Turnover of the Plasma Membrane Proteins of Hepatoma Tissue Culture Cells*

JOHN TWETO AND DARRELL DOYLE

From the Department of Molecular Biology, Roswell Park Memorial Institute, Buffalo, New York 14263

The turnover of the plasma membrane proteins of hepatoma tissue culture cells was examined by three different methods—loss of polypeptides labeled in situ by lactoperoxidase-catalyzed iodination, loss of membrane polypeptides labeled with amino acid precursors, and loss from the membrane of fucose-labeled polypeptides. In both logarithmically growing and density-inhibited cells the proteins of the membrane are degraded with a half-life of about 100 hours. This is longer than the half-life of total cell protein, 50 to 60 hours, and longer than the doubling time of the cells, about 30 hours. Similar values for the rate of degradation of the membrane proteins were obtained by each of the three techniques. The same fucose-labeled polypeptides are present in the microsomal and the plasma membrane fractions of hepatoma tissue culture cells as analyzed by electrophoresis in dodecyl sulfate-acrylamide gels. But the fucose-labeled polypeptides were lost from the microsomal fraction at a faster rate than from the plasma membrane.

Autoradiographic and double labeling techniques using 125I and 131I, or [3H]leucine and [14C]leucine were used to measure the relative rates of degradation of the proteins in the plasma membrane. All of the leucine-labeled polypeptides and the iodinated polypeptides had similar rates of degradation. These results support a model for the biogenesis of the plasma membrane in which the proteins are incorporated and removed in large structural units.

In mammalian cells essentially all proteins are undergoing turnover (1-3). That is, they are continually being degraded and replaced by new synthesis. There is a marked heterogeneity in degradation rate and a pronounced correlation between degradation rate and molecular size of the polypeptides in the soluble fraction of rat liver (4-6). Further, heterogeneity in degradation rate and a correlation between subunit size and relative rate of degradation have been observed for the proteins of many subcellular organelles (7), including the plasma membrane (8-11). These latter results suggest a model of membrane organization in which polypeptides associate and dissociate from the lipid bilayer with the dissociated form subject to degradation in another compartment of the cell.

However, studies of membrane turnover in intact animals are complicated by the difficulty in obtaining highly purified preparations of plasma membrane. Any contamination of this fraction by proteins from other cell fractions may mask the authentic turnover rates of the plasma membrane proteins. To avoid this problem, we have examined the turnover of the proteins of the plasma membrane of a hepatoma cell in culture, using lactoperoxidase-catalyzed iodination (12, 13) to specifically label the proteins of the membrane (14), and a double iodination technique (15, 16) to measure their rates of degradation. The degradation of the iodinated proteins then was compared to the degradation of total plasma membrane protein labeled with leucine, and membrane glycoproteins labeled with fucose. The results suggest that the major proteins of the plasma membrane of HTC cells are degraded as a large structural unit.

MATERIALS AND METHODS

Most of the chemicals used were reagent grade from commercial suppliers. Acrylamide and N,N'-dimethylacrylamide were obtained from Eastman. Sodium dodecyl sulfate, dithiothreitol, and unlabeled amino acids were obtained from Sigma. 125I and 131I as sodium salts were obtained from Amersham Searle and were carrier free. L-[3,5-3H]-Tyrosine (42 Ci/mmol), L-[U-14C]tyrosine (460 mCi/mmol), L-[4,5-3H]-leucine (46 Ci/mmol), and L-[U-14C]leucine (312 mCi/mmol) were obtained from Schwartz/Mann. L-[6-3H]fucose (12.07 Ci/mmol), L-[1-14C]fucose (18.66 mCi/mmol), and Protosol were obtained from New England Nuclear.

Cell Culture—A cloned line of HTC cells originally derived from a rat hepatoma, was provided by Dr. T. D. Gelehrter (University of Michigan), and was grown in Eagle's minimal essential medium modified as described (14). Growth medium contained 5% fetal calf and 5% calf serum. Cells were maintained in spinner culture, and were used as such in all experiments.

Iodination—Cells were iodinated as described previously (14). Briefly, 10^9 washed cells were suspended in 1.2 ml of Earle's salt solution supplemented with tricine (0.1 M, pH 7.6), glucose (7 mM), 60 milliunits of lactoperoxidase (Sigma), 35 milliunits of glucose oxidase, 100 milliunits of peroxidase (Sigma), and 100 milliunits of catalase (Sigma). To each sample, 50 microCi of 125I (2 mCi/mg) and 75 microCi of 131I (2 mCi/mg) were added. Each sample was then incubated for 30 min at 37 C. The iodinated sample was washed with 0.25 M sucrose, 10 mM sodium phosphate buffer, pH 7.6. The iodinated proteins then were electrophoresed in polyacrylamide gels and the radioactivity determined in each band.

1 The abbreviation used is: HTC cells, hepatoma tissue culture cells, a cloned line originally derived from a rat minimal deviation hepatoma.

* This investigation was supported by Public Health Service Research Grants HD08410, CA17149, GM19521, and by Public Health Service postdoctoral Fellowship AM03302 to J. T.
The bound amino acids were eluted with 4 M NH₄OH. The NH₄OH was dissolved in water and chromatographed as described. The NH₄OH was concentrated by lyophilization. The lyophilized material was described above with carrier free Na¹²¹I for 1% hours at 37°C. The resulting solution was applied to a mixed bed Dowex AG 501-X8 was located with silver nitrate (19), cut out, and counted.

Packard gamma counter or in a liquid scintillation counter (Amer-sham/Searle Isocap 300) in Scintiprep 2 (Fisher) scintillation fluid made 25% in ethanol. "C and SH were determined by liquid scintillation counting, also in the above scintillation fluid. Gel slices were counted after dissolving the gel in Protosol. Efficiencies were determined by internal standards. In double isotope experiments the amount of each isotope was calculated after determining the efficiency for each isotope in each of two channels. Counting was routinely performed for sufficient time to insure that the values obtained were accurate to ±1% at 3 S.D.

