Effect of Estradiol on Rat Uterus DNA-dependent RNA Polymerases

STUDIES ON SOLUBILIZED ENZYMES

(Received for publication, December 29, 1975)

JEAN-CLAUDE COURVALIN, MARIE-MADELEINE BOUTON,* AND ETIENNE-ÉMILE BAULIEU

From Unité de Recherches sur le M étabolisme Moléculaire et la Physio-Pathologie des St éroides de l'Inserm, Département de Chimie-Biologique, Faculté de Médecine de Bicêtre, Université Paris Sud, 94270—Bicêtre, France

PIERRE NURET AND PIERRE CHAMBON

From Institut de Chimie Biologique, Unité de Recherches sur le Cancer de l'Inserm et Centre de Neurochimie du CNRS, Faculté de Médecine, 67085—Strasbourg, France

DNA-dependent RNA polymerases of immature and castrated rat uteri were studied after estradiol administration. The enzymes were solubilized from either whole uterus homogenate or nuclei and their activities were measured on an exogenous DNA template. α-Amanitin was used to distinguish α-amanitin-resistant from α-amanitin-sensitive forms of the enzyme. The number of α-amanitin-sensitive RNA polymerase molecules was measured by a binding assay using labeled amanitin.

In the first series of experiments RNA polymerases were solubilized from whole uterus homogenate. α-Amanitin-sensitive and -resistant activities were constant during the first 6 hours after estradiol treatment, followed by a late and moderate increase in their activities (50% at 12 hours for the resistant form and 40% at 24 hours for the sensitive form). The number of sensitive polymerase molecules evolved in an identical manner to its activity (+40% at 24 hours), suggesting that the increase in activity is due to the synthesis of new enzyme molecules. For both forms, no diffusible stimulatory factor was detected in the uterus of hormone-treated animals.

In the second series of experiments, disrupted nuclei were washed with 0.15 M (NH₄)₂SO₄ in order to release only enzyme molecules which were not firmly bound to DNA in a transcription complex. The amount of the sensitive form of polymerase which remains firmly bound to chromatin, was constant for 6 hours after estradiol administration and was doubled by 24 hours. The firmly bound α-amanitin-resistant activity was solubilized and was measured in the presence of an exogenous template. There was a progressive increase in activity first detectable in 1 to 2 hours, amounting to 50% at 6 hours and 100% at 24 hours.

The reported results show that during the first 6 hours of hormone treatment: (a) the total content of RNA polymerases remains unchanged in the uterus; (b) the number of α-amanitin resistant molecules tightly bound to DNA increases progressively while the α-amanitin sensitive remains constant. At a later time (24 hours), an increase is observed both for the total amount of enzymes and for their fraction engaged in a transcription complex.

Increase of RNA polymerase activities measured in vitro have been reported in isolated nuclei of uterus of ovariectomized or immature rats in the first hours following estradiol treatment (1—6). Due to the complexity of the system in which RNA synthesis is dependent on the endogenous template, interpretation of the data is difficult. In fact, the observed modifications can be the result of several phenomena which may eventually act simultaneously. (a) A change in the availability of the chromatin template; this was already investigated using bacterial RNA polymerase and a 25 to 50% increased RNA synthesis was observed as early as 1 hour after hormone treatment (6—10). (b) A change in the number of active RNA polymerase molecules; this could be related to a change in the actual number of enzyme molecules or to a change in the activities of preexisting enzyme molecules (by covalent modification or interaction with a control "factor").

In an attempt to distinguish between these possibilities, the variations in RNA polymerase activities solubilized from

* Present address, Roussel Uclaf, B.P. n° 9, 93230-Romainville, France.
ovariectomized or immature rat uterus were studied after estradiol administration. RNA polymerase activities were measured using a nonspecific template (Calf thymus DNA) under conditions where the amount of RNA synthesized is most likely reflecting the number of active RNA polymerase molecules. α-Amanitin was used to differentiate between RNA polymerases A (I) and B (II) (11), and the actual number of RNA polymerase B molecules was measured by O-['H]methyldemethyl-γ-amanitin binding (12). Two types of preparations were studied: (a) total uterine homogenate in order to study the total enzyme content of the tissue and (b) lysed nuclei washed by salt in order to release any free enzyme molecules which were not tightly bound to the chromatin in a transcription complex.

