Studies of the Oxygen Binding Site of Cytochrome P-450

NITRIC OXIDE AS A SPIN-LABEL PROBE*

(David H. O'Keeffe, Richard E. Ebel, and Julian A. Peterson)
From the Department of Biochemistry, The University of Texas Health Science Center at Dallas, Dallas, Texas 75235

Pseudomonas putida and rat liver microsomal cytochromes P-450 form both ferric- and ferrous-NO complexes. The ferric-NO complexes are stable and do not possess ESR spectra in the temperature range 5-300 K which suggests that the unpaired electron of the bound NO is spin-paired with the single unpaired d electron of the heme iron. The ferrous NO complex of the bacterial cytochrome is quite stable; however, a portion of the comparable complex of the microsomal enzyme rapidly denatures to a five-coordinate P-420-NO species. The percentage of the ferrous-NO complex of the microsomal enzyme which becomes five-coordinate appears to be dependent upon the amount of high spin cytochrome present in the original ferric enzyme since it is less in the presence of exogenous Type I substrates. The addition of the substrate, d-camphor, to the bacterial cytochrome P-450 does not affect the optical absorbance or electron spin resonance (ESR) spectra of either the ferric- or ferrous-NO complexes. The optical absorbance difference spectrum of the ferric-NO versus ferric liver microsomal cytochrome P-450 is dependent upon the percentage of the enzyme in the high (substrate-bound) versus low spin (substrate-free) state. The Soret absorbance band maxima of the ferric- and ferrous-NO complexes of these cytochromes P-450 are shifted to longer wavelengths than those of the corresponding complexes of horseradish peroxidase. The ESR spectra of the ferrous-NO complexes of cytochromes P-450 reveal rhombic symmetry with a triplet hyperfine interaction in the g, signal. Unlike horseradish peroxidase, there is no nine-line superhyperfine structure for the g, signal. These data have been interpreted as follows: 1) the unique structure of the active site of cytochrome P-450 which accounts for the long wavelength Soret absorbance band maximum of the ferrous-CO complex is presumably also present in both the ferric- and ferrous-NO complexes; 2) the NO complexes of P-420 prepared from these cytochromes P-450 are identical by ESR spectroscopy, as well as being similar to the corresponding complex of denatured hemoglobin in which the bond between the heme iron and the axial ligand bound trans to NO is either severely distorted or completely broken; 3) the absence of superhyperfine splitting in the g, ESR signal of the ferrous-NO complex of cytochrome P-450 can be considered consistent with the proposal of a mercaptide sulfur as the axial ligand bound trans to the nitric oxide (dioxgen) binding site or with a bonding scheme in which there exists a strong interaction between the heme iron and NO and weaker bonding between the trans axial ligand and the heme iron. Given the latter possibility, nitrogen (histidine ?) cannot be excluded as the trans axial ligand.

Nitrile oxide has been used as both an electronic and a paramagnetic probe of the chemical and physical properties of a variety of hemeproteins. Hemoglobin (H) and myoglobin (Mb) do not form stable ferric-NO complexes (1, 2). The ferric-NO complexes of horseradish peroxidase and cytochrome c peroxidase, on the other hand, are stable spin-paired diamagnetic complexes (3). Since NO contains one unpaired electron it is a unique spin-label ligand and the ferrous-NO complex of a number of hemeproteins has been used as a model of diamagnetic dioxygen and carbon monoxide complexes. ESR spectral studies have indicated that the paramagnetic HbNO species has rhombic symmetry with the unpaired electron at least partially transferred to the heme iron and the nitrogen of the histidine which is the trans axial ligand (1, 2, 4). The ESR spectrum of HbNO is very sensitive to the conformational state of the complex (1, 2, 5-10). Extensive studies with horseradish peroxidase and cytochrome c peroxidase have revealed that their ferrous-NO complexes have an

Received for publication, August 8, 1977

* This research was supported by United States Public Health Service Research Grants GM 15400 and GM 19080, and Research Grant I-405 from the Robert A. Welch Research Foundation. Preliminary reports of portions of this work were presented at the Fourth Pharmacology-Toxicology Program Symposium, Washington, D.C., November, 1975, and the Tenth International Congress of Biochemistry, Hamburg, Federal Republic of Germany, June, 1976. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Recipient of a Postdoctoral Fellowship from The Robert A. Welch Research Foundation.
§ Present address, Department of Biochemistry and Nutrition, Virginia Polytechnic Institute and State University, Blacksburg, Va. 24061.
¶ Recipient of a United States Public Health Service Research Career Development Award GM 39692.
Cytochrome P-450 Nitric Oxide Complexes

