Isolation and Properties of the Vaccinia Virus DNA-dependent RNA Polymerase*

(Received for publication, February 28, 1977)

JOSEPH R. NEVINS* AND WOLFGANG K. JOKLIK§

From the Department of Microbiology and Immunology, Duke University Medical Center, Durham, North Carolina 27710

A vaccinia virus-specified DNA-dependent RNA polymerase was isolated from the cytoplasm of infected HeLa cells. The enzyme appeared in cells only after infection; it differed in its chromatographic properties from all cellular RNA polymerases; and its subunit composition (seven subunits ranging in size from 13,500 to 135,000 daltons) was completely different from that of HeLa cell RNA polymerases I and II. The latter two enzymes were also isolated and their subunit compositions were found to resemble closely those of mouse plasmacytoma MOPC 315 RNA polymerases I and II. The three largest subunits of the isolated vaccinia virus-specified RNA polymerase migrated in sodium dodecyl sulfate-polyacrylamide gels at the same rate as virion core polypeptides VP1c, VP1d, and VP2c; the enzyme may therefore be the same as the vaccinia virus core-associated RNA polymerase.

The purified enzyme was free of detectable exonuclease and poly(A) polymerase activity. It was maximally stimulated by 0.08 M KCl and 0.001 M MnCl₂; MgCl₂ could not substitute for MnCl₂ to a significant degree. The enzyme was very resistant to α-amanitin. It was 10 times more active with denatured calf thymus or vaccinia virus DNA as template than with the corresponding native DNAs, but transcribed the synthetic double-stranded poly[d(A-T)] almost as rapidly as single-stranded natural DNA. It transcribed all sequences of native vaccinia virus DNA.

Vaccinia virus was the first virus shown to possess a nucleic acid polymerase: Kates and McAuslan reported in 1967 that vaccinia virus cores supplied with the four ribonucleoside triphosphates were capable of transcribing portions of the viral genome within them into RNA (1). Subsequent work showed that this RNA can be translated in cell-free protein-synthesizing systems, that is, that it is messenger RNA (2-4). This RNA polymerase is both capped and methylated at its 5' end (5), and is polyadenylated at its 3' end (6).

The RNA polymerase present in vaccinia virus cores has not so far been isolated. This is in contrast to the several other enzymes that have been isolated from vaccinia virus, such as two nucleoside phosphohydrolases (7, 8), one or two deoxyribonucleases (9, 10), a protein kinase (11), a poly(A) polymerase (12, 13), a RNA guanylyltransferase, and a RNA (guanine-7-methyltransferase (14). The vaccinia virus RNA polymerase is not unique in its refractoriness to being extracted in active form from virions: the RNA polymerases of reovirus, orthomyxoviruses, paramyxoviruses, and rhabdoviruses likewise have not yet been isolated in pure form from virions, and the only nucleic acid polymerase for which this has been accomplished so far is the DNA polymerase of RNA tumor viruses.

In seeking an alternate source of the vaccinia virus-specific RNA polymerase, we turned to extracts of infected HeLa cells. Cytoplasmic extracts of such cells have been demonstrated to contain DNA-protein complex capable of synthesizing both early and late viral mRNA, but no soluble RNA polymerase (15). We found, however, that such extracts do indeed contain a soluble RNA polymerase activity that is not present in uninfected cells, and the isolation of this enzyme forms the substance of this paper. Like HeLa cell RNA polymerases I and II, which we also purified, the vaccinia virus RNA polymerase is a complex structure consisting of numerous subunits, none of which shares with the cellular RNA polymerases. Further, at least three of its subunits were identified with three virion structural proteins, indicating that the RNA polymerase isolated from infected cells is identical with the vaccinia virus core-associated enzyme.

In the following paper we show that HeLa cells infected with vaccinia virus contain several poly(A) polymerases, that one is present only in infected cells, and that this enzyme is identical with the poly(A) polymerase isolated from vaccinia virus cores (12, 13). This is another example of a virion-associated nucleic acid polymerase that exists in the free form within infected cells in amounts high enough to permit purification, isolation, and characterization.

The purification of RNA polymerases and poly(A) polymerases, both cell-coded and virus-coded, from cells infected with vaccinia virus is part of a wider project aimed at elucidating the mechanism by which the 3' terminus of messenger RNA molecules is polyadenylated.