RESULTS

Effect of Iodination on Protein Turnover

Elsewhere (14), we showed that lactoperoxidase-catalyzed iodination of HTC cells in situ labels specifically polypeptides of the plasma membrane. Light microscopic autoradiography of sectioned cells showed the incorporated label to be localized primarily at the periphery of the cell. Most of this label could be released from the cell by trypsin, but not by collagenase or hyaluronidase. The label was recovered from the cells as either moniodotyrosine or diiodotyrosine after hydrolysis of cell extracts with a mixture of proteolytic enzymes. The label copurified during cell fractionation with 5'-nucleotidase, an enzyme confined primarily to the plasma membrane of hepatocytes. At least 50 polypeptides in the membrane, as resolved by dodecyl sulfate-polyacrylamide gel electrophoresis, are accessible to iodination. These polypeptides probably represent the bulk of the protein mass of the membrane, and iodinating them does not affect cell viability, growth rate, or cell function as measured by the induction of tyrosine aminotransferase in these cells by corticosteroids. Finally, labeling experiments with fucose and glucosamine showed that at least nine of the iodinated peptides are glycoproteins.

These results suggested that the turnover of the plasma membrane could be studied using iodide as a specific marker for the polypeptides in this membrane, thereby avoiding the problems encountered when labeled amino acids are used to study the turnover of undefined membrane proteins.

However, before examining the turnover of the iodinated membrane polypeptides, it was necessary to determine whether iodination itself affects the turnover of cell protein. And whether the iodinated polypeptides in the membrane turn over in a way similar to that of unmodified plasma membrane proteins. The study presented in Fig. 1 was designed to determine whether iodination affects significantly the turnover of total cell protein. In this experiment, cell protein was labeled by growing HTC cells in the presence of "¹¹C tyrosine for two generations. One aliquot of these cells was iodinated with unlabeled iodide, converting about 1% of the total acid-insoluble radioactivity from "¹¹C tyrosine to "¹¹Iiodotyrosine. These cells then were incubated in growth medium at 37°C. An identical aliquot of tyrosine-labeled cells (not iodinated) was incubated under the same conditions. As shown in Fig 1, there was no marked difference in the release of total acid-soluble radioactivity between the iodinated culture of cells and the control culture which had not been iodinated. Most of the acid-soluble radioactivity released into the medium from the control culture chromatographed as tyrosine in thin layer chromatography. A constant proportion (0.2%) of the total radioactivity released into the medium from the iodinated cells after 25 or 44 hours in culture migrated as mono- and diiodotyrosine in the thin layer chromatographic systems. The accumulation of labeled amino acids in the medium is due to degradation of the labeled proteins. There is little or no release of radioactivity if the cells are incubated at 4°C, and the release can also be inhibited by inhibitors of energy metabolism.
From the data of Fig. 1, we conclude that iodination of the cells does not affect appreciably the turnover of total cell protein, at least as measured by release of acid-soluble radioactivity into the medium. However, this way of measuring protein turnover is rather insensitive, since the release of amino acid is a step far removed from the initial step in protein degradation. Therefore, a double isotope procedure was used to assess the effect of iodination on the rate constant of degradation of both total protein and plasma membrane protein of HTC cells (Table I).

In this experiment, cells were labeled for 1 hour with \([\text{3H}]\)tyrosine. Then, one aliquot of the \(\text{3H}\)-labeled cells was immediately given a second pulse of tyrosine, but labeled with \(\text{14C}\). This culture was the zero time control. A second aliquot of the \(\text{3H}\)-labeled cells was incubated at 37°C for 24 hours before administration of \(\text{14C}\)tyrosine. A third aliquot of the \(\text{3H}\)-labeled cells was iodinated with unlabelled iodide before being incubated for 24 hours at 37°C. Then, the second \(\text{14C}\)tyrosine pulse was given. The zero time control cells had \(\text{3H}/\text{14C}\) ratios of about 3 for each of several cell fractions analyzed. This value is the ratio to be expected with no turnover of protein. Therefore, not iodinated, had isotope ratios of 2.0 and 2.5 for total protein and plasma membrane protein respectively.

Thus, some of the \(\text{3H}\)-labeled protein was degraded during the 24-hour incubation. The iodinated cells also had \(\text{3H}/\text{14C}\) ratios of about 2.0 and 2.5 for total protein and plasma membrane protein, respectively. The higher isotope ratio of the plasma membrane fraction relative to total cell protein suggests that plasma membrane proteins are turning over at a slower rate than total cell protein. The fact that the isotope ratios for the iodinated cells were essentially identical with those for the uniodinated control cells indicates that iodination does not affect significantly the turnover of either total cell protein or plasma membrane protein. This being the case, it is possible to examine the fate of the iodinated polypeptides with some.