MATERIALS AND METHODS

Adult and immature female Wistar rats were obtained from Iffa Credo (France). Ovariectomy was performed on adults weighing 200 g and the animals were used in the experiments 3 weeks after castration. Immature animals (21 to 23 days) weighed 50 g. The animals received a single intraperitoneal injection of 17B-estradiol dissolved in 0.1 to 0.5 ml of 5% ethanol in 0.15 M NaCl, 10 µg for the castrated and 1 or 5 µg for the immature. Controls were injected with 5% ethanol in 0.15 M NaCl. The animals were killed by decapitation and the uteri were removed and frozen immediately in liquid nitrogen.

All chemicals were reagent grade. 17B-Estradiol was a gift of Roussel Laboratories, Paris, France. Polyethylene glycol 6000 was purchased from Fabweerk Hoeched (532) Francfort/M 80, unlabeled ribonucleo-side triphosphates from Calbiochem. ['H]UTP (10 Ci/mmol) from Radiochemical Center (Amersham). Calf thymus DNA was obtained from Worthington (Freehold, N. J.) and actinomycin D from Sigma. Ammonium sulfate concentration was measured with a conductivity meter (Radiometer, Copenhagen). Sonication was performed with a Branson sonifier (Branson Sonic Power, Danbury, Conn.). Unlabeled and labeled amanitin were a gift of Drs. Wieland and Faulsticn (Heidelberg).

Solutions—Sterile double-distilled water was used in the preparation of all solutions. MS(50) buffer contained 50 mM Tris-Cl, pH 7.9, 50 mM ammonium sulfate, 1 mM EDTA, 0.5% Tween 80, 0.1% sodium deoxycholate, 5% glycerol, and 25% glycerol (w/v). MS(25) buffer contained 50% glycerol and MS(0), no glycerol. Saturated ammonium sulfate was prepared at 25°C and the ammonium hydroxide was added until a pH 7.5 was obtained in a 1:10 dilution. Calf thymus DNA (2 mg/ml) was solubilized in 10 mM Tris-Cl, pH 7.3/10 mM NaCl/0.1 mM EDTA and stored at 4°C.

RNA Polymerase Assay—The solubilized enzyme (about 2 mg of protein/ml) in 50 µl of MS(50) containing 100 mM ammonium sulfate was added to 75 µl of the assay mixture. The final reaction mixture (0.125 ml) contained 80 mM Tris-Cl, pH 7.9/0.1 mM EDTA/3 mM MnCl2, 700 mM ammonium sulfate, 25% glycerol/96 µg of calf thymus DNA/2 mM ATP, CTP, and GTP/0.3 mM ['H]UTP (100 to 300 Ci/mmol). Where indicated, the assay mixture contained 8.8 µM α-amanitin. The enzymatic reaction was performed at 37°C, with eight time points. The first point was measured at 30 s and all following points at 45-s intervals. At the end of the incubation period, each tube was chilled in ice, immediately diluted with 1 ml of a cold (0°C) albumin solution (1 mg/ml), blended on a Vortex mixer, and precipitated with 1 ml of cold 15% trichloroacetic acid. After 30 min, the precipitate was separated by centrifugation, washed twice with 2 ml of cold 7.5% trichloroacetic acid, dissolved in 1 ml sodium-ammonium phosphate, and reprecipitated with 15% trichloroacetic acid. This step was repeated twice and the final pellet was digested in 1 ml of NCS (Amersham/ Searle). Ten milliliters of 0.4% Omnifluor (NEN Chemicals, Germany) in toluene was added and the samples were counted in an Intertechnique liquid scintillation counter with a tritium efficiency of 40 to 45%.