* This work was supported by a research grant from the National Institute for Allergy and Infectious Diseases, a research contract from the Energy Research and Development Administration, and a training grant from the National Institute for General Medical Sciences. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address, The Rockefeller University, New York, N. Y. 10021.
§ To whom requests for reprints should be addressed.
Vaccinia Virus RNA Polymerase

EXPERIMENTAL PROCEDURES

Cells and Virus

HeLa S3 cells and mouse strain L fibroblasts were grown in suspension culture in Eagle's Minimal Essential Medium (Joklik's modification, Grand Island Biologicals) containing 5% fetal calf serum. Vaccinia virus strain WR was grown and purified as follows. L cells, at a concentration of 1 × 10^7/ml, were infected by adding 150 virus particles per cell (in the form of highly purified virus suspensions). After incubating at 37° for 20 h, the cells were placed at 4° and allowed to settle overnight. Most of the medium was removed by suction and the remaining cells were pelleted by centrifuging at 1000 x g for 5 min. They were washed twice with Earle's salt solution (16) and then stored frozen at -20°. For virus purification, the frozen cell pellets were thawed, resuspended in 10 mm NaHPO₄ and allowed to swell at 4° for 10 min. The cells were centrifuged at 1000 x g for 5 min. They were washed twice with 0.15 M NaCl in 0.05 M Tris/HCl, pH 7.9. Purified vaccinia virus was added to this suspension in the form of highly purified virus suspensions (17). Purified virus was stored frozen at -20°.

Preparation of Cell Extracts

HeLa cells were grown to a density of 1 × 10^6 cells/ml, usually in batches of 6 liters. Purified vaccinia virus was then added (440 virus particles/cell) and the culture was incubated at 37° for 5 h. After centrifuging at 1000 x g for 10 min and washing once with RSB, the supernatants were applied to the DEAE-cellulose filter disks essentially as described by Gillespie and Spiegelman (18). One-half of the infected cells were incubated at 37° for 5 h and used for the preparation of late viral mRNA. Both cultures were centrifuged, washed twice with Earle's saline, and centrifuged again at 140,000 x g for 2 h, and the supernatants were dialyzed against two changes of 10 volumes of 0.05 M Tris/HCl, 1 mm EDTA, 1 mm dithiothreitol, and 15% (w/w) glycerol, pH 7.9 (Buffer A), containing 0.05 M KCl. A heavy precipitate which formed during dialysis was removed by centrifuging at 140,000 x g for 1 h and the resulting supernatant was either used immediately for enzyme isolation or stored at -80°.

Cytoplasmic Extracts

For the preparation of cytoplasmic extracts, freshly harvested washed cells were resuspended in 10 mm Tris/HCl, pH 7.9, 1 mm MgCl₂, and the culture was incubated at 37° for 15 s, each time with a Branson sonicator model W140D at a setting of 40. They were then centrifuged at 140,000 x g for 30 min. The cytoplasmic fraction was collected as described above. The supernatants were resuspended in 1 mm NaHPO₄, rebandaged in sucrose density gradients, and virus was again collected as described above. The pellets were resuspended in 1 mm NaHPO₄ and the Aₕₜₜ was measured. One Aₕₜₜ was taken to be equivalent to 1.2 × 10^10 virus particles or 64 μg of virus protein (17). Purified virus was stored frozen at -20°.

Preparation of Whole HeLa Cells

These extracts, infected or uninfected, were prepared as follows; all operations were carried out at 0-4°. Washed cells were suspended in 0.15 M NaCl, 0.05 M Tris/HCl (pH 7.9), at a concentration of 5 × 10^10 cells/ml and homogenized in a Dounce homogenizer. EDTA, dithiothreitol, glycerol, and ammonium sulfate were added and then adjusted to pH 7.9. The homogenates were sonicated four times for 15 s, each time with a Branson sonicator model W140D at a setting of 40. They were then centrifuged at 140,000 x g for 2 h; this sample was used for the preparation of early vaccinia mRNA. The remaining of the infected cells were incubated at 37° for 5 h and used for the preparation of late viral mRNA. Both cultures were centrifuged, washed twice with Earle's saline, and cytoplasmic extracts were prepared from each by homogenizing with a Dounce homogenizer and extracting the RNA by means of the hot phenol-SDS procedure of Warner et al. (20). After precipitating the RNA with ethanol, it was dissolved in 0.01 M EDTA.

Hybridization

Vaccinia virus RNA was hybridized to vaccinia virus DNA on filter disks essentially as described by Gillespie and Spiegelman (21). In brief, DNA (20 μg/ml) was denatured by heating to 100° for 10 min followed by quick cooling in an alcohol/ice bath. The solution was then diluted 40-fold with 0.6 M NaCl, 0.06 M sodium citrate, pH 7.4 (4 ⅛ SSC) and slowly filtered through presoaked 8.5-mm diameter Millipore filters. The filters were washed with 50 ml of 4 × SSC and then allowed to dry at room temperature, followed by heating 1°. The abbreviation used is: SDS, sodium dodecyl sulfate.
Vaccinia Virus RNA Polymerase

for 4 h in vacuo at 80°. The amount of DNA bound to the filters was determined by including a small amount of "C-labeled vaccinia virus DNA in the DNA solution and measuring radioactivity on the filters after binding.

Hybridization was performed at 64° in 4 x SSC containing 0.1% SDS for 18 h. The discs were then washed with 2 x SSC, incubated with 20 μg/ml pancreatic RNase in 2 x SSC for 60 min at 22°, and again washed. Radioactivity bound to them was then measured.