Nitric oxide was purchased from the Linde Division, Union Carbide Corp. (NO) and from Merck and Co. (NaNO). Nitric oxide (NO) was passed through KBr pellets before use to remove any possible contamination by higher oxides of nitrogen. Horseradish peroxidase (type II) and metmyoglobin (whale skeletal muscle, type II) were purchased from Sigma Chemical Co. Sodium hexobarbital was obtained from Winthrop Laboratories as a gift, 5α-androstane-3,17-dione from Sigma Chemical Co., and d-camphor from Baker Chemical Co. All other reagents were of the highest quality commercially available.

Cytochrome P-450 cam was purified in the camphor-bound form from P. putida (ATCC 17453) grown on d-camphor using a modification (17) of the original procedures (18, 19). Substrate (d-camphor) was removed by column chromatography using Sephadex G-10 as previously described (17). The purity of cytochrome P-450 cam was estimated by the ratio of absorbance at 392 nm to that at 280 nm. A ratio of >1:2 indicated that the protein was at least 80% pure (17). The concentration of cytochrome P-450 cam was determined from the optical absorbance spectrum of the ferric camphor-bound form (ε = 104 mM⁻¹ cm⁻¹ at 392 nm) or the ferrous-carbonyl form (ε = 120 mM⁻¹ cm⁻¹ at 466 nm) (17). Unless otherwise noted all optical absorbance and ESR spectra of the camphor-bound enzyme were recorded in 0.05 M potassium phosphate, pH 7.4, containing 0.1 M KC1 and 1 mM d-camphor (Buffer A) and those of the camphor-free enzyme in 0.05 M morpholinopropanesulfonic acid neutralized with Tris base to pH 7.0 (Buffer B).

Liver microsomes were prepared as previously described (20) from male albino rats (Sprague Dawley strain, Charles River Co., 200 to 250 g) that received a daily intraperitoneal injection of phenobarbital in saline (0.9% NaCl solution) (80 mg/kg) for 4 days. The microsomal pellet was resuspended by homogenization in a small volume of 0.1 M potassium phosphate buffer, pH 7.4, containing 0.1 mM EDTA (Buffer C). Protein was determined by the biuret method according to the method of Gornall et al. (21). Cytochrome P-450 cam content was determined from the ferric camphor monoxide versus ferric optical absorbance difference spectrum (Buffer C), using Δε = 91 mM⁻¹ cm⁻¹ for 450 nm minus 490 nm (22).

Cytochrome P-450 cam was denatured to P-420 by adjusting the pH of a sample of the ferric camphor-bound enzyme (200 μM in Buffer A) to pH 11 with 5 M KOH (23). Liver microsomal P-420 (20 mg of protein/ml in Buffer C) was prepared by the addition of sodium deoxycholate (0.5% final concentration) (24) or potassium thiocholate (2 M final concentration) (25).

Optical absorbance spectra were recorded at room temperature with either a Cary model 14R (Varian Instrument Co.) or an Aminco DW-2 dual wavelength/split spectrophotometer (American Instrument Co.). Electron spin resonance spectra were recorded with a Varian model E-4 spectrometer equipped with a variable temperature attachment. Unless otherwise indicated all ESR spectra were recorded using the following instrumental parameters: temperature, -190°C; power, 10 milliwatts; modulation amplitude, 1 G. A PDP 11 minicomputer (Digital Equipment Corp.) was utilized to collect and enhance the signal to noise ratio of some of the ESR spectra and to obtain the second derivative spectra. A freeze-quenching device, which was a modification of the design of Ballou and Palmer (26), was used to prepare short reaction time ESR samples. The samples for freeze-quenching were gently deoxgenated with argon and a slight excess of sodium dithionite was added to reduce the cytochrome P-450 samples before they were put into the rapid mixing-freeze quenching device. The liver microsomal suspension (50 mg/ml in 1.0 M Buffer C) or cytochrome P-450 cam (200 μM) in 1.0 M Buffer A were mixed with an equal volume of the appropriate buffer which had been saturated with nitric oxide and the reaction mixture was quenched in -140°C isopentane according to the procedure of Ballou and Palmer (26). All other ESR samples were prepared by placing the sample into an ESR tube filled with nitric oxide just prior to freezing in liquid nitrogen. Samples for both optical absorbance and ESR spectroscopy were prepared in buffer deoxygenated with argon.

