Apparent Dispensability of the Carbohydrate Moiety of Human Interferon for Antiviral Activity

(Received for publication, August 18, 1975)

SIKTA BOSE, DALIA GURARI-ROTMAN, URS TH. RUEGG,* LILA CORLEY, AND CHRISTIAN B. ANFINSEN

From the Laboratory of Chemical Biology, National Institute of Arthritis, Metabolism, and Digestive Diseases, National Institutes of Health, Bethesda, Maryland 20014

Human leukocyte and tritium-labeled fibroblast interferons, prepared by induction with Sendai virus and with double-stranded polyinosinic acid-polycytidylic acid respectively, have been studied in relation to the carbohydrate moieties attached to them. These interferons were partially purified by immunoabsorbance and by gel filtration. On treatment with glycosidases about 80% of the 3H-labeled sugar moieties in this glycoprotein-containing fraction was removed without detectable alteration of the antiviral activity or antibody-binding properties characteristic of interferon. The molecular weight of leukocyte interferon was reduced by about 4000. As others have reported, the heterogeneous character of interferon revealed by isoelectric focusing was greatly reduced by the enzyme treatment.

The study of the purification and properties of interferon has attracted much attention because of the potentially valuable antiviral activity of this substance. It has not yet been possible to produce interferon in large quantities by tissue culture. Consequently, many investigators have focused either on its isolation in pure form, for the purpose of determination of structure and, possibly, for future chemical synthesis, or on the development of potent, nontoxic inducers to stimulate endogenous interferon production.

Schonne et al. (1) observed a decreased charge heterogeneity of rabbit interferon upon isoelectric focusing following treatment with neuraminidase. They proposed that interferon is a glycoprotein, possessing variable amounts of sialic acid. Later, this hypothesis was confirmed by Dorner et al. (2). Rabbit interferon, upon treatment with neuraminidase, exhibited a single peak focusing at pH 6.3. This asialo-interferon regained its original heterogeneous character after reincorporation of sialic acid residues by the use of sialyltransferase. Also, the terminal sequence of the carbohydrate moiety was identified as sialic acid → galactose.

The studies of Schonne et al. (1) and of Dorner et al. (2), referred to above, have shown that terminal sialic residues may be removed without loss of antiviral activity. In the case of the latter studies (2), the next carbohydrate residue in the polysaccharide chain, galactose, could be successively oxidized with galactose oxidase and reduced with sodium borohydride without loss of activity. Since most glycoproteins studied to date contain one or more polysaccharide chains with molecular weights of 1000 to 3000, the present studies were carried out to examine the effects of more extensive carbohydrate removal.

Such studies are of importance in connection with the feasibility of eventual synthesis. This paper summarizes experiments on human leukocyte and fibroblast interferon that indicate the dispensability of the bulk of the carbohydrate component.

MATERIALS AND METHODS

Human leukocyte interferon prepared from human leukocytes induced with Sendai virus by H. Straander and K. Cantell (3) and Smith, Kline and French Laboratories was supplied to us by the Antiviral Substances Program of the National Institute for Allergy and Infectious Diseases.

Fibroblast interferon was prepared with the kind cooperation of J. Vilcek and E. Haswell at New York University, using the FS-4 strain of human foreskin diploid fibroblasts induced with a double-stranded complex of polyinosinic acid-polycytidylic acid (4). Tritiated glycosides were incorporated into interferon preparations by adding n-[3H]glucosamine-hydrochloride with a specific activity of 10.13 Ci/mM (New England Nuclear. 5 mCi/100 ml of culture fluid) to Eagle's minimal essential medium with a glucose concentration lowered to 20 mg/100 ml. The tissue culture fluids were first desalted by passing them through a column of Sephadex G-25 medium (5.2 × 75 cm) in 0.1 M acetic acid to remove the bulk of the radioactivity.

The 3H-labeled protein fraction from fibroblast cultures was purified by immunoabsorbance chromatography (5, 6) and further by gel filtration on Sephadex G-100 (fine 2.6 × 90 cm). Human leukocyte interferon was subjected to the same purification procedures. Interferons were eluted from the affinity column by a pH-gradient (6) containing cytochrome c (0.3 mg/ml) and from G-100 columns by 0.1 M acetic acid containing NaCl (0.15 M) and cytochrome c (0.3 mg/ml). The partially purified interferons were dialyzed against 0.1 M acetic acid and lyophilized.