![Figure 1](http://www.jbc.org/)
Fig. 1. Effect of iodination on the release of \(\text{14C}\)tyrosine from the total protein of HTC cells. A culture of HTC cells \((5.7 \times 10^5 \text{ cells/ml})\) was suspended in growth medium without tyrosine. L-[\text{U-14C]}\)tyrosine was added \((150 \mu\text{Ci})\), and the cells were incubated for 72 hours. The culture was harvested, washed free of unincorporated label, and divided into three equal parts. One portion \((2.8 \times 10^5 \text{ cells})\) was suspended without further treatment in 20 ml of complete growth medium. These cells served as a control for the effect of iodination on the release of labeled tyrosine into the medium. The other cells were iodinated as described under "Materials and Methods." The cells were washed free of iodination reaction mixture by twice resuspending the cells in Earle’s balanced salt solution. A final wash was done by incubating the cells at 37°C for 1 hour in growth medium. The cells then were resuspended in growth medium \((6.2 \times 10^5 \text{ cells/ml, >95% viable})\), and incubated at 37°C. After 48 and 92 hours, one-half of this medium was replaced with fresh medium. Culture pH was maintained between 7.4 and 7.8 by the addition of \(\text{NaHCO}_3\). The cells grew logarithmically without a doubling time of 39 hours at densities less than 10^6 cells/ml. At the indicated times, triplicate aliquots \((0.5 \text{ ml})\) were removed. Each aliquot was centrifuged, and the cell pellets were rinsed once with normal saline and frozen. The radioactivity of the medium in each aliquot was determined directly in a gamma spectrometer. The protein-bound radioactivity of the cells was determined following homogenization by freeze thaw in distilled water and sonication. The data are expressed as a loss of total radioactivity, rather than specific radioactivity, to avoid complications due to growth. Counting was done after duplicate aliquots from each homogenate were placed on filter paper and washed with 10% trichloroacetic acid containing 25 mM Na_2SO_4 and 5 mM NaI as described previously (14). O, average of six measurements of the total trichloroacetic acid-insoluble radioactivity; X, total radioactivity obtained from the cells; W, total trichloroacetic acid-insoluble radioactivity; X, total radioactivity obtained from the cells; W, total radioactivity obtained from the cells.

![Figure 2](http://www.jbc.org/)
Fig. 2. A, degradation of \(\text{3H}\)-labeled proteins in logarithmically growing HTC cells. A culture containing \(2 \times 10^6\) HTC cells was washed and iodinated with 1.25 mCi of \(\text{Na}^{131}\)I as described under "Materials and Methods." The cells were washed free of iodination reaction mixture by twice resuspending the cells in Earle’s balanced salt solution. A final wash was done by incubating the cells at 37°C for 1 hour in growth medium. The cells then were resuspended in growth medium \((6.2 \times 10^5 \text{ cells/ml, >95% viable})\), and incubated at 37°C. After 48 and 92 hours, one-half of this medium was replaced with fresh medium. Culture pH was maintained between 7.4 and 7.8 by the addition of \(\text{NaHCO}_3\). The cells grew logarithmically without a doubling time of 39 hours at densities less than 10^6 cells/ml. At the indicated times, triplicate aliquots \((0.5 \text{ ml})\) were removed. Each aliquot was centrifuged, and the cell pellets were rinsed once with normal saline and frozen. The radioactivity of the medium in each aliquot was determined directly in a gamma spectrometer. The protein-bound radioactivity of the cells was determined following homogenization by freeze thaw in distilled water and sonication. The data are expressed as a loss of total radioactivity, rather than specific radioactivity, to avoid complications due to growth. Counting was done after duplicate aliquots from each homogenate were placed on filter paper and washed with 10% trichloroacetic acid containing 25 mM Na_2SO_4 and 5 mM NaI as described previously (14). O, average of six measurements of the total trichloroacetic acid-insoluble radioactivity.
assurance that their turnover reflects adequately the normal turnover of unmodified plasma membrane proteins.

Degradation of Iodinated Membrane Proteins—The degradation rate of iodinated membrane proteins was measured by following the loss with time of 125I in trichloroacetic acid-insoluble material (Fig. 2). In exponentially growing cells the iodinated proteins are degraded with a half-life of about 100 hours (Fig. 2A). In nongrowing cells (Fig. 2B), the iodinated proteins are degraded at about the same rate for the first 90 hours in culture. After 60 hours, degradation seems to stop. But this is due to the depletion of some nutrient in the medium, probably glucose (20). If fresh medium is added to these cells, degradation will again continue with a half-life of about 100 hours. In four other experiments, the half-life for the degradation of the iodinated proteins varied from 90 to 120 hours. The label lost from protein was released into the medium at a continuous rate. All of the label in the medium was soluble in trichloroacetic acid, 10%, and was identified by chromatography as either free iodide or mono- and diiodotyrosine.

The value for the rate of degradation of plasma membrane proteins derived from the data of Fig. 2 could be overestimated if iodotyrosine were reutilized for protein synthesis. However, as shown in Table II, this is not the case. There was little incorporation of 131I iodotyrosine into acid-insoluble material, either in the presence or absence of added tyrosine. This was not due to inability of the cell to take up the iodotyrosine, since significant label was found in the acid-soluble fraction. The cells were capable of incorporating added label, since ^{3}H tyrosine was incorporated both in the presence and absence of added 131I iodotyrosine.

Degradation of Total HTC Cell Protein—The degradation rate of total protein of HTC cells was measured by monitoring the loss of acid-insoluble radioactivity from cells that were grown in the presence of ^{3}H leucine for 4 hours (Fig. 3). The degradation rates of labeled protein in growing and density-inhibited cells were measured in the same experiment. Under both growth conditions the half-life for the degradation of total protein was approximately 60 hours. In several such experiments the half-life was found consistently to be between 50 and 60 hours, confirming the results of Table I; the half-life of total cell protein is significantly shorter than that of plasma membrane proteins. The value for the half-life of total cell protein in Fig. 3 is probably overestimated, since the leucine is certainly reutilized to some extent. The doubling time of the cells in this experiment was 40 hours. In other experiments the same 50 to 60-hour half-life for protein was obtained in cells with a more usual doubling time of 30 hours, indicating that the overall turnover of cell protein is not a function of cell density.

