Quantitation of Water-soluble Acylcarnitines and Carnitine Acyltransferases in Rat Tissues*

(Received for publication, April 1, 1977)

Y. R. CHOI, P. J. FOGLE, P. R. H. CLARKE, AND L. L. BIEBER

From the Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824

The water-soluble acylcarnitines isolated from rat heart, skeletal muscle, liver, and testis have been characterized. The following acyl residues derived from the acylcarnitine fraction were found: acetyl, propionyl, isobutyryl, butyryl, α-methylbutyryl, isovaleryl, tiglyl, caproyl, β-methylcrotonyl and methacrylyl. The amounts of these acylcarnitines in heart, liver, testis and skeletal muscle from fed rats were determined. Acetylcarnitine was the most abundant acylcarnitine; however, appreciable quantities of propionyl-, isobutyryl-, isovaleryl-, and tiglylcarnitine were found. The levels of carnitine octanyltransferase, carnitine acetyltransferase and carnitine palmitoyltransferase activities were determined in several tissues. In addition, carnitine isovaleryltransferase and isobutyryltransferase activities were measured in heart, skeletal muscle, liver, testis and kidney. In all instances the specific activity of isobutyryltransferase was similar to the specific activity of acetyltransferase. The results are consistent with the proposal that carnitine is involved in the catabolism of branched-chain amino acids.

As part of an effort to determine whether carnitine has additional roles in intermediary metabolism, we recently reported the occurrence of 4-carbon and 5-carbon acyl esters of carnitine in beef heart (10-12). Herein, we show that these 4-carbon and 5-carbon acyl esters of carnitine occur in rat heart, liver, skeletal muscle, and testis and that these tissues also contain carnitine octanyltransferase as well as carnitine isovaleryl- and isobutyryltransferase activities.

DISCUSSION

The volatile fatty acids associated with carnitine in rat muscle, liver, heart, and testis are qualitatively similar to those found in beef heart. The presence of branched chain 4-carbon and 5-carbon acyl derivatives of carnitine in rat muscle, liver, heart, and testis is consistent with the previous suggestion that carnitine is involved in branched chain amino acid catabolism (10-12). The presence of large amounts of acetylcarnitine in rat heart, in beef heart (12), in piglet heart (>600 nmol/g of tissue) indicates that acetylcarnitine may function as an immediately available supply of acetyl units that could serve as an energy source during the initial phases of increased energy demands.

The occurrence of carnitine octanyltransferase activity in all of the tissues tested indicates a general role in metabolism for this enzyme activity. The finding that the levels of carnitine isobutyryltransferase activity in heart, muscle, kidney, testis, and liver are similar to the levels of carnitine acetyltransferase activity while the carnitine isovaleryltransferase activity was much lower is surprising. It could mean that the isobutyryltransferase and acetyltransferase activities are due primarily to the same enzyme, namely, carnitine acetyltransferase, while the isovaleryltransferase activity might be attributable to a different enzyme. This is in contrast to the commercial preparation of carnitine acetyltransferase in which the isobutyryl- and isovaleryl transferase activities were much lower than the acetyltransferase activity.
Short Chain Acylcarnitines

Table 1

<table>
<thead>
<tr>
<th>Acylcarnitines</th>
<th>Rat Liver</th>
<th>Human Liver</th>
<th>Rat Brain</th>
<th>Human Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylcarnitines</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Palmitoylcarnitine</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Myristoylcarnitine</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 2

<table>
<thead>
<tr>
<th>Acylcarnitines</th>
<th>Rat Heart</th>
<th>Human Heart</th>
<th>Rat Muscle</th>
<th>Human Muscle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylcarnitines</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Palmitoylcarnitine</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Myristoylcarnitine</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 3

<table>
<thead>
<tr>
<th>Acylcarnitines</th>
<th>Rat Brain</th>
<th>Human Brain</th>
<th>Rat Liver</th>
<th>Human Liver</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acylcarnitines</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Palmitoylcarnitine</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
<tr>
<td>Myristoylcarnitine</td>
<td>0.12</td>
<td>0.13</td>
<td>0.14</td>
<td>0.15</td>
</tr>
</tbody>
</table>

References

Quantitation of water-soluble acylcarnitines and carnitine acyltransferases in rat tissues.
Y R Choi, P J Fogle, P R Clarke and L L Bieber

Access the most updated version of this article at http://www.jbc.org/content/252/22/7930

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/22/7930.full.html#ref-list-1