The Anomalous Electrophoretic Behavior of the Major Sialoglycoprotein from the Human Erythrocyte*

(Received for publication, February 17, 1977, and in revised form, August 17, 1977)

MICHAEL SILVERBERG† AND VINCENT T. MARCHESI
From the Department of Pathology, Yale University School of Medicine, New Haven, Connecticut 06510

The major sialoglycoprotein of the human erythrocyte membrane (glycophorin A) shows a single band in sodium dodecyl sulfate-gel electrophoresis using phosphate buffers and molecular weight homogeneity in the ultracentrifuge. After electrophoresis in Tris buffers, however, two bands (periodic acid-Schiff reagent (PAS)-1 and PAS-2) are obtained. The band of greater apparent molecular weight can be converted to the band of lower apparent molecular weight by incubation of the protein at elevated temperatures before electrophoresis. In this report, we investigate the relative proportions of the two bands as the conditions of protein concentration, ionic strength, sodium dodecyl sulfate concentration, and buffer composition are varied. We also present relative mobility data for the bands at different acrylamide concentrations. We show that the relation between the relative proportions of PAS-1 and PAS-2 and the total protein concentration is quantitatively described by the hypothesis that PAS-1 is a dimer of PAS-2, and that the two species form an equilibrium mixture. The equilibrium is very sensitive to ionic strength and the electrophoretic pattern in different running buffers is also very sensitive to ionic strength. This phenomenon accounts for the various patterns of one or two bands found in the different buffer systems used in the past. We discuss the alternative hypothesis that PAS-1 represents a complex of PAS-2 with an unknown ligand, but for a number of reasons we favor the monomer-dimer hypothesis to account for the electrophoretic heterogeneity. The discrepancy between this hypothesis and the results of sedimentation equilibrium studies remains unresolved.

SDS-polyacrylamide gel electrophoresis has been a power-

† This work was supported by Grant BC-102B from the American Cancer Society, Grant P17-6M 2174 from the Membrane Center, and Research Grant GM-19929 from the United States Public Health Service. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address, Department of Pharmacology, State University of New York at Stony Brook, Stony Brook, N. Y. 11790.

§ The abbreviations used are: SDS, sodium dodecyl sulfate; (used generically for alkyl sulfate mixtures that are mainly but not totally composed of C12 alkyl chains); PAS, periodic acid-Schiff reagent; PAS-1, -2, and -3, the three major glycoprotein components of human erythrocyte ghosts demonstrated by electrophoresis (1); TEMED, N,N',N'-tetramethylethylenediamine.
only a single band is obtained with an apparent molecular weight of 60,000 to 100,000, depending on the acrylamide concentration of the gel.

Thus, there is confusion in the literature as to whether glycophorin A does or does not associate to dimers in the presence of SDS. In this paper, we have investigated in some detail the electrophoretic behavior of glycophorin A using a variety of incubation and running buffers. In particular, we have addressed the discrepancy between the single band found in one buffer and the two bands found in another and the possible identification of those two bands as monomeric and dimeric forms of the glycoprotein.

The final aim of these investigations is to be able to describe the interaction of intrinsic membrane proteins like glycophorin A with each other and with membrane lipids. The study of self-associating proteins in the presence of a synthetic amphiphile is an initial step towards that goal.

MATERIALS AND METHODS

Details of the experimental procedures and a more detailed description of the results are found in the miniprint supplement which follows. A synopsis of the results is combined with the discussion below.

RESULTS AND DISCUSSION

It was previously found (Furthmayr and Marchesi, 1976; Silverberg et al., 1976) that the fraction (F) of material migrating as PAS-2 was inversely dependent upon the concentration of protein present during incubation at 80° in SDS solution. The value of F obtained from a dilute solution of glycophorin A increases quite slowly with time of incubation to reach a steady value after about 25 min (data not shown), suggesting that an equilibrium mixture is being formed at 80°. If a concentrated solution of protein is brought to equilibrium, the proportions of PAS-1 and PAS-2 are not altered by dilution of the cooled solution before electrophoresis (see Fig. 2, Silverberg et al., 1976). It thus seemed that gel electrophoresis could be used as a quantitative assay of the composition of the equilibrium mixture of PAS-1 and PAS-2 obtained by incubation of glycophorin A at 80° in SDS solutions. On this assumption, we examined the consequences of altering protein concentration, ionic strength, and SDS concentration of the incubation solution.

If the state of the protein solution after 30 min at 80° represents true thermodynamic equilibrium between monomer and dimer, the protein concentration and F are related by the equation:

\[\frac{\text{weight of the monomer}}{\text{weight of the dimer}} = \frac{\text{protein concentration}}{\text{concentration of dimer}} \]

where F is the fraction of material migrating as PAS-2, K is the dissociation constant, \(M_c \) is the molecular weight of the monomer, and \(c \) is the protein concentration in milligrams per ml.

The data of Fig. 1 show that this relation is satisfied by glycophorin A over a concentration range 0.05 to 2.0 mg/ml of protein. The apparent K was \(2 \times 10^{-10} \) M and was increased 4-fold in the presence of 8 M urea (see Table I). It is possible that a protein-ligand system could give similar results (see miniprint supplement). Pretreatment of glycophorin A by gel filtration under conditions known to remove residual phosphoinositide (Armitage et al., 1977) did not alter the value of K obtained; this treatment would be expected to at least reduce the concentration of any unknown ligand that would be partially dissociated in SDS solution.

Increasing the ionic strength of the incubation medium gave a marked decrease in the proportion of PAS-2 present (Fig. 2). Various combinations of Tris, sodium, chloride, and phosphate ions gave very similar effects when ionic strength was plotted against the parameter \(2F(T - 1) \), which is independent of protein concentration (see Table I).

