for zinc is indicated in Schemes 1B and 2. An important feature distinguishing Scheme 1 from Scheme 2 and from a mechanism involving the direct uptake of proton from solvent is the requirement for different enzyme forms in the direction of aldehyde reduction and alcohol oxidation. Although it is frequently not possible to obtain unambiguous information concerning acid-base catalysis at enzyme active sites from the pH dependence of kinetic constants, the observation of opposite pH profiles for the forward and reverse directions of an enzyme reaction characterized by a pH-dependent equilibrium equation would provide strong evidence for acid-base catalysis and permit a determination of the pK of the catalytically active group.

Previous studies on the yeast alcohol dehydrogenase-catalyzed interconversion of aromatic substrates indicated a rate-limiting hydride transfer at pH 8.5 (3, 4). Thus, it appeared possible to study the effect of pH on the hydride transfer step for both aldehyde reduction and alcohol oxidation. In this paper the effect of pH on steady state kinetic parameters for the reduction of acetaldehyde and p-CH₃ benzaldehyde by NADH and NADD, and the oxidation of p-CH₃ benzyl alcohol-1,1-H₂ and -1,1-D₂ by NAD⁺ are reported. The determination of isotope effects as a function of pH was undertaken in order to evaluate the extent to which the hydride transfer step is rate-limiting at each pH. The effect of pH on the enzyme-catalyzed oxidation of ethanol was reported by previous authors to result in a 4-fold decrease in rate between pH 9.5 and 6.5 (5).

1 The abbreviations used are: NADD, reduced nicotinamide adenine dinucleotide with deuterium in the nicotinamide 4-A position; EBH, a protonated enzyme form; EB, a free base enzyme form.
MATERIALS AND METHODS

All chemicals were reagent grade unless otherwise indicated. Yeast alcohol dehydrogenase was obtained as a ammonium sulfate suspension from Boehringer Mannheim, and was dialyzed prior to use as previously described (3). Liver alcohol dehydrogenase was obtained from Worthington in its lyophilized form. Determinations of pH were carried out on a Radiometer type PM26 equipped with an expanded scale attachment. Kinetic studies were carried out on a Cary 118B recording spectrophotometer; constant temperature was maintained at 25°. Nuclear magnetic resonance spectra were obtained on a Varian HA-100.15 spectrometer.

Coenzymes and Substrates—Except where indicated, substrates were prepared and assayed as described previously (3). NAD⁺, grade III, was purchased from Sigma and was used without further purification; solutions of NAD⁺ were assayed enzymatically. NADH and NAD⁺ were prepared either by ethanol precipitation as described by Rafter and Colowick (6) or by acetone precipitation as described by Oppenheimer et al. (7), followed by DEAE-column chromatography. Reduced coenzymes prepared by either method were identical with regard to their kinetic properties. p-CH₃ benzyl alcohol-1,1-h₂ and p-CH₃ benzyl alcohol-1,1-d₂ were prepared in parallel experiments by reduction of p-CH₃ benzoyl chloride with either lithium aluminum hydride (Calbiochem) or lithium aluminum deuteride (Merck, Sharp and Dohme of Canada), 99 atom % deuterium (8). The kinetic properties of p-CH₃ benzyl alcohol (Aldrich) recrystallized from heptane to constant melting point agreed with those of p-CH₃ benzyl alcohol-1,1-h₂ obtained by lithium aluminum hydride reduction. The isotopic purity of p-CH₃ benzyl alcohol-1,1-d₂ was confirmed by the absence of methylene protons at C-1 of product (r = 4.6 ppm, for protonated product), as ascertained by nuclear magnetic resonance. Solutions of p-CH₃ benzyl alcohol were assayed at 25°, pH 8.5 in PP₁ glycine buffer containing 1 mg/ml of 3-acetyl-
illustrated in Fig. 1B, the pH dependence of k_{cat}/K'_b for acetaldehyde reduction can be fit by a theoretical titration curve, $pK = 8.25$.