RESULTS

Cytochrome P-450 cam—Addition of nitric oxide to either the camphor-bound (high spin) or the camphor-free (low spin) ferric cytochrome P-450 cam results in the formation of a single, spectrally distinct species (Fig. 1). This ferric NO complex is characterized by intense α and β absorbance band maxima which are similar to those previously reported for the ferric NO complex of horseradish peroxidase with the exception that the intensities are reversed (Table I). The Soret absorbance band maximum is significantly red-shifted relative to that for the ferric NO complex of horseradish peroxi-

![Fig. 1. Optical absorbance spectra of ferric cytochrome P-450 cam (5 μM): the high spin d-camphor(K+) complex (-- - -) in Buffer A (see "Materials and Methods"); the low spin camphor-free form (--- - - -) in Buffer B; the NO complex of either species (-----).](image-url)
Cytochrome P-450 Nitric Oxide Complexes

dase and it has a lower extinction coefficient. The ferric-NO complex of cytochrome P-450 has quite stable in the absence of oxygen (several hours at 25°C, pH 7 to 8). The original ferric enzymes can be recovered when the NO is removed by evacuation demonstrating the reversible nature of this interaction (data not shown). The ESR spectra of the high spin (camphor-bound) or low spin (camphor-free) ferric forms of the cytochrome disappear upon formation of the ferric-NO complex and no new ESR signals are observed in the temperature range from 5-300 K. This type of complex has been represented as a spin-paired system in which the unpaired electron of the hemin iron is coupled to the unpaired electron of the bound NO molecule (3).

The ferrous-NO complex formed by reduction of the ferric-NO complex or addition of NO to the ferrous or ferrous-CO complex of the cytochrome is also a spectrally distinct species (Fig. 2). This complex of the bacterial enzyme is also stable in the absence of oxygen. The ferrous-NO complex, like the ferrous-CO complex (18), is spectrally identical in the presence or absence of camphor. Additionally, as has been observed in the case of the ferrous-CO complexes of cytochrome P-450 (18, 29) and chloroperoxidase (30), the Soret absorbance band maxima of their ferrous-NO complexes are dramatically red-shifted, they have smaller extinction coefficients, and only a single absorbance band maximum is observed in the visible portion of their spectra relative to other hemeproteins investigated (Table I).

The ferrous-NO complex of cytochrome P-450 both in the presence and absence of camphor, exhibits an ESR signal at -170°C centered around g = 2 having rhombic symmetry (Fig. 3). The center resonance at g = 2.009 has a well resolved triplet hyperfine structure with 20 G splitting (Table II). Similar ferrous-NO ESR spectra have been observed with chloroperoxidase (27), lactoperoxidase (31), and to a lesser extent catalase (3) (Table II). This signal is assigned to the axial, z absorption, on the basis of the conversion of the triplet splitting pattern to that of a doublet upon replacement of 14N0 with 15N0 (Fig. 3). Similar spectra of the ferrousNO complexes of horseradish peroxidase are also shown in Fig. 3; however, the z absorption resonance in the case of horseradish peroxidase is changed from a triplet to a doublet of triplets upon replacement of 14N0 with 15N0 (Fig. 3). Similar spectra of the ferrous-NO complexes of horseradish peroxidase are also shown in Fig. 3; however, the z absorption resonance in the case of horseradish peroxidase is changed from a triplet of triplets to a doublet of triplets upon replacement of 14N0 with 15N0 (Fig. 3). Similar spectra of the ferrous-NO complexes of horseradish peroxidase are also shown in Fig. 3; however, the z absorption resonance in the case of horseradish peroxidase is changed from a triplet of triplets to a doublet of triplets upon replacement of 14N0 with 15N0 (Fig. 3). Similar spectra of the ferrous-NO complexes of horseradish peroxidase are also shown in Fig. 3; however, the z absorption resonance in the case of horseradish peroxidase is changed from a triplet of triplets to a doublet of triplets upon replacement of 14N0 with 15N0 (Fig. 3).