Grodzinski and Reynolds (1974) found that the amount of SDS bound to glycophorin reached a plateau at about 0.02 M but, when we studied the effect of SDS concentration in our incubation buffers, we found increasing values of F in the range 1 to 6% (0.03 to 0.208 M) SDS (Fig. 3). Detergent samples obtained from different sources had different proportions of C12 and higher alkyl chains and appeared to give different values of F at the same detergent concentration. SDS-gel electrophoresis is clearly not an ideal method of analysis of SDS binding, but the data do suggest that binding studies might fruitfully be extended to concentrations of detergent an order of magnitude higher than hitherto used.

The results of our experiments so far appeared to confirm our postulate that SDS-gel electrophoresis faithfully reports the position of equilibrium attained during incubations at 80°. At this stage, we turned to the Weber and Osborn (1960) electrophoresis system which had always been found to give a single band with glycophorin. We expected that if we incubated aliquots of protein under conditions of protein concentration and ionic strength known to favor the PAS-2 form, the high ionic strength of the phosphate running buffer would have no effect on the results. However, we obtained the traditional single band under these conditions with both 10 mM Tris chloride and 10 mM sodium phosphate incubation buffers (Fig. 4A). On further investigation, we found that this was yet another aspect of the effect of ionic strength on the electrophoretic behavior of glycophorin A. Electrophoresis in sodium phosphate buffers of low ionic strength gave the pattern of PAS-1 and PAS-2 seen with the Tris/acetate buffer (Fig. 4, C and D) and a similar dependence of F on protein concentration (Table I). At an intermediate buffer concentration, an intermediate banding pattern was seen (Fig. 4B). Carboxymethylated glycoprotein (Silverberg et al., 1976) was run as a calibration protein and ran in the PAS-2 position in all buffers. These results show that the discrepancy between the two gel electrophoresis systems concerning the apparent homogeneity of glycophorin preparations is simply the result of the difference in ionic strength between the two running buffers and that the single band seen in the phosphate gels is equivalent to PAS-1. The experiments also show that, contrary to our previous suggestion, the conditions of electrophoresis can affect the apparent position of equilibrium reached at 80°. An alternative hypothesis would be that no dimers are present at all without electrophoresis and that the extent of dimerization depends on various conditions of protein or salt concentration obtained during electrophoresis. However, our earlier results (Silverberg, et al., 1976; Fig. 2) demonstrated conclusively that at least some dimer must be present before electrophoresis. The results obtained with running buffers of high ionic strength do not, therefore, invalidate our conclusions that an equilibrium exists between PAS-1 and PAS-2.
The electrophoretic behavior of glycophorin A during incubation, but show that reassociation of monomers to dimers can take place during electrophoresis to an extent dependent on the ionic strength of the running buffer.

The above studies demonstrate that solutions of glycophorin A in the presence of SDS form equilibrium mixtures of two forms when heated. These two forms have been characterized further by comparing their electrophoretic mobilities as a function of acrylamide concentration (Ferguson, 1964; Hedrick and Smith, 1968). On theoretical grounds (see Fish, 1975), it is expected that the relation between mobility relative to the tracking dye (R_f) and acrylamide concentration ($T\%$, w/v) would be:

$$\log R_f = \log Y_a - K_a T$$

where Y_a is the "free mobility" and K_a is the "retardation coefficient." We constructed Ferguson plots over the range 3.5 to 10% acrylamide using membranes and glycophorin at several stages of purification. The results (Fig. 5) show that the PAS-1 and PAS-2 bands of glycophorin A have identical free mobilities but their retardation coefficients differ by a factor of 2.5. There has been some discussion in the literature concerning the use of Ferguson plots in SDS-gel systems and their interpretation (Banker and Cotman, 1972; Neville, 1971; Fish, 1975). On the basis of those arguments, it seems to us that the most acceptable interpretation of our data is that PAS-1 is a dimer of PAS-2. The 2.5-times variation in K_a is compatible with this hypothesis because the relation between K_a and molecular weight is not expected to be linear (Neville, 1971; Fish, 1975).

The identification of PAS-1 as a dimer of PAS-2 and their existence together as an equilibrium mixture in solutions of glycophorin A in SDS are not confirmed by the sedimentation equilibrium data of Grefrath and Reynolds (1974, 1975) who obtained linear plots of $\ln c$ versus r^2, indicative of a homogeneous solution, and a value for the molecular weight identical to that of the monomer. At the present time, it is not possible to explain this discrepancy. Although SDS-gel electrophoresis does not enjoy the theoretical support possessed by ultracentrifugation, the data obtained with this technique cannot readily be dismissed. In support of the monomer-dimer hypothesis, an investigation by light-scattering photometry has been reported to generate molecular weight estimations of 59,000 and 29,000 for PAS-1 and PAS-2, respectively (Moore, 1974).

An important aspect of the data presented in this paper is the number of factors that influence the appearance of the glycoprotein on SDS-gels; in particular, the influence of ionic strength is striking (Figs. 2 and 4). It is clear that assaying the polypeptide composition of membrane protein preparations may not always be a trivial task. It is to be hoped that our experience with the red cell glycoprotein will enable other investigators to avoid some of the potential pitfalls concerning apparently simple questions of homogeneity and molecular weight in other systems.

Acknowledgments — We are grateful to Dr. Jacqueline A. Reynolds for stimulating and helpful discussions and for taking the time to run our glycoprotein in the ultracentrifuge. We also thank Ms. Manyee Tang for the carbohydrate analysis.

REFERENCES

The anomalous electrophoretic behavior of the major sialoglycoprotein from the human erythrocyte.
M Silverberg and V T Marchesi

Access the most updated version of this article at http://www.jbc.org/content/253/1/95.citation

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/253/1/95.citation.full.html#ref-list-1