$pK = 8.25$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. Assays were initiated by the addition of alcohol and monitored at limiting Michaelis constant for pyridine adenine dinucleotide and liver alcohol dehydrogenase. Assays were initiated by the addition of alcohol and monitored at 340 nm ($\varepsilon_{340} \text{mm} = 6.3$).

Kinetic Measurements—Kinetic measurements were carried out at 25°, $\mu = 0.22$, by measuring either the disappearance or appearance of NADH or NADD at 340 nm. In order to compare kinetic data on different days the activity of dialyzed enzyme was determined using a standard assay and normalized to a specific activity = 300 units per mg. Kinetic constants reported here are corrected for activity losses due to handling and dialysis and are larger by a factor of 3 than previously reported constants (3, 4). The general form of the rate equation for a two-substrate enzyme is given by

$$V = \frac{V_A \cdot B}{K_{sA} + K_A + K_{sB} + AB}$$

where according to the nomenclature of Cleland (9), $V = \text{maximum velocity}$; $K_{sA} = \text{limiting Michaelis constant for } A_1$; $K_s = \text{limiting Michaelis constant for } B$; and $K_{sA} = \text{inhibition constant}$. Primary reciprocal plots were analyzed for $1/V$ and K/v by a weighted least squares computer program described by Cleland (10). Secondary reciprocal plots were analyzed by an unweighted least squares fit for $1/V$, K_{sA}, K_{sB}, and K_{sA}. Values for k_{cat} have been calculated from V assuming four active sites per mole.

RESULTS

With the exception of substrate inhibition in the case of p-CH$_3$ benzaldehyde reduction, linear double reciprocal plots have been observed in these studies. In Table I values for k_{cat}, K_A, K_B, and K_m are summarized for the oxidation of p-CH$_3$ benzyl alcohol-1,1-h_2 and -1,1-d_2 between pH 7.5 and 9.5. The data indicate large invariant isotope effects on k_{cat} in the pH range investigated. In Fig. 1A, the pH dependence of k_{cat} plotted for p-CH$_3$ benzyl alcohol oxidation. The data are seen to conform to a theoretical titration curve, $pK = 8.25$. Since values for K_s are independent of pH, the pH dependence of k_{cat}/K_s is the same as the dependence of k_{cat}. In Table II values for k_{cat}, K_A, K_B, and K_m are summarized for p-CH$_3$ benzaldehyde and acetaldehyde reduction by NADH and NADD. Due to an increase in substrate inhibition with decreasing pH, the range of pH studied for p-CH$_3$ benzaldehyde reduction was limited to 8.5 to 9.5. The data indicate larger isotope effects for p-CH$_3$ benzaldehyde reduction than acetaldehyde reduction; the isotope effects on k_{cat}, and K_m previously reported by this author for acetaldehyde reduction at pH 8.5 (3) were found to be too large upon reinvestigation (4), and the corrected isotope effects are given in Table II. As is illustrated in Fig. 1B, the pH dependence of k_{cat}/K'_b for acetaldehyde reduction can be fit by a theoretical titration curve, $pK = 8.25$.

Table I

<table>
<thead>
<tr>
<th>pH</th>
<th>k_{cat} (sec$^{-1}$)</th>
<th>K_A</th>
<th>K_B</th>
<th>K_m</th>
<th>k_{cat} (mM)</th>
<th>K_A (mM)</th>
<th>K_B (mM)</th>
<th>K_m (mM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.5</td>
<td>0.77</td>
<td>0.057</td>
<td>4.0</td>
<td></td>
<td>0.40 1.0</td>
<td>9.2</td>
<td>11.</td>
<td>0.87</td>
</tr>
<tr>
<td>8.1</td>
<td>0.60</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.46 0.46</td>
<td>13.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>8.5</td>
<td>0.96</td>
<td>0.23</td>
<td>4.2</td>
<td></td>
<td>0.48 1.6</td>
<td>11.</td>
<td>13.</td>
<td>0.84</td>
</tr>
<tr>
<td>9.1</td>
<td>0.90</td>
<td>-</td>
<td>-</td>
<td></td>
<td>0.63 1.2</td>
<td>11.</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>9.5</td>
<td>1.23</td>
<td>0.30</td>
<td>4.1</td>
<td></td>
<td>0.52 1.2</td>
<td>7.6</td>
<td>9.9</td>
<td>0.77</td>
</tr>
</tbody>
</table>