The second derivative ESR spectra of the ferrous 14N0 and 15N0 complexes of cytochrome P-450 and horseradish peroxidase are shown in Fig. 4. As already noted the axial z absorption center resonance is transformed from a triplet to a doublet with cytochrome P-450 and from a triplet of triplets to a doublet of triplets in the case of horseradish peroxidase when 14N0 is exchanged for 15N0. These second derivative spectra also allow resolution of the hyperfine structure of the g, and g, resonances both of which are sensitive to replacement of 14N0 by 15N0. The number of apparent lines in the g, and g, signals changes from three to two for cytochrome P-450 and from four to three in the case of horseradish peroxidase (Fig. 4).

Cytochrome P-450Liver microsomal cytochrome P-450 also forms a ferric-NO complex either in the presence or absence of exogenous Type I substrates. The optical absorbance difference spectrum of the ferric NO complex of cyto-

Table I

<table>
<thead>
<tr>
<th>Complex</th>
<th>λ<sub>max</sub> nm (ε<sub>max</sub> cm<sup>-1</sup> M<sup>-1</sup>)</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ferric P-450<sub>cam</sub>-NO (± camphor)</td>
<td>430 (103) 541 (15.0), 571 (12.3)</td>
<td>This work</td>
</tr>
<tr>
<td>Ferric HRP-NO<sup>*</sup></td>
<td>419 (144) 533 (13.0), 568 (16.0)</td>
<td>3</td>
</tr>
<tr>
<td>Ferrous P-450<sub>cam</sub>-NO (± camphor)</td>
<td>438 (75.7) 557 (12.8)</td>
<td>This work</td>
</tr>
<tr>
<td>Ferrous HRP-NO<sup>*</sup></td>
<td>421 (110) 542 (11.5), 570 (10.5)</td>
<td>3</td>
</tr>
<tr>
<td>Ferrous CPO-NO</td>
<td>442 (85) 558 (14), 589 (sh)</td>
<td>27</td>
</tr>
<tr>
<td>Ferrous MbNO<sup>−</sup> + IHP</td>
<td>416.7 (99) 544, 573</td>
<td>28</td>
</tr>
<tr>
<td>Ferrous MbNO<sup>−</sup> − IHP</td>
<td>415.2 (129) 542, 571</td>
<td>28</td>
</tr>
</tbody>
</table>

[*] The abbreviations used are: cytochrome P-450_{cam} (P-450_{cam}); horseradish peroxidase (HRP); chloroperoxidase (CPO); hemoglobin (Hb); inositol hexaphosphate (IHP); myoglobin (Mb).

![Fig. 2](https://example.com/fig2.png)

Fig. 2. Optical absorbance spectra of ferrous cytochrome P-450_{cam} (5 μM): the ferrous (---), ferrous-CO (-----), and ferrous-NO (------) forms of either the d-camphor (K⁺) complex in Buffer A or the camphor-free form in Buffer B.

![Fig. 3](https://example.com/fig3.png)

Fig. 3. ESR spectra of 14N0 (upper) and 15N0 (lower) complexes (500 μM) of ferrous cytochrome P-450_{cam} (A, B) (camphor-bound or camphor-free) and horseradish peroxidase (C, D).

![Fig. 4](https://example.com/fig4.png)

Fig. 4. Second derivative ESR spectra of the ferrous 14N0 and 15N0 complexes of cytochrome P-450 and horseradish peroxidase.
cytochrome P-450 versus the ferric enzyme in the presence of a typical Type I substrate is shown in Fig. 5. For comparison purposes the optical absorbance difference spectrum of the ferric-NO complex of cytochrome P-450LM versus the ferric enzyme in the presence of camphor is shown in Fig. 6. Note that the ratio of the intensities of the α and β bands is reversed in the ferric-NO complex of the liver microsomal enzyme (Fig. 5) relative to that seen in the bacterial enzyme (Fig. 6). Therefore, it can be suggested that not all of the cytochrome P-450LM molecules have substrate bound (see the ESR spectral results below). As was observed with the bacterial enzyme, the ESR signals of both the high and low spin forms of cytochrome P-450LM disappear upon formation of their respective ferric-NO complexes, and no new signals are observed in the 5-300 K temperature range. Also this ferric-NO complex is quite stable at room temperature in the pH range from 7 to 8 as long as it remains anaerobic.