Conductivity and Protein Measurements

Salt concentrations were measured using a Radiometer conductivity meter. Protein was measured essentially as described by Lowry et al. (22). Protein in bands in SDS-polyacrylamide gels was measured by staining with Coomassie brilliant blue and comparing their A 6932 with that of bands containing standard amounts of bovine serum albumin.

SDS-Polyacrylamide Gel Electrophoresis

Protein samples were prepared for electrophoresis by precipitating with 10% trichloroacetic acid, and washing once with 5% trichloroacetic acid and twice with acetone. After drying, the precipitates were dissolved in 50 μl of 62.5 mM Tris (pH 6.8), 1% (w/v) glycerol, 1% SDS, 0.1 M 2-mercaptoethanol, and 0.005% bromophenol blue, and heated at 100° for 2 min. The gel system was that of Laemmli (23) and a slab-gel apparatus similar to that described by Studier and Wilcox (24) was used. Electrophoresis was at 15 mA for 4 h. The gels were stained with a solution containing 0.2% Coomassie brilliant blue, 10% trichloroacetic acid, and 25% isopropanol alcohol for 4 to 16 h at 25°. They were then destained in 7% acetic acid at 37°. Densitometric profiles of gels were obtained using a Quick Scan (Helena Instruments) interfaced with a Digital PDP-11 computer.

Preparation of Ion Exchange Resins

DEAE-Sephadex (A-25) was swollen in Buffer A containing 0.05 M KCl. The buffer was changed repeatedly during the swelling procedure. After packing, the columns were washed further with the same buffer until the pH of the effluent was 7.9.

Phosphocellulose (Whatman P-11) was washed with 0.5 N NaOH, followed by 0.5 N HCl. After washing with water, it was suspended in Buffer A and titrated to pH 7.9 with Tris base.

Materials

Unlabeled nucleotides and calf thymus DNA were purchased from Sigma, [3H]UTP from New England Nuclear, α-amanitin from Calbiochem, and poly[d(A-T)] from Miles Corp.

RESULTS

Demonstration of a "Soluble" RNA Polymerase in Cytoplasm of HeLa Cells Infected with Vaccinia Virus

Mammalian cells contain three readily detectable RNA polymerases, I, II, and III, identified by their elution properties from DEAE-Sephadex (25) and their sensitivity to α-amanitin (26, 27). Most of these enzymes are located in the nucleus after infection.

The activity in the first peak, which eluted at 0.2 M KCl, was completely resistant to 0.5 μg/ml α-amanitin; it corresponded to RNA polymerase I. The activity in the second peak, which eluted at about 0.3 M KCl, was about 60% sensitive to 0.5 μg/ml α-amanitin, and represented a mixture of RNA polymerases II and III. Schwartz et al. (27) also found that these two enzymes cochromatographed on DEAE-Sephadex.

The DEAE-Sephadex elution profile of RNA polymerase activity in whole uninfected HeLa cell extracts. Two major peaks of activity, the second with a shoulder, were obtained. The activity in the first peak, which eluted at about 0.2 M KCl, was about 60% sensitive to 0.5 μg/ml α-amanitin, and represented a mixture of RNA polymerases II and III. Schwartz et al. (27) also found that these two enzymes cochromatographed on DEAE-Sephadex.

The DEAE-Sephadex elution profile of RNA polymerase activity in the cytoplasm of vaccinia virus infected HeLa cells is shown in Fig. 1B. Most of the activity eluted at a lower KCl concentration (0.16 to 0.18 M) than the cellular enzymes.

Table I

<table>
<thead>
<tr>
<th>Time after infection (h)</th>
<th>Pellet activity</th>
<th>Supernatant activity</th>
<th>Supernatant + DNA activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 (uninfected)</td>
<td>33</td>
<td>56</td>
<td>290</td>
</tr>
<tr>
<td>4.5</td>
<td>1287</td>
<td>55</td>
<td>237</td>
</tr>
<tr>
<td>10</td>
<td>4151</td>
<td>56</td>
<td>290</td>
</tr>
</tbody>
</table>

Each extract was prepared from 2 x 10^6 infected HeLa cells and amounted to 2 ml. Pellets after centrifugation were resuspended in the same volume of Buffer A containing 0.5% NP40. Eighty microtiter of each supernatant/pellet was assayed in standard reaction mixtures both with and without added denatured calf thymus DNA.

It has long been held that vaccinia virus DNA replicates exclusively in the cytoplasm and that therefore all vaccinia virus messenger RNA is transcribed there. However, it has recently been found that some vaccinia virus DNA also enters the nucleus, and that some of it replicates there (28). Similar results have been reported for fowlpox virus by Gafford and Randall (33), who found that some viral messenger RNA was also transcribed in the nucleus. However, the proportion of fowlpox virus messenger RNA transcribed in the nucleus never exceeded one-third of the total that was transcribed.
Two minor peaks that eluted at about 0.2 and 0.3 M KCl, respectively, were also found; both were resistant to 0.5 μg/ml α-amanitin. They represented cellular RNA polymerases I and III, respectively; no cellular RNA polymerase II was present in the cytoplasmic fraction of infected cells.