*The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively. In the pH range 7.2 to 8.1, the buffer contained 80 to 112 mM Pi, $\mu = 0.22$. At pH 8.5 and above, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine and 0 to 5 mM KCl, $\mu = 0.22$. The symbols a and b refer to NAD$^+$ and alcohol, respectively.
kinetic isotope effect (11). Although the range of pH studied for p-CH₃ benzaldehyde reduction is limited, values of k_{cat} for the reduction of this aldehyde decrease with increasing pH. This effect is in contrast to the effect of pH on alcohol oxidation, Fig. 1A, suggesting a role for an active site side chain, $pK = 8.25$, to 8.1, the buffer contained 26 to 90 mM PPi, 61 to 140 mM glycine, and 0 to 5 mM KCl, $\mu = 0.22$.

An examination of kinetic parameters for acetaldehyde reduction reveals comparatively smaller isotope effects and a relatively weak pH dependence of k_{cat}, suggesting that hydride transfer is only partially rate-limiting for acetaldehyde reduction in the pH range 7.2 to 9.5. The kinetic mechanism for the interconversion of acetaldehyde-ethanol has been described as a preferred ordered mechanism (12, 13), and can be represented by the following scheme (14):

$$k_{cat} = k_{cat} k_{cat} k_{cat}$$

Table II

<table>
<thead>
<tr>
<th>pH</th>
<th>k_{H}</th>
<th>k_{D}</th>
<th>$k_{H/D}$</th>
<th>$K_{cat}^{'H} K_{cat}^{'D}$</th>
<th>$K_{cat}^{'H}$</th>
<th>$K_{cat}^{'D}$</th>
<th>$K_{cat}^{'H} K_{cat}^{'D}$</th>
<th>$K_{cat}^{'H}$</th>
<th>$K_{cat}^{'D}$</th>
<th>$K_{cat}^{'H} K_{cat}^{'D}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0</td>
<td>380</td>
<td>-</td>
<td>0.024</td>
<td>-</td>
<td>0.030</td>
<td>-</td>
<td>0.0043</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>490</td>
<td>-</td>
<td>0.038</td>
<td>-</td>
<td>0.055</td>
<td>-</td>
<td>0.10</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7.2</td>
<td>420</td>
<td>160</td>
<td>2.6</td>
<td>0.18</td>
<td>0.36</td>
<td>0.33</td>
<td>0.063</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.1</td>
<td>200</td>
<td>110</td>
<td>1.6</td>
<td>0.070</td>
<td>0.29</td>
<td>0.67</td>
<td>0.014</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8.5</td>
<td>150</td>
<td>88</td>
<td>1.7</td>
<td>0.11</td>
<td>0.39</td>
<td>0.48</td>
<td>0.039</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.1</td>
<td>150</td>
<td>71</td>
<td>2.1</td>
<td>0.21</td>
<td>0.74</td>
<td>0.94</td>
<td>0.081</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9.5</td>
<td>90</td>
<td>50</td>
<td>1.8</td>
<td>0.31</td>
<td>1.0</td>
<td>1.0</td>
<td>0.13</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

where A is NAD$^+$, B is ethanol, B' is acetaldehyde, and A' is NADH. Although the kinetic equation for k_{cat} for acetaldehyde reduction will contain the rate constant for the release of NAD$^+$ from enzyme, $k_{cat}/K's$ (where $K's$ is the Michaelis constant for acetaldehyde) is independent of this step.5

4 The isotope effect at pH 8.5 is obtained from the difference in intercept between Hammett plots for k_H versus k_D (3).