Relative Rates of Degradation of Iodinated Plasma Membrane Proteins—We next examined the relative rates of degradation of the iodinated polypeptides in the plasma membrane of HTC cells by two related methods. The first involved an autoradiographic analysis of the loss of radioactivity from iodinated plasma membrane polypeptides separated by electrophoresis in dodecyl sulfate-polyacrylamide gels. The iodinated cells were taken from the experiment described in Fig. 2. The results are presented in Fig. 4. An equal amount of radioactivity was applied to each lane of the gel in Fig. 4. Hence, increasingly more protein was applied as the iodinated protein was applied as the iodinated cells were longer in culture. This is readily visible in the Coomassie-staining pattern of the gel (not shown). However, the relative labeling intensities of the bands is the same for all the time points. This indicates that there are no large differences in the relative degradation rates of the iodinated plasma membrane proteins. It is clear from Fig. 4 that a large number of proteins are accessible to the lactoperoxidase probe, and since only plasma membrane proteins are labeled, a good sample of these proteins can be analyzed by the autoradiographic technique. The label which does not enter the 7.5% gel is not aggregated material. It represents about 8% of the incorporated label, but does not stain significantly with

Table I

Effect of iodination on turnover of total protein and plasma membrane protein of HTC cells

<table>
<thead>
<tr>
<th>Cell Fraction</th>
<th>Homogenate</th>
<th>Plasma membrane</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>^{125}I</td>
<td>^{131}I</td>
</tr>
<tr>
<td>dpm x 10$^{-5}$ of protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Iodinated cells 24 hr in culture</td>
<td>1.8</td>
<td>0.96</td>
</tr>
<tr>
<td>Uniodinated control cells 24 hr in culture</td>
<td>1.7</td>
<td>0.92</td>
</tr>
</tbody>
</table>

* A value for the half-life can be obtained from the double isotope ratio using the equation describing first order decay, $P(t) = P(0)e^{-kt}$, where $P(0)$ is the initial number of molecules present, $P(t)$ is the number of molecules remaining after time t has elapsed, and k is the rate constant of degradation. The isotope ratio is equivalent to $P(0)/P(t)$ (14). The accuracy of the value for the rate constant of degradation is a function of the extent to which the labeled precursor is subject to reutilization. For amino acid precursors reutilization can be significant, while for iodotyrosine, reutilization is not a serious problem.
A culture of HTC cells (10^6 cells) was washed three times with growth medium lacking serum, and aliquots containing 1.4 x 10^7 cells were placed in four tubes. The cells then were suspended in 8 ml of medium lacking serum and tyrosine. The usual tyrosine content of this medium is 36 mg/liter. To Culture 1 was added 2.63 x 10^4 cpm of [^125I]iodo-L-tyrosine (7.5 x 10^6 cpm/nmol, prepared as described under "Materials and Methods"). Culture 2 received the same amount of [^125I]iodo-L-tyrosine plus 0.56 mg of tyrosine, Culture 3 received 1.00 x 10^4 cpm of [^3H]tyrosine plus 0.36 mg of tyrosine, and Culture 4 received both 2.63 x 10^4 cpm of [^125I]iodo-L-tyrosine and 1.00 x 10^4 cpm of [^3H]tyrosine plus 0.36 mg of tyrosine. All operations were performed aseptically.

The four cultures were incubated at 37°C for 18 hours. After this time, the cultures were counted and found to contain 1.10 to 1.25 x 10^5 cells/ml. The cells were collected and washed twice with saline, and then precipitated with 10% trichloroacetic acid. The acid-soluble fraction was saved, and the pellet was dissolved in 100% trichloroacetic acid.

The relative degradation rates of the polypeptides in the membrane were examined after dissociation of the membrane with dodecyl sulfate and dithiothreitol and separation of the polypeptides by dodecyl sulfate-polyacrylamide gel electrophoresis. Fig. 5 shows the results of a control experiment in which cells labeled with [^125I]iodo-L-tyrosine were mixed at zero time with the [^125I]iodo-L-tyrosine. In this experiment there is no turnover of the plasma membrane proteins of the [^125I]iodo-L-tyrosine labeled cells. The mean [^125I]/[^3H] ratio for the separated membrane polypeptides was 1.5, with a standard deviation of 0.2. Fig. 6 shows the results from a similar experiment, except that the [^125I]iodo-L-tyrosine-labeled cells were in culture for 48 hours before mixing with the [^125I]iodo-L-tyrosine-labeled cells. The mean isotope ratio for the separated polypeptides in this membrane preparation was 0.9 with a standard deviation of 0.1. Thus, turnover did occur relative to the control experiment, but there was no significant deviation from the mean ratio of 0.9 among the separated polypeptides, except at the low molecular weight region of the gel. This was also found in the control experiment and, therefore, cannot be due to degradation. In experiments in which the [^125I]iodo-L-tyrosine labeled cells were in culture for shorter (5 hours) or longer (90 hours) periods of time there was no indication of heterogeneity of degradation rates among the dissociated membrane polypeptides.

The results presented thus far, we conclude that the proteins in the plasma membrane that can be iodinated in situ constitute a significant portion of the mass of the membrane protein. However, obviously some membrane proteins do not have tyrosine residues exposed on the outside of the cell, and cannot be labeled by lactoperoxidase-catalyzed iodination. Therefore, we employed a more conventional double isotope procedure using labeled leucine as precursor to examine the degradation of all the proteins associated with the plasma membrane. A problem complicating the use of an amino acid precursor in such studies is that any contamination of the plasma membrane fraction with other cell fractions may mask the authentic rates of degradation of the plasma membrane proteins. It is difficult to obtain a homogeneous preparation of plasma membrane from tissue culture cells. Biochemical analyses of the plasma membrane fraction prepared from HTC cells indicate that it is highly enriched for this membrane fraction (14). The membrane fraction contains negligible contamination from the soluble or mitochondrial fractions of the cell, but it is slightly contaminated with nuclei and microsomes.