Determination of RNA Polymerase B—The amount of RNA polymerase B complex was measured by ['H]amanitin binding (12). The molality of enzymes B was calculated on the basis of a mean molecular weight of 550,000 (13). The number of enzyme B molecules per haploid genome was calculated using a value of 3.25 pg of DNA/haploid genome (14).

Protein and DNA Measurements—Protein was determined by a modification of the Folin reaction (16) and DNA as described by Burton (16).

RNA Polymerase Solubilization—All steps were carried out at 0°C as rapidly as possible. Frozen uter (0.5 to 1 g) were pulsed in liquid nitrogen with the help of a mortar and homogenized with a glass-glass homogenizer in 14 ml of MS(25) buffer and aliquots were taken for the measurement of DNA and ['H]amanitin binding to RNA polymerase B. The remainder of the homogenate was diluted to 20 ml with MS(25) buffer containing 0.5 M ammonium sulfate. The viscous mixture, maintained below 0°C in a dry ice-acetone bath, was sonicated four or five times at the lowest energy for 10-s periods. The temperature was controlled between each period and was at all times below 5°C. The sonicate was centrifuged at 20,000 x g for 10 min in a Sorvall centrifuge and the supernatant was precipitated by ammonium sulfate (50% saturation). After 30 to 45 min the precipitate was collected by centrifugation at 200,000 x g for 30 min in a Spinco SW 4 1 rotor. The pellet was suspended in 5 ml of MS(50) buffer (PEG 6000 fraction) and the ammonium sulfate concentration was determined by conductivity measurement after a 1,000-fold dilution. This extract can be stored in liquid nitrogen for several months without any loss of activity.

Preparation of Nuclear Fraction—Uteri were homogenized in 6 volumes of 0.32 M sucrose/1 mM MgCl2 by 10 strokes in a glass-glass homogenizer. The homogenate was centrifuged at 800 x g for 10 min and the nuclear pellet washed twice with the same medium. The nuclei were disrupted in MS(25) buffer containing 0.15 M (NH4)2SO4, and centrifuged at 30,000 x g for 30 min. The final pellet, taken up in MS(25) buffer, was used for measuring enzyme B by ['H]amanitin binding and enzyme A activity after solubilization by sonication in the high ionic strength medium.

RESULTS

Determination of RNA Polymerases A and B from Whole Tissue Homogenate

Determination of RNA Polymerase B by ['H]Amanitin Binding

Method—It was previously demonstrated that amatoxins bind to RNA polymerase B with a high affinity and with 1:1 stoichiometry (13). Three methods can be used in crude homogenates for determining the cellular number of RNA polymerase B molecules by measuring the binding of ['H]amanitin (12, 13). These methods involve either membrane filtration or ammonium sulfate or polyethylene glycol precipitations. In the case of uterus, the three methods give similar results. However the nitrocellulose membrane filtration method was not used because of a higher background and a limited protein capacity of the filters. The two precipitation techniques were equally valid and the polyethylene glycol assay was preferred because the precipitate was easier to collect.

As previously described (12), the ['H]amanitin–RNA polymerase B complex is precipitated by 10% polyethylene glycol. As shown in Fig. 1, complete precipitation of the complex is achieved with this concentration, whereas nonspecific binding is constant and independent of polyethylene glycol concentration. Since the precipitation of the complex by polyethylene glycol is affected by the concentration of ammonium sulfate, binding experiments were always carried out at an optimal ammonium sulfate concentration (150 mM).

In order to establish that under these experimental conditions, RNA polymerases B were the only components binding labeled amanitin, the equilibrium dissociation constant (Ka), of the reaction was determined at 0°C. Fig. 2 shows the Scatchard representation of the data. The single slope indicates that in uterus only one cellular component binds labeled amanitin with high affinity. Therefore if there were several isoenzymes B in the uterus, as described for calf thymus (18), they have the same affinity for ['H]amanitin. The calculated dissociation constant is 0.51 nM, a value which is similar to that of 0.52 nM
obtained for purified calf thymus RNA polymerases B, measured by the same method (12). As reported for other tissues, a linear relationship between the amount of homogenate assayed and the amount of bound \[^{3}H\]amanitin was obtained (12).