Table II

Electron spin resonance parameters of nitric oxide complexes of cytochrome P-450LM

<table>
<thead>
<tr>
<th>Complex</th>
<th>Principal g value</th>
<th>Hyperfine coupling constant (G) (axial)</th>
<th>No. of lines</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>g_x</td>
<td>g_y</td>
<td>g_z</td>
<td>A_1</td>
</tr>
<tr>
<td>P-450LM, 1NO</td>
<td>2.072</td>
<td>2.009</td>
<td>1.974</td>
<td>19.2</td>
</tr>
<tr>
<td>(+camphor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P-450LM, 1NO</td>
<td>2.008</td>
<td>2.104</td>
<td>1.974</td>
<td>20.4</td>
</tr>
<tr>
<td>P-450LM, 1NO</td>
<td>2.008</td>
<td>2.104</td>
<td>1.974</td>
<td>20.4</td>
</tr>
<tr>
<td>(+substrate)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRP, 1NO</td>
<td>2.076</td>
<td>2.008</td>
<td>1.974</td>
<td>20.4</td>
</tr>
<tr>
<td>GPO, 1NO</td>
<td>2.082</td>
<td>2.004</td>
<td>1.974</td>
<td>3</td>
</tr>
<tr>
<td>TDO, 1NO</td>
<td>2.084</td>
<td>2.009</td>
<td>1.983</td>
<td>16.5</td>
</tr>
<tr>
<td>+l-Tryptophan</td>
<td>2.088</td>
<td>2.004</td>
<td>1.982</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>LPO, 1NO</td>
<td>2.070</td>
<td>2.004</td>
<td>1.958</td>
<td>16</td>
</tr>
<tr>
<td>Catalase, 1NO</td>
<td>2.560</td>
<td>2.003</td>
<td>1.970</td>
<td>21</td>
</tr>
<tr>
<td>P-450LM, 1NO</td>
<td>2.074</td>
<td>2.000</td>
<td>1.976</td>
<td>27.4</td>
</tr>
<tr>
<td>(+camphor)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HRP, 1NO</td>
<td>2.078</td>
<td>2.008</td>
<td>1.966</td>
<td>30</td>
</tr>
<tr>
<td>P-420LM, 1NO</td>
<td>2.072</td>
<td>2.015</td>
<td>2.072</td>
<td>22</td>
</tr>
<tr>
<td>P-420LM, 1NO</td>
<td>2.072</td>
<td>2.015</td>
<td>2.072</td>
<td>16</td>
</tr>
<tr>
<td>P-420LM, 1NO</td>
<td>2.08</td>
<td>2.01</td>
<td>2.08</td>
<td>16</td>
</tr>
<tr>
<td>P-420LM, 1NO</td>
<td>2.074</td>
<td>2.015</td>
<td>2.074</td>
<td>16</td>
</tr>
</tbody>
</table>

a Contains also a small signal at 2.03 to 2.05.
b Abbreviations not already listed in Table I: cytochrome P-450LM (P-450LM); tryptophan dioxygenase (TDO); lactoperoxidase (LPO).

Reduction of the ferric-NO complex of cytochrome P-450LM with dithionite, or the addition of NO to the ferrous form, yields another spectrally distinct species. This ferrous-NO complex is less stable than the corresponding complex of the bacterial enzyme; however, the presence of a Type I substrate aids significantly in maintaining its native conformation. For example, the optical absorbance difference spectrum of the ferric-NO complex versus ferrous cytochrome P-450LM in the presence of androstanediol, shown in Fig. 5, is similar to that of the equivalent spectrum of the bacterial enzyme shown in Fig. 6, suggesting that most of the ferrous NO complex of cytochrome P-450LM remains native within the time required to record the spectrum (1 to 2 min). Nonetheless, changes in the optical absorbance spectrum do occur as a function of time and have been shown by ESR spectroscopy to correspond to denaturation of the ferrous NO complex to a five-coordinate P-420 ferrous-NO species (16).