The major RNA polymerase peak in the cytoplasm of infected HeLa cells clearly represented a new and presumably virus-specified enzyme, and further work was aimed at isolating it.

An interesting feature of the vaccinia RNA polymerase was that it occasionally eluted as a double peak (see Fig. 1B). Sometimes the shoulder resolved into a second peak, smaller than the first. However, when purified as described below, the enzymes derived from both peaks showed the same sedimentation characteristics, were identical in subunit composition as judged by SDS-polyacrylamide gel electrophoresis, possessed identical specific activities, and were indistinguishable in all other properties that were investigated (see below).

Chromatography on Phosphocellulose

The enzyme-containing fractions eluted from DEAE-Sephadex were combined, diluted to reduce the KCl concentration to 0.1 M, and applied to a phosphocellulose column which was eluted as described under "Experimental Procedures." Fig. 2 shows that a single peak of RNA polymerase activity resulted.

Centrifugation in Glycerol Density Gradients

The enzyme-containing fractions were concentrated by ammonium sulfate precipitation and sedimented into density gradients of 15 to 35% (w/w) glycerol (see "Experimental Procedures"). The enzyme sedimented as a sharp peak (Fig. 3A) at about the same rate as HeLa cell RNA polymerase I (Fig. 3B) and slightly more slowly than *Escherichia coli* RNA polymerase (Fig. 3B) (*M* < 488,000 (34, 35)).

Purification of HeLa Cell RNA Polymerases I and II

HeLa cell RNA polymerases I and II were purified by the same steps as vaccinia virus RNA polymerase. HeLa cell RNA polymerase III was present in amounts too low to permit isolation; however it was purified sufficiently to permit the conclusion that none of its component subunits had the same electrophoretic mobility as any of the subunits of the vaccinia virus RNA polymerase.

Summary of Purification Procedures

Table II summarizes the purification of the vaccinia virus-
specified RNA polymerase. The yield of enzyme was low, most probably because it was quite labile. This lability may explain why it has so far been impossible to isolate it from virus particles. The overall purification factor was 167. The specific activity of the purified enzyme with denatured DNA as template was 1.73 x 10^6 units/mg of protein. The specific activity of the purified enzyme with native DNA as template was far lower; the single-stranded/double-stranded DNA activity ratio was 18. The activity ratio was some 6 times lower than that of the enzyme in the original cell extracts; this may indicate either the loss during purification of a factor facilitating transcription of native DNA, or the removal of endonucleases(s) which, by nicking, could provide additional sites for transcription initiation. After the glycerol density gradient purification step, the viral RNA polymerase contained no detectable amounts of exonucleases for RNA or DNA, poly A polymerase, and polynucleotide phosphorylase.

Subunit Composition of Vaccinia Virus-specified RNA Polymerase and of HeLa Cell RNA Polymerases I and II

The subunit composition of all three purified enzymes was examined in 10% polyacrylamide-SDS slab gels. The results are shown in Fig. 4. The virus-specified enzyme profile revealed six major bands, the largest of which actually contained two polypeptides of very similar size (see below, Fig. 6). The reasons for postulating that the seven polypeptides were the component subunits of the viral RNA polymerases are: (a) all were present in the same relative proportions during the final two stages of purification (chromatography on phosphocellulose and sedimentation in glycerol density gradients); and (c) their summed molecular masses totalled 425,000 daltons (Table III), a value compatible with that postulated on the basis of the sedimentation analysis presented in Fig. 3.

The purified vaccinia virus RNA polymerase also contained several polypeptides that were present in far lower than equimolar amounts, especially in the size range above 135,000 daltons. These polypeptides were judged to be impurities. Similar large and difficult to remove impurities have been reported in purified preparations of cellular polymerases.

The subunit compositions of HeLa cell RNA polymerases I and II and the sizes of their subunits, based upon the gels shown in Fig. 4, are given in Table IV. All polypeptides present in approximately equimolar amounts were considered to be enzyme subunits; in addition several polypeptides that showed significant departures from equimolar ratios were

![Fig. 4. SDS-polyacrylamide gel electrophoretograms of vaccinia virus RNA polymerase, HeLa cell RNA polymerases I and II, and Escherichia coli RNA polymerase (holoenzyme). Ten to twenty micrograms of each enzyme was used. For details, see "Experimental Procedures." The direction of electrophoresis was from top to bottom. A, vaccinia virus RNA polymerase; B and C, HeLa cell RNA polymerases I and II, respectively; D, E. coli RNA polymerase.](http://www.jbc.org/)

![Fig. 5. Densitometer scans of the electrophoretograms of vaccinia virus RNA polymerase subunits shown in Figs. 4 and 6 (inset). The direction of electrophoresis was from left to right. The gels were stained with Coomassie brilliant blue and scanned at 550 nm using a Quick Scan (Helena Laboratories). The profiles were analyzed using a Digital PDP-11 computer.](http://www.jbc.org/)

![Table III](http://www.jbc.org/)