Effects of Estradiol—The amount of enzyme B in the uterus was measured on the uterine homogenate at different times after injection of estradiol to immature and castrated rats. In order to express the results on a cellular basis, the amount of enzyme B was related to the DNA content of the organ. The base-line values for the immature rat (4 pmol/mg of DNA) is 50% higher than that of the castrated animal (2.6 pmol/mg of DNA) (Fig. 3). The calculated number of polymerase B molecules per haploid genome is of the order of \(8 \times 10^4\) for the immature and \(5 \times 10^4\) for the castrated animal. This value is 4 to 5 times lower than that found for the uterus and other tissues of the normal adult rat (12). The variation in the amount of enzyme B as a function of time after a single estradiol injection is shown in Fig. 3. The amount of enzyme per cell remains constant over the first 12 hours and then increases by 40% in both the immature and castrated animals at 24 hours. Since at this time the protein content of the uterus is also increased, the amount of enzyme B molecules per mg of protein is increased by only 10 to 15%.

Determination of RNA Polymerase A and B by Enzymatic Assay after Solubilization

Method—In order to assess the effect of estradiol treatment on the activities of solubilized RNA polymerases, the solubilization procedure should not result in any significant loss of activity or possible factors affecting enzymatic activity. Therefore, the recovery of enzyme B was studied by \[^{3}H\]amanitin binding at each step of the procedure. The results shown in Table I indicate an almost total recovery after sonication followed by centrifugation. After precipitation, at and above 50% ammonium sulfate, the recovery of enzyme B was more than 80%. For each series of experiments, the recovery of enzyme B was checked by measuring the amount present in the initial homogenate and in the P50 fraction. The recovery varied between different series of animals (65 to 80%) but within a given series, it is fairly constant. As seen in Table II, the solubilized enzyme activity exhibits all of the characteristics of DNA-dependent RNA polymerases. The effect of \(\alpha\)-amanitin concentration on the activity of solubilized RNA polymerase is shown in Fig. 4. This inhibitor distinguishes enzyme A activity \(\alpha\)-amanitin-resistant, from enzyme B activity, \(\alpha\)-amanitin-sensitive. At the concentration of inhibitor (1 to 10 \(\mu M\)) used in these experiments, enzyme C activity, is measured along with enzyme A activity.

Table I

<table>
<thead>
<tr>
<th>Fraction</th>
<th>Bound [^{3}H]Amanitin</th>
<th>Recovery</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenate</td>
<td>40</td>
<td>100</td>
</tr>
<tr>
<td>Sonicate</td>
<td>38.9</td>
<td>97</td>
</tr>
<tr>
<td>Sonicate supernatant</td>
<td>38.6</td>
<td>96.5</td>
</tr>
<tr>
<td>P40</td>
<td>18.4</td>
<td>46</td>
</tr>
<tr>
<td>P50</td>
<td>22.8</td>
<td>82</td>
</tr>
<tr>
<td>P60</td>
<td>34.7</td>
<td>87</td>
</tr>
<tr>
<td>P70</td>
<td>32.8</td>
<td>82</td>
</tr>
</tbody>
</table>

Fig. 1 (left). Effect of polyethylene glycol concentration on the solubility of \[^{3}H\]Amanitin and \[^{3}H\]Amanitin-RNA polymerase B complex—Experiments were carried out as described under “Materials and Methods.” The enzyme was from a crude lysate of normal adult rat uterine. DNA, 70 \(\mu g\) was used for each experiment point: O—O, binding of \[^{3}H\]Amanitin; •—•, binding of \[^{3}H\]Amanitin diluted by a large excess of cold \(\alpha\)-amanitin (nonspecific binding).