The ESR spectrum of the ferrous-NO complex of cytochrome P-450LM prepared by rapidly mixing the dithionite reduced enzyme with NO-saturated buffer and freeze-quenching within 15 ms (see "Materials and Methods") is illustrated in

![Fig. 4. Second derivative ESR spectra of the 1NO (upper) and 1NO (lower) complexes (500 μM) of ferrous cytochrome P-450LM (A, B) and horseradish peroxidase (C, D).](image)

![Fig. 5. Optical absorbance difference spectra of the NO complexes of cytochrome P-450LM (5 μM) in Buffer C containing 0.1 mM 5a-androstane-3,17-dione: ferroc NO versus ferroc (---); ferroc NO versus ferroc ().](image)
Fig. 6. Optical absorbance difference spectra of the NO complexes of cytochrome P-450 (5 µM) in Buffer A: ferric-NO versus ferric (- - -); ferrous-NO versus ferrous (---).

Fig. 7 (left). ESR spectra of ferrous-¹⁴NO complexes of cytochrome P-450₅₅₇ (A) and cytochrome P-450₅₇₀ (B) obtained from samples frozen within 15 ms after preparation (see "Materials and Methods").

Fig. 8 (center). ESR spectra of ferrous-¹⁴NO complexes of cytochrome P-450₅₇₀ (50 mg of microsomal protein/ml in Buffer C) in the presence (A) and absence (B) of 1.0 mM hexobarbital from samples frozen 2 min after preparation. The g₂ signals of the P-420 portions are indicated by Lines 1, 3, and 4; those of the cytochrome P-450 portions by Lines 2, 4, and 5.

Fig. 9 (right). ESR spectra of the ¹⁴NO (A) and ¹⁵NO (B) complexes of P-420 prepared by treating cytochrome P-450₅₅₇ with deoxycholate (see "Materials and Methods").

Fig. 7. This spectrum is quite similar to that of the ferrous-NO complex of the bacterial cytochrome prepared by the same method (Fig. 7 and Table II) and is unaltered by the presence or absence of an exogenous Type I substrate or by variations in temperature (0–30°C) of the solutions during mixing. Even though the reaction was quenched within 15 ms, a small amount of the ferrous-NO complex of P-420 is observed (Fig. 7) as indicated by the shape of the g₂ signal. The g = 2.03 signal (indicated as g₂ in Fig. 7) is of unknown origin, although it has been observed in the ESR spectra of ferrous-NO complexes of other hemeproteins (3). It may be that this signal is an indication of the presence of the denatured form. The addition of a Type I substrate aids in stabilizing the native ferrous-NO complex when longer reaction times are used. Exposure of the ferrous enzyme to NO in the absence of an exogenous Type I substrate at 25°C and allowing the sample to stand 2 min prior to freezing in liquid nitrogen or isopentane at −140°C gives rise to the ESR spectrum shown in Fig. 8. If the reaction mixture contains an exogenous substrate, such as hexobarbital, more of the native ferrous-NO complex is retained (Fig. 8). Presumably the substrate helps maintain the native conformation at the active site, which is obviously less stable as the ferrous-NO complex relative to the ferrous-CO complex. The existence of a mixture of the native and denatured complexes is substantiated by comparison of these spectra with that of a known P-420-NO complex (see below) (Fig. 9). The instability of the sample is not the result of denaturation of either the ferrous or ferrous-NO complex by
Cytochrome P-450 Nitric Oxide Complexes

excess sodium dithionite since similar data are obtained when the liver microsomal enzyme is enzymatically reduced with NADPH. The fact that the ferrous-NO complex of cytochrome P-450LM is unstable would seem to indicate a relatively "weak" bonding interaction between the heme iron and the axial ligand trans to the NO. A slight perturbation of the ligand field at the heme iron results in the formation of a more strongly bonded NO versus the bonding to the trans ligand furnished by the protein moiety. This propensity to denature may be important with respect to identifying the trans axial ligand itself.