The results of a leucine double label analysis of the degradation of the polypeptides in the plasma membrane fraction isolated from HTC cells are presented in Fig. 7. In this experiment the [^125I]/[^3H] radioactivity represents the leucine-labeled polypeptides in the membrane preparation, while the [^3H]/[^125I] radioactivity shows what happens to these polypeptides after the cells are in culture for 72 hours, relative to cells that were not in culture. As shown in Fig. 7, all of the polypeptides in this preparation of plasma membrane had similar [^3H]/[^125I] ratios, indicating similar rates of degradation. Polypeptides separated from the soluble fraction of HTC cells showed more heterogeneity in [^3H]/[^125I] ratio (Fig. 8), indicating that the polypeptides in this fraction are turning over at different rates. In the

Table II

<table>
<thead>
<tr>
<th>Label added</th>
<th>Trichloroacetic acid-soluble radioactivity</th>
<th>Trichloroacetic acid-insoluble radioactivity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(^{125I})Iodo-L-tyrosine</td>
<td>(^{125I})Iodo-L-tyrosine</td>
</tr>
<tr>
<td></td>
<td>(1.21 \times 10^4) cpm ((0.48%))</td>
<td>(1.58 \times 10^4) cpm ((0.67%))</td>
</tr>
<tr>
<td></td>
<td>(0.33 \times 10^4) cpm ((0.16%))</td>
<td>(1.65 \times 10^4) cpm ((0.83%))</td>
</tr>
<tr>
<td></td>
<td>(1.88 \times 10^4) cpm ((0.94%))</td>
<td>(0.46 \times 10^4) cpm ((0.18%))</td>
</tr>
<tr>
<td></td>
<td>(0.90 \times 10^4) cpm ((0.96%))</td>
<td>(0.90 \times 10^4) cpm ((0.96%))</td>
</tr>
</tbody>
</table>

* Values in parentheses are the percentages of the added radioactivity found in the various fractions.
the soluble fraction (Fig. 8) are weighted in favor of the more slowly in these cells, and it is difficult to obtain large experiments of Figs. 7 and 8 the cells were exposed to labeled pulse of amino acid is given (Table I). Similarly, when leucine is administered for shorter intervals than 24 hours, there is obtained for total protein and membrane protein when a short labeling period discriminates against the rapidly turning over cell proteins. Thus, the 3H/14C ratios for the polypeptides in not possible to get sufficient incorporation of isotope into the iodinated polypeptides are degraded at relatively slow rates. The long labeling period with leucine also would discriminate against the short-lived polypeptides in the plasma membrane (Fig. 7). But the polypeptides accessible to iodination of fucose from total extracts of HTC cells. HTC cells were examined using L-fucose as precursor. The same membrane components, all having molecular weights greater than 50,000, are labeled by both of glucosamine (14). The same membrane components, all having similar, and probably identical, rates.

Degradation of Membrane Glycoproteins—The plasma membrane of HTC cells has about 10 major glycoproteins, as detected by growing the cells in labeled fucose or labeled glucosamine (14). The same membrane components, all having molecular weights greater than 50,000, are labeled by both of the sugars. The turnover properties of these glycoproteins were examined using L-fucose as precursor. Since little is known about the turnover of the carbohydrate moieties of glycoproteins, we first examined the kinetics of loss of fucose from total extracts of HTC cells. HTC cells were grown in the presence of L-[3,5-3H]fucose for 24 hours. At least
TABLE III

<table>
<thead>
<tr>
<th>Incubation time of</th>
<th>¹²⁵I</th>
<th>¹³¹I</th>
<th>¹²⁵I/¹³¹I</th>
</tr>
</thead>
<tbody>
<tr>
<td>hr</td>
<td>cpm x 10⁶</td>
<td>mg of</td>
<td>ratio</td>
</tr>
<tr>
<td>0</td>
<td>2.3</td>
<td>1.7</td>
<td>1.3</td>
</tr>
<tr>
<td>24</td>
<td>1.7</td>
<td>1.6</td>
<td>1.1</td>
</tr>
<tr>
<td>48</td>
<td>0.90</td>
<td>1.2</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Fig. 5. ¹²⁵I/¹³¹I Ratios of polypeptides in the plasma membrane fraction of HTC cells as separated on dodecyl sulfate-polyacrylamide gels—zero time control. A suspension of washed HTC cells (10⁵ cells) was divided into two parts. One-half of the cells were iodinated with ¹²⁵I, while the other half were iodinated with ¹³¹I as described under "Materials and Methods. Immediately after iodination, the cells were washed, and a plasma membrane fraction was prepared from a combined frozen homogenate of the two labeled cultures. The polypeptides in the membrane fraction were dissociated in dodecyl sulfate and dithiothreitol and separated on disc gels of 9% acrylamide. Approximate mobility of standard proteins in this system is indicated. ○, ratio of ¹²⁵I/¹³¹I in the acrylamide fractions; □, ¹³¹I-labeled polypeptides in the membrane fraction.

Fig. 6. ¹²⁵I/¹³¹I Ratios of polypeptides in the plasma membrane fraction of HTC cells—¹³¹I-labeled cells in culture for 48 hours. Details are the same as in Fig. 5, except that the ¹²⁵I-labeled cells were incubated in complete growth medium containing [³H]leucine (6 μCi/ml) for 24 hours, while the other half were incubated for the same interval of time in medium containing [¹⁴C]leucine (1.5 μCi/ml). At this time, an aliquot of the ¹³¹I-labeled cells and an aliquot of the ¹²⁵I-labeled cells were homogenized and frozen. A plasma membrane fraction then was prepared from a mixture of the homogenates (zero time control). The other ¹²⁵I-labeled cells were incubated in growth medium for 72 hours at a density of 1.2 × 10⁶/ml. A homogenate of these cells then was prepared and frozen with the frozen homogenate of the ¹³¹I-labeled cells. Closed circles, ³H/¹⁴C ratios of the polypeptides in the membrane fraction obtained from the latter mixture of cells. Arrow and dotted lines, mean ³H/¹⁴C ratio and one standard deviation of the mean for the polypeptides in the plasma membrane prepared from the zero time control cells; solid line, ¹⁴C-labeled polypeptides in the membrane preparation separated in the 9% dodecyl sulfate-acrylamide disc gel system.