Interferon assays were carried out by a modification of the micro method originally described for rabbit kidney cells (7). The reference human interferon preparation, 69119, titers 5 103 units/ml in this assay. The specific activities of partially purified interferons have not been estimated in the current studies. As discussed earlier (6), a large purification (200 to 300-fold) is obtained in the first step (immunoabsorbance on antibody-Sepharose columns). Indeed, the amounts of protein present in the interferon fraction is sufficiently low that it is necessary to add a protective protein (in our experiments, cytochrome c) to prevent losses due to adsorption in subsequent steps. The current studies are concerned with the physical behavior before and after removal of carbohydrates. The changes in charge and mass have been
related to the migration of material possessing antiviral activity during isoelectric focusing and gel filtration.

The mixture of glycosidases used to partially remove the carbohydrate moiety from interferon was prepared (8) from a strain of *Diplococcus pneumoniae*, Type 1, with the kind cooperation of G. Ashwell, National Institute of Arthritis, Metabolism, and Digestive Diseases. α-Mannosidase (49 units/ml) was a gift from Dr. Ashwell. The glycosidase preparation (8, 9) contained β-galactosidase (4.6 units/ml), N-acetylglucosaminidase (10.4 units/ml), neuraminidase (0.1 units/ml) and an undetermined amount of endoglycosidase (10). The protein concentration of this preparation was 3.2 mg/ml.

Treatment of 4H-labeled Interferon with Glycosidases—The partially purified and lyophilized interferon was redissolved in Melittin phosphate/citrate buffer, pH 6.0, and the initial radioactivity was determined. Solutions of glycosidases (2 μl/1000 units of interferon) and α-mannosidase (0.25 μl/1000 units of interferon) were added and the mixture was incubated at 37°. Aliquots (0.2 ml) were taken during the course of the enzymic reaction for interferon assay. For the determination of sugar released, aliquots (0.1 ml) were removed and precipitated by addition of 0.2 ml of 2% phosphotungstic acid in 0.5 N HCl. After centrifugation, a measured amount of the supernatant was loaded on a liquid scintillation counter.

Results and Discussion

As can be seen in Table 1, incubation of the protein fraction containing fibroblast interferon labeled with tritiated sugar moieties with a mixture of glycosidases and α-mannosidase resulted in the progressive removal of tritiated sugar residues. Between 74 to 85% of the tritium label was removed without loss of interferon activity in three experiments carried out on different preparations of tritiated interferon. Complete removal of the tritiated sugars was not achieved, even with longer enzyme incubation times. This could be due to the fact that part of the N-acetylglucosamine residues are directly connected to the polypeptide chain of the glycoprotein and that the sugar-amine acid bond cannot be enzymatically cleaved. However, the fact that the molecular weight (Fig. 2) of leukocyte interferon is considerably decreased by glycosidase treatment indicates that a large part of the sugar attached to interferon has been removed.

![Fig. 1. Isoelectric focusing of human interferon before (a) and after (b) removal of the carbohydrate moiety by treatment with glycosidases for 3 hours as described under "Materials and Methods." Human interferon (leukocyte, 6.7 x 10^4 units in each case) was focused at pH 3.5 to 8 in a 0 to 50% sucrose gradient.](http://www.jbc.org/)
that sialic acid is present as the terminal residue in the carbohydrate moiety of this material.

Neither leukocyte nor fibroblast interferon showed any change in binding to the anti-interferon antibody column as a result of treatment with glycosidases and α-mannosidase (Table II) under the conditions described under "Materials and Methods." In one experiment (No. 1B, Table II), the enzyme-treated interferon solution (4.4 x 10^4 dpm) was applied to this affinity column. Most of the radioactivity (3.8 x 10^4 dpm; 81%) passed through the column unretarded, while 0.84 x 10^4 dpm (19%) were eluted with citrate buffer (pH 2.2) along with the interferon activity. These figures are in agreement with those from the experiments described in Table I. This indicates that the removal of much of the carbohydrate from interferon does not affect its ability to bind to its specific antibodies.

Isoelectric focusing experiments on both types of interferons indicate that after partial removal of the carbohydrate moiety from interferon, its heterogeneous character is reduced (Fig. 1). The recovery of leukocyte interferon (6.7 x 10^4 units) on isoelectric focusing was 36%, whereas the recovery after enzymic removal of the carbohydrate moiety was 71%. This type of heterogeneous behavior on isoelectric focusing was previously observed by Schonke et al. (1) using rabbit interferon and by Stanček et al. (13) using rabbit, mouse, and human interferon. The heterogeneity was reduced after treatment with neuraminidase (1.2). Dorner et al. (2) showed that the terminal sugar residue of the carbohydrate moiety was sialic acid.