<table>
<thead>
<tr>
<th>Subunit</th>
<th>Molar ratio (relative to subunit a)</th>
<th>Molecular mass (daltons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1.0</td>
<td>130,000</td>
</tr>
<tr>
<td>b</td>
<td>1.0</td>
<td>130,000</td>
</tr>
<tr>
<td>c</td>
<td>1.0</td>
<td>130,000</td>
</tr>
<tr>
<td>d</td>
<td>1.2</td>
<td>34,000</td>
</tr>
<tr>
<td>e</td>
<td>1.0</td>
<td>19,500</td>
</tr>
<tr>
<td>f</td>
<td>1.2</td>
<td>16,000</td>
</tr>
<tr>
<td>g</td>
<td>0.9</td>
<td>13,500</td>
</tr>
</tbody>
</table>

![Table IV](http://www.jbc.org/)

<table>
<thead>
<tr>
<th>Subunit</th>
<th>RNA polymerase I (daltons)</th>
<th>Subunit</th>
<th>RNA polymerase II (daltons)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>175,000</td>
<td>a</td>
<td>250,000</td>
</tr>
<tr>
<td>b</td>
<td>195,000</td>
<td>b</td>
<td>195,000</td>
</tr>
<tr>
<td>c</td>
<td>145,000</td>
<td>c</td>
<td>145,000</td>
</tr>
<tr>
<td>d</td>
<td>125,000</td>
<td>d</td>
<td>125,000</td>
</tr>
<tr>
<td>e</td>
<td>68,000</td>
<td>e</td>
<td>68,000</td>
</tr>
<tr>
<td>f</td>
<td>49,000</td>
<td>f</td>
<td>49,000</td>
</tr>
<tr>
<td>g</td>
<td>24,000</td>
<td>g</td>
<td>24,000</td>
</tr>
<tr>
<td>h</td>
<td>22,000</td>
<td>h</td>
<td>22,000</td>
</tr>
</tbody>
</table>
also considered to be enzyme components since they were present in relatively large amounts and could not be removed by further purification procedures. These were subunit g of RNA polymerase I and subunits e and i of RNA polymerase II which were present in significantly higher amounts, and subunits b and c of polymerase II which were present in significantly smaller amounts. On this basis, HeLa cell polymerases I and II comprised 8 and 2 molecules, for their aggregate molecular masses are 552,000 and 1,012,000 daltons, respectively, which is in excess of that expected from the enzymes' sedimentation rates (see Fig. 3). It is more likely that both enzymes exist in more than one form which share many, but not all, of the subunits. Evidence that this is true for the RNA polymerases of calf thymus, plasmacytoma, Xenopus, etc., has already been presented (36, 37). It is also interesting that some of the subunits of HeLa cell RNA polymerases I and II may be common to both enzymes, as is readily appreciated by inspecting the gels shown in Fig. 4. Irrespective of which of these subunits are actually identical, it is clear from Fig. 4 that none of the subunits of HeLa cell RNA polymerases I and II are the same as any of the subunits of the vaccinia virus RNA polymerase.

HeLa cell RNA polymerase III was not present in HeLa cells in amounts sufficiently large to permit isolation. However, the polypeptide composition of the purest enzyme preparation that could be obtained revealed no subunits that electrophoresed at the same rate as any of the seven polypeptides of the vaccinia virus RNA polymerase.

Comparison of Vaccinia Virus RNA Polymerase Subunits and Vaccinia Virus Structural Polypeptides

Vaccinia virus cores possess RNA polymerase activity. It was therefore of interest to determine whether the subunits of the vaccinia virus RNA polymerase that had been purified from the cytoplasm of infected cells could be identified among the virion structural polypeptides. Fig. 6 shows that this was indeed the case. In order to resolve enzyme subunits a and b, only one-fifth of the amount of enzyme protein was used as in the analysis shown in Fig. 4 and the polyacrylamide concentration was lowered to 7.5%. The three largest enzyme subunits corresponded exactly to virion structural polypeptides: subunit a corresponded to VP1c, subunit b to VP1d, and subunit c to VP2c. Further, these three polypeptides were present in equimolar amounts not only in the enzyme, but also in the virus. Comparison of the smaller enzyme subunits with virion polypeptides was uncertain owing to the complex nature of the virion polypeptide profile in the region below molecular masses of less than 70,000 daltons.

The average number of vaccinia virus RNA polymerase molecules per virus particle could be calculated assuming that the molecular mass of the viral DNA is 122 x 10^6 daltons (41), that the proportion of DNA in the virus is 5% (17), that the sizes of the subunits a, b, and c are as shown in Table III, that they comprise 2.5% of the virion protein mass, that there are about 100 molecules per virion of poly(A) polymerase (13), phosphohydrolase (7), deoxyribonuclease (9), and guanylyl- and methyltransferases (14).