Using the intensity of the g_z ESR signal of the native ferrous-NO complex of cytochrome P-450, as a measure of the native conformation (Fig. 8) it is possible to estimate the amount of denatured (P-420) form present in each of the samples frozen at 2 min. From a measure of the ratio of the intensity of the respective g_z signals of the sample quenched at 15 ms versus the two samples frozen after 2 min, it is determined that the sample with hexahydrate present contains 22% denatured complex while that without exogenous substrate contains 50%. The difference (34%) corresponds to the extent of low spin to high spin conversion measured at room temperature by optical absorbance difference spectroscopy upon addition of a typical type I substrate to a microsomal suspension.

P-420—The ESR spectra of the P-420-NO complex arising from denaturation of the ferrous-NO complex of cytochrome P-450, as identical (Fig. 9) to that of the NO complex of P-420 prepared by treating the liver microsomal enzyme with deoxycholate (24) or potassium thiocyanate (25) or of P-420 formed by alkali denaturation of the bacterial cytochrome (23). These spectra are very similar to that of the NO complex of SDS-denatured hemoglobin (1, 31). Several lines of evidence indicate that in the SDS-denatured HbNO complex the heme iron has become five-coordinate. Both proton magnetic resonance and ESR spectral studies of heme complexes compared with HbNO and SDS-denatured HbNO (2, 31) have shown that when HbNO is denatured the trans axial ligand (histidine) to the heme-bound NO is removed or the bond severely distorted. It is interesting to note that the addition of an allosteric effector to the system (8, 9) or acid-modification of the HbNO causes the heme iron of two of the subunits to become five-coordinate. The ESR spectra of the P-420-NO complexes closely resemble that of the SDS-denatured HbNO species suggesting a similar structural interpretation in the case of cytochrome P-450.

DISCUSSION

A comparison of the optical absorbance difference spectra obtained for the ferric- and ferrous-NO complexes of cytochromes P-450LM and P-450, as indicated by the similarity in the spectra of the respective heme and heme electronic environments are quite similar. The ESR spectra of their respective ferrous-NO complexes also indicate a nearly identical magnetic environment at the dioxygen binding site of these cytochromes P-450.

Thus, conclusions obtained from comparisons of the chemical and physical properties of the soluble bacterial cytochrome P-450 with those of other hemeproteins are also applicable to the membrane-bound liver microsomal cytochrome P-450.

The existence of superhyperfine splitting in the g_z ESR signal of ferrous-NO complexes of several hemeproteins including Hb (2, 32), Mb (33), horseradish peroxidase and cytochrome c peroxidase (3) has been used as evidence for the presence of a nitrogen-containing ligand bound trans to the heme-bound NO. This triplet of triplets g_z signal is believed to arise from electron spin-nuclear spin interaction of the unpaired electron of the bound NO with a nitrogen atom of the ligand bound trans to it. In the case of Hb and Mb, where an imidazole moiety of a histidine residue is known to serve as the axial ligand, the observed coupling constant for the superhyperfine interaction is 6 to 7 G (2, 3, 32, 33). A similar coupling has been observed in the signal of the ferrous-NO complexes of horseradish peroxidase and cytochrome c peroxidase and on this basis imidazole was proposed as the proximal ligand in these hemeproteins (3). No superhyperfine splitting of the g_z signal was detected for the ferrous-NO complexes of catalase or lactoperoxidase which suggested that, for these hemeproteins, electron spin relaxation was very rapid or that a ligand not possessing nuclear spin was bound trans to the heme-bound NO (3). However, the absence of superhyperfine splitting in the g_z ESR signal in both of these hemeproteins, as well as in cytochromes P-450 and chloroperoxidase, may be the result of other phenomena.