65% of the radioactivity incorporated during this interval can be recovered as fucose after acid hydrolysis of cell extracts (Table IV). Thus, most of the precursor is present in the glycoproteins as fucose. The loss of incorporated fucose from the cells followed first order kinetics with a half-life of between 50 and 60 hours (Fig. 9). The radioactivity lost from the cells could be recovered in the medium (Fig. 9, inset). At least 85% of the radioactivity released into the medium was soluble in trichloroacetic acid, and 60% of the acid-soluble material cochromatographed with fucose in thin layer chromatography (Table V).

Since the fucose-labeled glycoproteins turn over with apparent first order kinetics, a double isotope procedure, using fucose as precursor, could be used to measure the relative rates of degradation of these glycoproteins. Details of the design of the experiment are given in the legends to the figures.

After administration of labeled fucose to HTC cells, only the plasma membrane fraction and the microsomal fraction are enriched over the homogenate for acid-insoluble fucose (14). As indicated in Figs. 10 and 11, both fractions appear to contain in common many of the same fucose-labeled glycoproteins, at least as resolved by electrophoresis in dodecyl sulfate-acrylamide gels. Indeed there is an almost exact co-incidence of
Turnover of Plasma Membrane Proteins of HTC Cells

Fig. 8. $^{3}H/^{14}C$ Ratios of leucine labeled polypeptides in the soluble fraction of HTC cells. Experimental details are exactly the same as in Fig. 7, except that the material in the soluble fraction of the cell was subjected to electrophoresis in the dodecyl sulfate-8% polyacrylamide gel system. The soluble fraction was obtained by centrifugation of the homogenate at 240,000 x g for 1 hour.

Table IV

Incorporation of L-fucose into HTC cell glycoproteins

Cells at a concentration of 5×10^{6}/ml were grown in complete growth medium containing L-[^6-3]H]fucose (5.0μCi/ml, specific activity 12 Ci/mmol). At the end of 24 hours at 37°C, the cells were collected and washed twice with complete growth medium. The cells then were suspended in growth medium at a concentration of 1×10^{6}/ml. At this time an aliquot of the cells (1×10^{7}) was taken for the determination of the amount of incorporated label as fucose. These cells were washed twice with Earle's balanced salt solution and were homogenized in distilled water. An equal volume of 0.2 N H$_2$SO$_4$ was added, and the mixture was heated at 100°C for 2 hours under nitrogen. The acid hydrolysate next was centrifuged at 10,000 rpm for 10 min in the Sorvall HB-4 rotor. One aliquot of the resulting clear solution was treated with trichloroacetic acid, final concentration 10%. Another aliquot was mixed with L-fucose (0.25 mg) and spotted onto a cellulose thin layer plate. The thin layer plate was chromatographed as described under "Materials and Methods," and the fucose spot was counted.

<table>
<thead>
<tr>
<th>Material</th>
<th>Total cpm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acid hydrolysate of HTC cells</td>
<td>24,000</td>
</tr>
<tr>
<td>Acid hydrolysate after centrifugation</td>
<td>26,000</td>
</tr>
<tr>
<td>Acid hydrolysate after 10% trichloroacetic acid</td>
<td>20,800</td>
</tr>
<tr>
<td>Radioactivity in hydrolysate migrating with fucose in thin layer chromatography</td>
<td>15,400</td>
</tr>
</tbody>
</table>

Fig. 9. Loss of incorporated fucose from HTC cells. HTC cells were grown in the presence of L-[^6-3]H]fucose for 24 hours as described in the legend to Table IV. The fucose-labeled cells then were suspended in growth medium at a concentration of 1×10^{6}/ml and incubated at 37°C. At the indicated times, aliquots of the culture were removed for the determination of both total trichloroacetic acid-insoluble radioactivity, expressed as acid-insoluble counts per min x 10^{-5}/mg of protein, and acid-soluble radioactivity in the medium (inset), expressed as acid-soluble counts per min x 10^{-7}/culture. Arrow, time required for the acid-insoluble specific radioactivity to decrease by one-half.

Table V

Analysis of radioactivity released into medium from fucose-labeled HTC cells

HTC cells labeled with $[^3]H$]fucose were suspended in complete growth medium at a density of 1×10^{6}/ml, as described in the legend to Table IV. The cells were incubated at 37°C for 72 hours. During this time acid-soluble radioactivity was released into the medium (Fig. 9). After 72 hours of culture, the medium was collected, and trichloroacetic acid was added to a final concentration of 10%. The precipitated material was removed by centrifugation, and the trichloroacetic acid was extracted into ether. An aliquot of the resulting solution was applied to a mixed bed resin column of Dowex AG 50-X8 (Bio-Rad). All of the applied radioactivity was eluted with water in the void volume and was concentrated by lyophilization. The lyophilized material was dissolved in a minimum volume of water. L-Fucose (0.25 mg) was added, and the material migrating with fucose in thin layer chromatography was collected and counted as described in the legend to Table IV.