Template Dependence

Table V shows that the vaccinia virus RNA polymerase was completely dependent for activity on added DNA. Vaccinia and calf thymus DNAs were used about equally efficiently; single-stranded DNA was 20 to 70 times as effective as double-stranded DNA. The enzyme resembled in this respect cellular RNA polymerase II (25); both are engaged in the synthesis of messenger RNA. The synthetic double-stranded polynucleotide poly[d(A-T)] was transcribed about 20 times more efficiently than natural double-stranded DNAs.

Effect of DNA Concentration on Reaction Rate

Fig. 7 shows the effect of varying the template concentration on the rate of transcription catalyzed by vaccinia virus RNA polymerase. For both denatured vaccinia virus DNA and denatured calf thymus DNA the K_m values were between 0.5 and 1 µg/ml.

![Electrophoretograms](http://www.jbc.org/)

Fig. 6. Electrophoretograms of (A) vaccinia virus RNA polymerase subunits (600 units, 3.5 µg) and (B) vaccinia virus structural polypeptides (25 µg) in 7.5% acrylamide-SDS slab gels. The direction of electrophoresis was from top to bottom. The virion structural polypeptides are labeled according to Sarov and Joklik (40).

![Table V](http://www.jbc.org/)

<table>
<thead>
<tr>
<th>Template dependence of vaccinia virus RNA polymerase</th>
<th>UMP incorporated pmol</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0</td>
</tr>
<tr>
<td>Calf thymus DNA</td>
<td>1.5</td>
</tr>
<tr>
<td>Denatured calf thymus DNA*</td>
<td>30</td>
</tr>
<tr>
<td>Vaccinia virus DNA</td>
<td>0</td>
</tr>
<tr>
<td>Denatured vaccinia virus DNA*</td>
<td>50.8</td>
</tr>
<tr>
<td>Poly[d(A-T)]</td>
<td>18.7</td>
</tr>
</tbody>
</table>

*All templates were present at 100 µg/ml.

*For conditions of denaturation, see "Experimental Procedures."
Time Course of RNA Synthesis

As shown in Fig. 8, the vaccinia virus polymerase catalyzed the incorporation of UMP into RNA for about 40 min, both with native and with denatured DNA as template.

Effects of Ionic Strength and pH

Fig. 9 shows that the activity of vaccinia virus RNA polymerase was dependent upon the presence of KCl; the optimum concentration was 80 mM. Above this concentration, the reaction was inhibited.

The optimum pH for the polymerase reaction was about 8.5 when Tris/HCl was the buffer. This is shown in Fig. 10.

Divalent Cation Requirements

The activity of vaccinia virus RNA polymerase was dependent upon the presence of Mn$^{2+}$, which was required in equimolar concentration with the nucleoside triphosphates that were present. The effect of varying the Mn$^{2+}$ concentration on enzyme activity at [NTP] = 1.5 mM is shown in Fig. 11. Mg$^{2+}$ substituted for Mn$^{2+}$ only to a very limited extent.

Effect of Inhibitors

Actinomycin D—Actinomycin D, which binds to DNA rather than to polymerases, completely inhibited the vaccinia virus RNA polymerase, even at concentrations as low as 2 µg/ml.

Rifampicin—Rifampicin inhibits the multiplication of vaccinia virus (42, 43), but fails to inhibit the RNA polymerase in vaccinia virus cores (44, 45). This raises the possibility that it might not be able to penetrate into cores. However, it was found that rifampicin, even at concentrations as high as 200 µg/ml, has no effect on the activity of highly purified vaccinia virus RNA polymerase.

α-Amanitin—Even at concentrations as high as 250 µg/ml, α-amanitin had no effect on the activity of the vaccinia virus RNA polymerase. This concentration is sufficient to inhibit completely not only cellular RNA polymerase II, but also cellular RNA polymerase III (27). It is interesting that the cellular enzyme that transcribes messenger RNA is highly sensitive to α-amanitin, whereas the corresponding viral enzyme is highly resistant to it.

Nature of RNA Transcripts

Size—A sucrose density gradient size analysis of the RNA transcribed from denatured vaccinia virus DNA is shown in Fig. 12. The RNA was transcribed from denatured calf thymus DNA (A) or denatured vaccinia virus DNA (B), both at saturating concentrations. The mixtures were then made 0.05 M with respect to EDTA and 0.5% with respect to SDS and layered onto 11-ml density gradients of 15 to 30% (w/w) sucrose in 0.1 M Tris/HCl (pH 7.5), 0.1 M NaCl, 0.001 M EDTA, and 0.5% SDS. Centrifugation was at 29,000 rpm in an SW41 rotor at 20° for 16½ h.

Fig. 7 (left). The effect of DNA concentration on the rate of transcription catalyzed by vaccinia virus RNA polymerase. Standard reaction mixtures were used containing denatured vaccinia virus (•) or denatured calf thymus DNA (○).

Fig. 8 (left center). Time course of RNA synthesis by the vaccinia virus RNA polymerase. About 20 units of enzyme were incubated in 300-µl standard reaction mixtures containing (A) denatured and (B) native calf thymus DNA, each at 100 µg/ml. Samples of 50 µl were removed at the indicated times and trichloroacetic acid-insoluble radioactivity was measured.