The results of molecular weight determinations on leukocyte interferon before and after treatment with glycosidases are shown in Figs. 2 and 3. After enzyme treatment (glycosidases and α-mannosidase), the apparent molecular weight of the interferon is decreased by about 4,200. This observation was verified in three separate experiments. The molecular weight

Table I

<table>
<thead>
<tr>
<th>Interferon preparation*</th>
<th>Incubation time</th>
<th>Amount of 3H label in supernatant</th>
<th>%</th>
<th>Interferon activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>min</td>
<td>dpm/ml x 10^-1</td>
<td></td>
<td>units/ml x 10^-1</td>
</tr>
<tr>
<td>I</td>
<td>0</td>
<td>0.44</td>
<td>1.2</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.68</td>
<td>16.3</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>10.96</td>
<td>31.5</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>17.08</td>
<td>51.7</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>60</td>
<td>20.26</td>
<td>58.3</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>80</td>
<td>23.42</td>
<td>67.4</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>120</td>
<td>25.88</td>
<td>74.5</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>160</td>
<td>27.38</td>
<td>78.8</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>240</td>
<td>28.07</td>
<td>80.7</td>
<td>25</td>
</tr>
<tr>
<td>II</td>
<td>0</td>
<td>0.3</td>
<td>0.1</td>
<td>3.2</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>392</td>
<td>73.4</td>
<td>3.2</td>
</tr>
<tr>
<td>III</td>
<td>0</td>
<td>0.2</td>
<td>0.9</td>
<td>5.0</td>
</tr>
<tr>
<td></td>
<td>180</td>
<td>94.6</td>
<td>84.7</td>
<td>5.0</td>
</tr>
</tbody>
</table>

*a Interferon Preparations I, II, and III contained 3.48 x 10^4, 5.34 x 10^4, and 1.12 x 10^5 dpm/ml, respectively.

*b In this experiment, a 3-fold excess of unlabeled fibroblast interferon was added to the labeled material.

Table II

<table>
<thead>
<tr>
<th>Experiment No.</th>
<th>Type of interferon</th>
<th>Enzyme treatment</th>
<th>Total units applied, x 10^-1</th>
<th>Units bound to anti-interferon column, x 10^-1</th>
<th>Recovery*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1A</td>
<td>Fibroblast</td>
<td></td>
<td>19</td>
<td>8.5</td>
<td>45</td>
</tr>
<tr>
<td>1B</td>
<td>Fibroblast, 3H</td>
<td></td>
<td>9.9</td>
<td>4.3</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>labeled sugar</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2A</td>
<td>Leukocyte</td>
<td></td>
<td>90</td>
<td>53</td>
<td>59</td>
</tr>
<tr>
<td>2B</td>
<td>Leukocyte</td>
<td></td>
<td>90</td>
<td>64</td>
<td>71</td>
</tr>
</tbody>
</table>

*a Recovery refers to the antibody-bound interferon, eluted with citrate buffer, pH 2.2.
Irrelevance of Carbohydrate Moiety of Interferon for Activity

determined for untreated interferon is 26,000 ± 1,200. It should be noted, however, that glycoproteins are not believed to behave as globular proteins on gel filtration (14). In addition, since losses of interferon activity occurred during gel filtration in neutral buffers, our columns were eluted under acid conditions which may cause some protein unfolding. Therefore, we stress that the change in molecular weight of interferon is the important observation rather than the absolute molecular weight values.

Acknowledgments—We are grateful to Doctors E. Havell and J. Vilček for their help in the preparation of fibroblast interferon, to Dr. G. Ashwell for the gift of α-mannosidase as well as his help in the preparation of glycosidases and to Dr. A. Minton, National Institute of Arthritis, Metabolism, and Digestive Diseases, for computer processing of the molecular weight data.

REFERENCES
Apparent dispensability of the carbohydrate moiety of human interferon for antiviral activity.
S Bose, D Gurari-Rotman, U T Ruegg, L Corley and C B Anfinsen

Access the most updated version of this article at http://www.jbc.org/content/251/6/1659

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/251/6/1659.full.html#ref-list-1