Fig. 2 (center). Determination of the equilibrium dissociation constant of the reaction RNA polymerase B \[^{3}H\]Amanitin—Bound \[^{3}H\]Amanitin was measured by the polyethylene glycol precipitation assay as described under “Materials and Methods.” Increasing concentrations of \[^{3}H\]Amanitin (4.7 \(\times\) \(10^{-11}\) to 1.8 \(\times\) \(10^{-4}\) \(M\)) were incubated with 0.1 ml of a crude rat uterus homogenate for 18 hours at 0°. Data are represented as a Scatchard plot (17).

Fig. 3 (right). Amount of RNA polymerase B in the immature and castrated rat uterus as a function of time after estradiol treatment—Enzyme B was measured by the \[^{3}H\]Amanitin binding assay as indicated under “Materials and Methods.” O—O, immature; •—•, castrated; O—O, immature. Each point (±S.D.) is the average of three independent experiments.
Effects of Estradiol—The variation of solubilized RNA polymerase A and B activities were studied in three series of immature and three series of castrated animals for time periods up to 24 hours, after a single injection of estradiol. As seen in Fig. 7, the basal activities of the immature animals were about 60% higher than those of the castrated group. In the control animals of both groups, enzyme B activity was greater than that of enzyme A. Under the influence of estradiol, enzyme A activity remains unchanged up to 6 hours. The first increase (50%) was observed after 12 hours and reached 100% by 24 hours. In the case of enzyme B, the increase in activity occurred later (24 hours) and was less pronounced (40%) than that observed for enzyme A at this time.

The effects of divergent cation concentration and ionic strength on the solubilized enzymatic activities are presented in Fig. 5. In the presence of 4 mM Mn²⁺, the optimum concentration of ammonium sulfate was 40 mM for enzyme A and 100 mM for enzyme B. With 40 mM ammonium sulfate, Mg²⁺ and Mn²⁺ at their optimum concentration were equally effective for enzyme A. At this concentration of ammonium sulfate, Mn²⁺ was a better activator (2-fold) than Mg²⁺ for enzyme B. These differences between enzymes A and B are in agreement with those reported for purified enzymes of calf thymus (19) and rat liver (20).

The kinetics of the reaction are shown in Fig. 6. The incorporation of [³H]UMP is linear for the first 6 min. Very often after this time, there was a decrease in the rate of RNA synthesis and the nucleotide incorporation was no longer linear. Consequently, only short incubation times (6 min) were used for these assays, in order to measure a maximum initial velocity. When the protein concentration in the incubation mixture was lower than 2 mg/ml, a linear relationship was observed between initial velocity and the amount of enzyme incubated (not shown). The presence of RNase activities was checked in the enzyme preparations in the following way. At the end of [³H]UMP incorporation, 20 μg of actinomycin D was added to the reaction mixture and the incubation continued for an additional 10 min at 37°C. As seen in Fig. 6 no RNase activity was detected in the P50 fraction. Occasionally a small decrease in the amount of synthesized RNA was observed, but it was always less than 10%.

Effects of Estradiol—The variation of solubilized RNA polymerase A and B activities were studied in three series of immature and three series of castrated animals for time periods up to 24 hours, after a single injection of estradiol. As seen in Fig. 7, the basal activities of the immature animals were about 60% higher than those of the castrated group. In the control animals of both groups, enzyme B activity was greater than that of enzyme A. Under the influence of estradiol, enzyme A activity remains unchanged up to 6 hours. The first increase (50%) was observed after 12 hours and reached 100% by 24 hours. In the case of enzyme B, the increase in activity occurred later (24 hours) and was less pronounced (40%) than that observed for enzyme A at this time.

It was not possible to measure the recovery of enzyme A during the solubilization procedure. However, it should be pointed out that at a given time after hormone injection, the ratio of A to B activity was always the same in different experiments.