Fig. 9 (right center). Effect of KCl concentration on the activity of vaccinia virus RNA polymerase. Standard reaction mixtures were used with the indicated concentrations of KCl.

Fig. 10 (right). Effect of pH on the activity of vaccinia virus RNA polymerase. Standard reaction mixtures containing 0.05 M Tris/HCl buffers at the indicated pH values were used. The pH values of the buffers were determined at a concentration of 0.5 M at 25°.
sequences as demonstrated by the fact that less than 1% of them vaccinia virus RNA polymerase contained no poly(A) se-
plate) was about 10 S.
DNA is shown in Fig. 12. The median sedimentation coeffi-
scripts were extracted with phenol, precipitated with ethanol, and dissolved in 4 × SSC containing 0.1% SDS. Early and late vaccinia virus messenger RNAs were prepared from vaccinia virus-infected HeLa cells as described under "Experimental Procedures," where the conditions for hybridization are also outlined.

DNA is shown in Fig. 12. The median sedimentation coefficient of the transcripts (or of transcripts complexed with template) was about 10 S.

Absence of Poly(A) The transcripts synthesized by the vaccinia virus RNA polymerase contained no poly(A) sequences as demonstrated by the fact that less than 1% of them were retained when passed through poly(U)-cellulose columns.

Nature of Sequences Represented—The proportion of vaccinia virus DNA that was transcribed by the viral RNA polymerase in vitro was determined by measuring the ability of early and late vaccinia virus messenger RNA, isolated from infected cells, to compete in hybridization experiments with transcripts synthesized by the isolated enzyme. It is known that early vaccinia virus messenger RNA (that is, messenger RNA transcribed before vaccinia DNA has begun to replicate, typically before 2½ h after infection), and late vaccinia messenger RNA are transcribed from about 40 and 100% of the viral genome respectively (31). Fig. 13 shows that the RNA transcribed from native vaccinia virus DNA by the purified viral enzyme was completely prevented from hybridizing to vaccinia virus DNA by late messenger RNA, and by only about 40% by early messenger RNA. Transcripts formed in vitro therefore comprised the same set of sequences as late vaccinia messenger RNA, and are therefore most likely transcribed from the entire viral genome.

Fig. 13. Hybridization competition between RNA transcripts synthesized in vitro and early and late vaccinia messenger RNA transcribed in vivo. In vitro transcripts were synthesized in 1.0 ml standard reaction mixtures as described under "Experimental Procedures," using 50 μCi/ml of α-[32P]UTP and 100 μg/ml native vaccinia virus DNA. The incubation period was 30 min. The transcripts were extracted with phenol, precipitated with ethanol, and dissolved in 4 × SSC containing 0.1% SDS. Early and late vaccinia virus messenger RNAs were prepared from vaccinia virus-infected HeLa cells as described under "Experimental Procedures," where the conditions for hybridization are also outlined.

None of these subunits are components of either HeLa cell RNA polymerase I or II which we also isolated and found to comprise 8 and 11 subunits, respectively. The subunit complement of these very complex enzymes is not easy to define since some subunits apparently dissociate readily causing them to be present in lower than equimolar amounts, while some very large polypeptides that are not enzyme subunits tend to remain associated with the enzyme throughout the purification procedure. In spite of these complications, the subunit complements of the two HeLa cell RNA polymerases, as purified by us, were very similar to those of MOPC 315 RNA polymerases I and II (37) and HeLa cell RNA polymerases I and II (48). The summed molecular masses of the 8 and 11 subunits that we found to be associated with HeLa cell RNA polymerases I and II, respectively, exceeded the estimates of their sizes determined by density gradient analysis, which suggests that these two enzymes may exist in more than one molecular form, with some subunits restricted to one form. This situation has already been described for other RNA polymerases (36, 37). This problem did not arise with the vaccinia virus RNA polymerase, the summed subunit molecular weight of which was consistent with the enzyme’s sedimentation behavior.

Like the host cell RNA polymerases, the vaccinia virus RNA polymerase is functionally unstable. No doubt its complex on the one hand, and its consequent lability on the other, are among the primary reasons why it has so far proved impossible to extract it from the viral core, which is a rather stable structure, not easily dissociated by gentle means.

As extracted from infected cells, the vaccinia virus RNA polymerase occasionally eluted from DEAE-Sephadex in a heterogeneous manner. When the enzymes in the leading and trailing fractions of DEAE-Sephadex eluate peaks were isolated and compared, they were found to be identical in all respects that could be tested, including specific activity and subunit composition as determined by SDS-polyacrylamide gel electrophoresis. The most likely explanation of this phenomenon was that the vaccinia virus RNA polymerase exists in two or more forms that differ in charge. Phosphorylation is a charge modification that could give rise to this type of behavior. Experiments are currently being carried out to determine whether any of the subunits of the vaccinia virus RNA polymerase are phosphorylated.