<table>
<thead>
<tr>
<th>Material</th>
<th>$cpm \times 10^{-5}$/culture</th>
</tr>
</thead>
<tbody>
<tr>
<td>72 Hour medium</td>
<td>1.8</td>
</tr>
<tr>
<td>72-Hour medium, acid-soluble</td>
<td>1.5</td>
</tr>
<tr>
<td>Radioactivity in acid-soluble fraction migrating with fucose in thin layer chromatography</td>
<td>0.9</td>
</tr>
</tbody>
</table>

labeled peaks of molecular weight greater than 50,000 when the polypeptides from a $[^3]C$]fucose-labeled microsomal fraction are subjected to electrophoresis with a $[^3]H$-labeled plasma membrane fraction in the gel system of Figs. 10 and 11.

There is some cross-contamination of the plasma membrane fraction and the microsomal fraction as prepared from HTC cells. However, both fractions are enriched over the homoge-
Turnover of Plasma Membrane Proteins of HTC Cells

FIG. 10. 3H/14C Ratios of fucose-labeled polypeptides in the plasma membrane fraction of HTC cells. A culture of HTC cells was divided into two parts. One part (5 x 10^6 cells/ml) was grown in complete growth medium containing L-[6-3H]fucose (5.0 μCi/ml, 12 Ci/mmol). The other cells (5 x 10^6 cells/ml) were grown in complete growth medium containing L-[1-14C]fucose (1 μCi/ml, 48 mCi/mmol). At the end of 24 hours at 37°C, the cells were collected and washed twice with Earle’s balanced salt solution. At this time, aliquots of the 14C-labeled cells and the 3H-labeled cells were homogenized and mixed together. This mixture, representing the zero time control, as well as an homogenate of the other 14C-labeled cells, was immediately frozen. The other 3H-labeled cells were suspended in complete growth medium at a concentration of 1.2 x 10^6/ml. These cells were incubated at 37°C for 72 hours. At the end of the incubation, the cell density was still 1.2 x 10^6/ml. These 3H-labeled cells next were collected by centrifugation, washed twice with Earle’s balanced salt solution, and homogenized. The homogenate was mixed and frozen with the frozen homogenate of the 14C-labeled cells. A plasma membrane fraction and a microsomal fraction were prepared from this mixture of cells and from the zero time control cells. These latter cells had 3H/14C isotope ratios of 7.8 for protein in each of the cell fractions analyzed. Arrow enclosed by dotted lines, mean ratio and one standard deviation of the mean for the polypeptides in the plasma membrane fraction of the zero time control cells. The polypeptides were dissociated in 1% dodecyl sulfate and 1% 2-mercaptoethanol, and separated on a 9% polyacrylamide disc gel containing 0.1% dodecyl sulfate. ○. 3H/14C ratios for the fucose-labeled polypeptides in the plasma membrane fraction when the 3H-labeled cells were in culture for 72 hours. ———. 14C-fucose radioactivity of the polypeptides in this fraction.

dase-catalyzed iodination, while the microsomal fraction contains little of these markers. Consequently, the fucose-labeled glycoproteins appear to be authentic constituents of both the plasma membrane and the endoplasmic reticulum.

As shown in Table VI, the fucose-labeled glycoproteins of the microsomal fraction are turning over at about twice the rate of those in the plasma membrane fraction (60 hours versus 120 hours). Furthermore, in contrast to the rather homogeneous rates of turnover of the iodinated polypeptides and the leucine-labeled polypeptides of the plasma membrane (Figs. 6 and 7), the fucose-labeled constituents show considerable heterogeneity in turnover (Fig. 10), even more so than those of the microsomal fraction (Fig. 11). We will discuss possible reasons for this heterogeneity later, but reiterate here that while the microsomal and plasma membrane fractions may have many of the major fucose-labeled glycoproteins in common, those of the microsomes are turning over faster and with more homogeneity than those of the plasma membrane.

Table VI Degradation of fucose-containing glycoproteins as measured by 3H/14C ratios of hepatoma cell fractions

<table>
<thead>
<tr>
<th>Cell fraction</th>
<th>14C</th>
<th>3H</th>
<th>3H/14C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Homogenate</td>
<td>24,000</td>
<td>87,000</td>
<td>3.6</td>
</tr>
<tr>
<td>Microsomes</td>
<td>90,000</td>
<td>204,000</td>
<td>3.3</td>
</tr>
<tr>
<td>Plasma membrane</td>
<td>64,800</td>
<td>337,000</td>
<td>5.2</td>
</tr>
</tbody>
</table>

DISCUSSION

In this paper we have examined the degradation of HTC cell protein by three different methods: the long-term loss of total radioactivity from protein, the concomitant release of label into the medium, and variations of the double isotope technique originally described by Arias et al. (15). Three methods of labeling cell protein were used in each case—labeled amino acids, iodination in situ with lactoperoxidase, and labeled fucose. HTC cells were chosen for these studies because they were derived originally from a rat hepatic tumor. Liver has been the organ of choice for most protein turnover studies, and HTC cells might be expected to use the same or similar degradative mechanisms as the hepatocyte.

The half-life for the degradation of total cell protein in HTC cells as judged by the loss of radioactivity in protein is about 2 to 2½ days, a value within the range found for the turnover of total protein of rat liver by a variety of different methods (21). In rat liver, the protein in the soluble fraction is degraded...
Turnover of Plasma Membrane Proteins of HTC Cells

There is an interesting observation with heterogeneous rates, and there is a correlation between degradation rate and the molecular size of the protein subunits in this cell fraction. In HTC cells, the proteins in the soluble fraction also are degraded at heterogeneous rates (Fig. 8). However, there is no obvious correlation between degradation rate and subunit size of these proteins. This does not reflect anomalous degradation in HTC cells, but rather experimental design. In Fig. 8, the cells were exposed to labeled leucine for 24 hours, while degradation of the labeled proteins occurred for 3 days. Both of these conditions tend to obscure the degradation of short-lived polypeptides, because (a) these polypeptides are undergoing degradation during the 24-hour labeling period and (b) the 3-day decay period is relatively long compared to the half-life for the degradation of total protein. Therefore, heterogeneity and a size-degradation rate correlation would be difficult to detect under these conditions (4, 15).