After 24 hours, the increase in enzyme B activity is the same (50%) as the increase in the amount of enzyme B measured by [³H]amanitin binding (Fig. 3), indicating that the enhancer B activity corresponds to a higher number of enzyme molecules. In the case of enzyme A, it is not possible to know whether the change in activity observed after 12 hours is due to an increase in the number of active molecules or to a higher enzyme specific activity. That this increased activity is not due to the stimulation of preexisting molecules by a diffusable factor was suggested by the following experiment. The enzymes were solubilized from uteri of control and 24-hour-tREATED immature animals. Enzyme A activity was measured in each preparation and in mixtures of both extracts. Table III shows that the activity of a mixture of the two enzyme preparations is equal to the sum of the activities of each fraction. This strict additivity excludes the presence of an available diffusible stimulatory factor(s) in the extract prepared from uteri of estradiol-treated animals. During precipitation by ammonium sulfate, two fractions are discarded: the dialyzable components and the proteins which do not precipitate at 50% ammonium sulfate. These two fractions were prepared from three batches of castrated uteri (control, 6 hour, and 24-hour-treated), in the following way. Part of the uteri was processed as usual and the ammonium sulfate supernatant was dialyzed and concentrated against MS(0) buffer to obtain Fraction I. Another part was homogenized and dialyzed against distilled water. The concentrated dialysate is designated as Fraction II. RNA polymerase activities of the three enzyme preparations were then measured as usual and in the presence of an aliquot of the homologous fractions I, II, and I + II at concentrations corresponding to their respective tissue fractions. For the three batches of uteri, a similar nonspecific 30% decrease in activity was observed, regardless of the fraction added (result not shown). These experiments suggest that no component, which could affect RNA polym.
Estradiol Effect on Solubilized Uterine RNA Polymerases

A.S. [mM] Mn⁺⁺ or Mg⁺⁺ [mM]

Fig. 6 (left). Incorporation of [³H]UAMP by uterine soluble RNA polymerases—The enzymes were assayed in a P₅₀ fraction (1.4 mg of protein/ml) of untreated immature rats, as described under "Materials and Methods:" O—O, in absence of α-amanitin; ●—●, in presence of α-amanitin; Δ, actinomycin D (20 μg) added at the end of the reaction (see text). RNA polymerase B activity was determined by subtracting the activity obtained in the absence of α-amanitin from that found in the presence of the toxin.

Determination of Fraction of RNA Polymerase A and B Tightly Bound to Chromatin

Fig. 5. Effect of divalent ion concentration and ionic strength on solubilized RNA polymerase activities—The activity of solubilized enzymes prepared from immature rat uteri was measured under standard conditions (see "Materials and Methods") except that ammonium sulfate (A.S.), manganese, and magnesium were present at the concentrations indicated. Open symbols, B enzyme; closed symbols, A enzyme; O, ●, Mn⁺⁺; Δ, ▲, Mg⁺⁺. Results are expressed as percentage of maximum incorporation. A activity was measured in the presence of 8.8 μM α-amanitin.

erase activities and which would be specific for the estradiol treated uterus, was discarded during preparation of the enzymes.

Previous studies (21) have shown that nuclear RNA polymerases are either readily extracted or tightly bound to the chromatin. The tightly bound enzyme was solubilized only by sonication in a high ionic strength buffer (22).

Nuclei prepared from immature rat uteri were lysed and extracted with different concentrations of ammonium sulfate. Enzyme B which remains bound to the chromatin, was measured by [³H]amanitin binding. Enzyme A tightly bound to chromatin was measured by enzymatic assay after the sonication-solubilization procedure. The results are shown in