As for the kinetic properties of the vaccinia virus RNA component polypeptides are different from those of any cellular RNA polymerases. The fact that the enzyme is the virion-associated RNA polymerase is shown by the fact that its three largest subunits (α, β, and γ) co-migrate in SDS-polyacrylamide gels with virion structural polypeptides VP1c, VP1d, and VP2c, respectively. Demonstration of identity of other enzyme subunits with virion components was impossible only because they migrated in gel regions where an excessive number of virion structural polypeptides also migrated. It seems to be an "early" enzymes, for polypeptides that migrate in the VP1-VP2 region of SDS-polyacrylamide gels are the earliest polypeptides that are synthesized in cells infected with vaccinia virus (46, 47).

The vaccinia virus RNA polymerase is a complex enzyme, with a molecular mass of about 425,000 daltons, and is composed of seven polypeptide subunits. Two of them, a and b, are very large (over 125,000 daltons); one, c, is medium sized (about 77,000 daltons); one, d, is small (about 34,000 daltons); and three, e, f, and g, are very small (13,000 to 19,000 daltons). None of these subunits are components of either HeLa cell RNA polymerase I or II which we also isolated and found to comprise 8 and 11 subunits, respectively. The subunit complement of these very complex enzymes is not easy to define since some subunits apparently dissociate readily causing them to be present in lower than equimolar amounts, while some very large polypeptides that are not enzyme subunits tend to remain associated with the enzyme throughout the purification procedure. In spite of these complications, the subunit complements of the two HeLa cell RNA polymerases, as purified by us, were very similar to those of MOPC 315 RNA polymerases I and II (37) and HeLa cell RNA polymerases I and II (48). The summed molecular masses of the 8 and 11 subunits that we found to be associated with HeLa cell RNA polymerases I and II, respectively, exceeded the estimates of their sizes determined by density gradient analysis, which suggests that these two enzymes may exist in more than one molecular form, with some subunits restricted to one form. This situation has already been described for other RNA polymerases (36, 37). This problem did not arise with the vaccinia virus RNA polymerase, the summed subunit molecular weight of which was consistent with the enzyme’s sedimentation behavior.

Like the host cell RNA polymerases, the vaccinia virus RNA polymerase is functionally unstable. No doubt its complexity on the one hand, and its consequent lability on the other, are among the primary reasons why it has so far proved impossible to extract it from the viral core, which is a rather stable structure, not easily dissociated by gentle means.

As extracted from infected cells, the vaccinia virus RNA polymerase occasionally eluted from DEAE-Sephadex in a heterogeneous manner. When the enzymes in the leading and trailing fractions of DEAE-Sephadex eluate peaks were isolated and compared, they were found to be identical in all respects that could be tested, including specific activity and subunit composition as determined by SDS-polyacrylamide gel electrophoresis. The most likely explanation of this phenomenon was that the vaccinia virus RNA polymerase exists in two or more forms that differ in charge. Phosphorylation is a charge modification that could give rise to this type of behavior. Experiments are currently being carried out to determine whether any of the subunits of the vaccinia virus RNA polymerase are phosphorylated.

As for the kinetic properties of the vaccinia virus RNA
polymerase, it is a typical DNA-dependent RNA polymerase. In its purified form it uses single-stranded DNA as template much more efficiently than double-stranded DNA; however, the synthetic double-stranded polynucleotide poly[d(A-T)] is transcribed almost as efficiently as single-stranded natural DNAs. In the crude state the enzyme transcribes double-stranded DNA much more efficiently than in the pure state; but the nature of the factor that is responsible for activity on double-stranded DNA has not yet been clarified. One possibility is that it is a nuclease; we have found, in this respect, that, during the purification of the enzyme, nucleases are removed and purified enzyme preparations contain no detectable exonucleases. The enzyme exhibits no preference for any particular type of DNA, vaccinia virus and calf thymus DNA being used equally efficiently. All vaccinia DNA sequences are transcribed by the enzyme. This was expected, since the enzyme was isolated from infected cells in the late period of the multiplication cycle, when the entire viral genome is transcribed (31). The nature of the constraint(s) that causes only about one-half of the viral genome to be transcribed in the core, or during the early period of the multiplication cycle, is not known. Among the obvious possibilities are modification of the enzyme, constraints on DNA structure, and regulatory proteins.

The enzyme was active in vitro for about 40 min. It was completely resistant to α-amaminid; this is of considerable interest, since the host enzyme that transcribes messenger RNA is extremely sensitive to this inhibitor. It was almost completely dependent on the presence of Mg++ for activity; Mg++ was essentially inactive. It differs in this respect from cellular RNA polymerases I, II, and III, all of which are completely resistant to α-amanitin; this is of considerable interest, since the host enzyme that transcribes messenger RNA is extremely sensitive to this inhibitor.

The purified vaccinia virus RNA polymerase is now being used in vivo studies on the factors that specify the efficiency of transcription of specific regions of the vaccinia virus genome, and, in conjunction with the purified vaccinia virus poly(A) polymerase (49), in studies of the mechanism by which vaccinia virus messenger RNAs are polyadenylated.

REFERENCES