5 Previously reported isotope effects for acetaldehyde reduction at pH 7.6 $k_d/k_D = 1.8$ (19) and $k_H/k_T = 2.1$ (20).

6 See Ref. 21.

Thus, to the extent that product dissociation is rate-limiting for acetaldehyde reduction, $k_{cat}/K's$ is a simplification of the rate expression and a better approximation of the hydride transfer step. In this context it should be noted that isotope effects on $k_{cat}/K's$ are greater than isotope effects on k_{cat} for acetaldehyde reduction at pH 8.1, 8.5, and 9.1 (Table II). An examination of Equation 4 also indicates that when the release of acetaldehyde and ethanol from ternary complex is fast relative to the interconversion of ternary complex ($k_{k_d} > k_{k_{cat}} + k_{d}$), $k_{cat}/K's$ equals the ratio of k_{k_d} to $k_{k_{cat}}$, the dissociation constant for the release of acetaldehyde from ternary complex: pH effects on substrate binding, which may diminish or eliminate a pH dependence of k_{cat}, are therefore also contained in $k_{cat}/K's$.

As illustrated in Fig. 1B, values of $k_{cat}/K's$ for acetaldehyde reduction conform to a theoretical titration curve. This curve is characterised by the same pK (8.25) but is opposite in direction to that observed for p-CH₃ benzyl alcohol oxidation, confirming a dependence on different enzyme forms for acetaldehyde reduction (EBH) and alcohol oxidation (EB). The data also indicate that the enzyme-catalyzed interconversion of both slow and fast substrates is dependent on an active site side chain with the same pK.

2 An interpretation of $k_{cat}/K's$, where $K's$ refers to the Michaelis constant for NADH (D), depends on the extent to which the kinetic mechanism is compulsory ordered with coenzyme binding first, since in such a situation $k_{cat}/K's$ equals the reciprocal of the rate constant for the addition of coenzyme to enzyme.
site of lactate dehydrogenase by x-ray crystallography (16). Although it is not possible to exclude a direct coordination of an active site zinc to the aldehyde carbonyl (Scheme 1B), the obligatory uptake of a proton prior to hydride transfer for aldehyde reduction supports a scheme in which a single active site side chain functions as both acid and base catalyst in the hydride transfer step (Scheme 1A). The similarity of the pK of zinc-bound water, pK = 8.7 (17), to the pH dependence of the yeast alcohol dehydrogenase-catalyzed interconversion of ternary complex, pK = 8.25, indicates a possible catalytic role for zinc-bound water-hydroxide; in a recent study, Sloan et al. (18) report distances between substrate and metal in cobalt-substituted liver alcohol dehydrogenase which are consistent with a catalytic role for a metal-bound hydroxide ion. However, the data presented here on the yeast alcohol dehydrogenase mechanism are also consistent with the participation of an active site amino acid side chain, e.g. imidazole, cysteine, or lysine, in acid-base catalysis.

Acknowledgment—The author wishes to thank Ms. Yvonne Li for excellent technical assistance.

REFERENCES

Additions and Corrections

Vol. 250 (1975) 2569–2573

In KLINMAN, JUDITH P. Acid-Base Catalysis in the Yeast Alcohol
Dehydrogenase Reaction

Page 2572, Equation (4) should read:

\[
\frac{k_{\text{cat}}}{K_v} = \frac{k_1 k_2 k_5}{k_1 k_5 + k_2 k_6 + k_3 k_4}
\]

and second column, line 9 should read:

\[(k_4 k_5 > k_4 k_6 + k_5 k_7)\]

We suggest that subscribers photocopy these corrections and insert the photocopies at the
appropriate places where the article to be corrected originally appeared. Authors are urged to
introduce these corrections into any reprints they distribute. Secondary (abstract) services
are urged to carry notice of these corrections as prominently as they carried the original abstracts.
Acid-base catalysis in the yeast alcohol dehydrogenase reaction.
J P Klinman

Access the most updated version of this article at http://www.jbc.org/content/250/7/2569

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/250/7/2569.full.html#ref-list-1