One difference between HTC cells and rat hepatocytes is that the former are actively dividing. However, growth rate has little, if any, effect on the rate of protein degradation. Thus, the results of Fig. 3, with amino acid as precursor, and those of Fig. 2, with iodide labeling, indicate that the rate of degradation of the labeled proteins is not much different in growing or nongrowing cells.

Iodination of HTC cells had little, if any, effect on the degradation of total cell protein as measured by the release of amino acids into the medium (Fig. 1), or, more directly, as measured by the loss of label from both total protein and membrane protein (Table I). This being the case, the degradation of the HTC cell proteins which are accessible to iodination in situ can be examined. Elsewhere (14) we showed that only plasma membrane proteins are accessible to iodination, and that these proteins represent most of the protein mass of the membrane. The studies of Fig. 2 and Table I show that the membrane proteins accessible to iodination are being degraded exponentially at a rate that is at most one-half that of total cell protein. The value for the half-life of the iodinated proteins obtained in Fig. 2 is somewhat longer than that which can be calculated from the data or Table III (about 3 days). This is because in Fig. 2 a period of about 18 hours elapsed between iodination and the first measurement of incorporated iodide. During this 18-hour period a rapid loss of some labeled material occurs. Similar results have been reported with mouse L cells (22), but the reason for the rapid loss is not known.

L-Fucose also was used to label HTC cell protein. We showed previously (14) that this sugar selectively labels membrane protein of HTC cells. However, the incorporated fucose is present and enriched over the homogenate in both the microsomal fraction and the plasma membrane fraction. Also, the enrichment over the homogenate of incorporated fucose in the plasma membrane fraction is low compared to the enrichment for incorporated iodide. It is not surprising, then, that the value for the half-life (50 hours, Fig. 5) of fucose-labeled protein is different from that found for the iodinated proteins (100 hours, Fig. 2). By calculation, the data in Table VI also yield a half-life of about 100 hours for the degradation of the fucose-labeled glycoproteins in the plasma membrane fraction versus a half-life of about 50 hours for the same glycoproteins (as resolved by dodecyl sulfate-acrylamide gel electrophoresis) in the microsomal fraction. Some of the glycoprotein in the microsomal fraction may be precursors in transit to the plasma membrane. But the difference in degradation rate of the glycoproteins in the two cell fractions suggests that some of these glycoproteins are components of the endoplasmic reticulum.

Most of the incorporated label, regardless of the specific precursor, when lost from protein, appeared in the medium. In every case, the label released into the medium was acid-soluble, indicating that secretion of macromolecules is not a major mechanism of protein removal from HTC cells.

Double isotope techniques using labeled leucine, labeled fucose, and labeled iodide were used to study the degradation of HTC cell protein because these techniques allow the determination of the relative degradation rates of a large number of proteins in a single experiment (15). We used three different precursors for the proteins of the plasma membrane in the double isotope experiments to determine as rigorously as possible whether the proteins of the plasma membrane are being degraded with heterogeneous or homogeneous rates. The importance of this question is that heterogeneous turnover of the membrane proteins implies that these proteins are removed from the membrane independently of each other, and that they exist for some finite period in another compartment of the cell.

However, the results obtained from the double isotope experiments with iodide as label indicate that the membrane proteins turn over at similar, probably identical, rates. These results were confirmed by the double isotope experiment with leucine as precursor for the plasma membrane proteins. The leucine-labeled polypeptides in the plasma membrane also were degraded at almost identical rates. In contrast, there was more heterogeneity in the degradation rates of the fucose-labeled proteins of the plasma membrane. However, the fucose-labeled proteins in the microsomal fraction were degraded with less heterogeneity in rate than those of the plasma membrane. The fact that the protein backbone of the glycoproteins in the plasma membrane are turning over at similar rates, while the carbohydrate moieties are turning over at more heterogeneous rates, may indicate that the sugar side chains can be removed from the proteins by a mechanism independent of protein degradation. Further studies are needed to clarify this point.

It has been reported that the proteins of the plasma membrane of rat liver are degraded at heterogeneous rates (5). This could mean that the HTC cell system is not a good model for studying the mechanism of biogenesis of the liver cell plasma membrane. Another possibility is that the reported heterogeneity in rate of protein turnover in plasma membrane of rat liver reflects contamination of the plasma membrane preparation with proteins from other cell fractions. Still another possibility is that while the major proteins of the membrane turn over at similar rates, minor proteins, such as receptors, are turning over at heterogeneous rates. We have not as yet distinguished among these possibilities. The results presented here favor unit degradation of at least the major proteins of the membrane. Hubbard and Cohn (22) also have concluded recently that in mouse L cells actively phagocytosing polystyrene latex beads, the proteins accessible to iodination turn over as a unit. If all of the proteins of the plasma membrane are degraded as a unit, perhaps by interiorization and fusion with lysosomes, then there must be some sort of coordinate control of the synthesis or insertion of these
polypeptides into the membrane. This aspect of membrane biogenesis is currently being examined.

Acknowledgment—We thank Else Friedman for excellent technical assistance.

REFERENCES
2. Schimke, R. T. (1970) Mamm. Protein Metab. 4, 177-228
Turnover of the plasma membrane proteins of hepatoma tissue culture cells.
J Tweto and D Doyle

Access the most updated version of this article at http://www.jbc.org/content/251/3/872

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/251/3/872.full.html#ref-list-1