Fig. 7 (right). Variation of solubilized total uterus RNA polymerase activities, after estradiol administration—Enzymatic activities of P₅₀ fraction were measured as described under "Materials and Methods." Panel A, enzyme A: ▲—▲, castrated; ●—●, immature. Panel B, enzyme B; Δ—Δ, castrated; O—O, immature. Each point (±S.D.) is the average of three independent experiments (15 animals for each point).
The results are different for enzyme A. There is a progressive increase in the amount of enzyme A tightly bound to the chromatin after 0.15 M ammonium sulfate extraction, were 42% and 30%, respectively, of the activity found in the total tissue were measured as indicated under "Material and Methods." The number of enzyme B molecules tightly bound to the chromatin measured by [H]amanitin binding was constant over the first 6 hours following estradiol administration. This suggests a constant number of enzyme B molecules engaged in the process of transcription, but does not preclude any changes in the elongation rate of RNA chains or any qualitative changes in the nature of the template being transcribed. In contrast, there is a progressive increase in the amount of enzyme A tightly bound to the chromatin. This increase is already evident (20%) at 1 hour, reaching 45% at 6 hours. During this period, the enzyme A activity which can be extracted from total tissue and which represents the sum of readily extractable and tightly bound enzyme activities, remained constant. It therefore seems that, under the influence of hormone treatment, a portion of the enzyme A, which was originally present in a free form, becomes engaged in RNA synthesis. It remains to be seen whether this phenomenon is due to an increased availability of the nucleolar chromatin or to the effect of a factor which would be required for initiation of RNA synthesis.

It is interesting to compare the results obtained with solubilized RNA polymerases to those obtained when measuring the same enzyme activities in whole nuclei, under conditions where the enzymes are transcribing their own template. Such studies are reported elsewhere. They led to the conclusion, which differs to some extent from that reached by other author(s) (6), that there was an early increase in the number of transcribing enzyme molecules, while the number of transcribing B molecules was unchanged. Our present results fully support this interpretation.

In vivo RNA metabolism has been extensively studied in the mouse and rat uterus. After administration of estradiol, an increase in total uterine RNA has been observed after 6 hours of hormone treatment (27-30). The results are however conflicting when early quantitative and qualitative changes in RNA are studied by the incorporation of radioactive RNA precursors. After hormone treatment, some reports showed an early (2 min to 1 hour) increase of RNA specific activity (28, 29, 31, 32) and in others, this increase was not seen before 6 hours (30, 39). In addition it is not clear if this is related to a general increase of incorporation of precursors into all RNA species (33-37) or to an increase limited to either pre-ribosomal (38) or heterogenous high molecular weight RNA (38, 39). Although no clear conclusion can be drawn at the present time from these in vivo studies, it is interesting to note that the progressive increase in the tightly bound polymerase A activity which we have observed in the first hours after hormone injection agrees with that reported for ribosomal RNA synthesis (33, 40). In addition, the delayed enhancement in the amount of enzyme B molecules tightly bound to chromatin may be corre-
Estradiol Effect on Solubilized Uterine RNA Polymerases

Fig. 8 (left). Removal of readily extractible nuclear RNA polymerases by increasing concentration of ammonium sulfate—Nuclei prepared from immature rat uteri were washed with increasing concentrations of ammonium sulfate. The remaining nuclear enzyme fractions were measured by [\(\text{\textbf{H}}\)]amanitin binding (enzyme B) and enzymatic assay (enzyme A) after solubilization (see "Materials and Methods"). T, total tissue; N, nuclei; 0.05, 0.1, 0.15, and 0.25 indicate the ammonium sulfate concentration. Panel A, enzyme A activity; Panel B, enzyme B amount.

Fig. 9 (right). Chromatin-bound RNA polymerases A and B as a function of time after estradiol treatment—Nuclei prepared from immature rat uteri were lysed and extracted with 0.15 M ammonium sulfate and enzyme A and B were measured as described in the legend of Fig. 8. Panel A, enzyme A activity; Panel B, enzyme B amount.

Acknowledgments—We are very grateful to Drs. Wieland and Faulstich (Heidelberg) for providing unlabeled and labeled amatoxins and to Dr. Patoucloune for stimulating discussions.

REFERENCES

35. Miller, B. G., and Baggett, B. (1972) Steroids 19, 251-261
Effect of estradiol on rat uterus DNA-dependent RNA polymerases. Studies on solubilized enzymes.
J C Courvalin, M M Bouton, E E Baulieu, P Nuret and P Chambon

Access the most updated version of this article at http://www.jbc.org/content/251/16/4843

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/251/16/4843.full.html#ref-list-1