Studies with isolated α, β, and γ subunits of hemoglobin as well as of hybrid forms have indicated that even when the trans axial ligand is known to be a histidine nitrogen atom, superhyperfine splitting is not always observed (11, 12). The presence or absence of superhyperfine splitting in the g_z signal of the ESR spectra of the NO complexes of α and β subunits, as well as of two mutant hemoglobins (Hb Zurich and Hb M Iwate) was shown to be dependently (11). Two types of spectrally distinct NO complexes were proposed to result from changes in the bonding between the trans axial ligand, histidine, and the NO to the heme iron (11). Thus the type II ESR spectrum is characterized by the presence of the superhyperfine splitting in the g_z signal due to a strong α bond between the proximal histidine and the heme iron such that electron spin-nuclear spin interaction occurs. The type I ESR spectrum, on the other hand, shows smaller hyperfine coupling in the g_z signal, the absence of any superhyperfine interaction, and the presence of an observable hyperfine interaction in the g_y signal. These factors are taken in the case of type I to indicate a weakened bonding interaction between the trans nitrogen atom and the heme iron with a concomitant strengthening of the iron NO bonding (11). A similar proposal has been used to explain the results previously observed for the ferrous-NO complex of tryptophan dioxygenase (14). In the absence of its substrate, l-tryptophan, a three-line hyperfine splitting was observed in the g_z signal, while in its presence a nine-line pattern was seen indicative of superhyperfine splitting of the ESR signal of the bound NO by a trans axial nitrogen atom (histidine ?). It was suggested that the substrate induce a conformational change in the enzyme which further strengthened the bond between the heme iron and the fifth ligand, which presumably is nitrogen since a nine-line g_z signal was observed (14). Thus the three line g_z signal observed for both the cytochromes P-450 and chloroperoxidase (Table II) may be an indication of weakened proximal ligand to heme iron bonding with concomitantly stronger NO to heme iron bonding. This bonding pattern would be similar to that designated as type I by Tritelvita et al. (11).

Another possibility for the absence of superhyperfine splitting of the g_z signal in the ferrous-NO complex of cytochromes P-450, as well as chloroperoxidase, lactoperoxidase, and catalase, is also related to the bonding interactions among the...
NO, heme iron, and proximal ligand. As previously indicated the electron spin-nuclear spin coupling, believed to be responsible for the superhyperfine splitting of the g_s ESR signal, is favored when the unpaired electron of the NO is localized primarily in a molecular orbital appropriate for mixing with the d_π orbital of the heme iron (1, 11, 34). Support for this idea has come from studies with horseradish peroxidase (3). Replacement of ^14NO with ^15NO was observed to change the shape of the g_s and g_y signals of the ferrous-NO complexes; however poor spectral resolution precluded the direct determination of coupling constants. Spectral simulations were interpreted to indicate that the large splitting observed in these signals came primarily from interaction with the porphyrin nitrogens (3). We have observed that the second derivative ESR spectra of both cytochromes P-450 and horseradish peroxidase exhibit changes in the splitting of their g_s and g_y signals when ^15NO is replaced with ^15NO (Fig. 4), which may indicate that significant electron spin density is also delocalized onto the porphyrin nitrogens. Consequently, we suggest that the metal-nitric oxide bonding may be complex enough so as to require further perturbations of the molecular orbital diagrams (11, 34) which have been presented. For example, the origin of the differences in the number of lines observed in the g_s and g_y signals between these two hemoproteins does not seem obvious.

As indicated in Figs. 3 and 4 the ESR spectra of the ferrous-NO complexes of cytochromes P-450cam and P-450lm resemble that of the ferrous-NO complex of horseradish peroxidase with the exception that no superhyperfine splitting of the g_s signal is observed. Assuming that the absence of splitting is not due to fast relaxation of the electron spin, then one obvious possibility is that the axial ligand bound trans to the heme-bound NO does not have nuclear spin, e.g. sulfur. This possibility is supported by the recent report of Stern and Peisach (35) in which a model compound for the ferrous-NO complex of cytochrome P-450cam was presented. These authors were able to generate an optical absorbance spectrum having wavelength maxima near those of the enzyme from a complex presumed to have a mercaptide axial ligand trans to a home-bound NO. These data would then support the proposal that the unique electronic spectrum of the ferrous-CO cytochrome A B bound NO. These data would then support the proposal that cytochrome P-450 remains unknown.

It is important to note in the case of the ferrous-NO complex (B) that the Fe—N—O bond angle is very sensitive both to the strength of the bonding between the trans axial ligand and the heme iron as well as to the steric environment about the Fe—NO bond. For example a nearly linear bond angle (165°-170°) has been recently reported in the case of the β-nitrosoylhemes of hemoglobin Kansas (10) relative to the 142° angle reported for Fe(TPP)(NO)(1-Me-lm) (37). In fact if the proximal ligand bonds only weakly to the heme iron prohibiting electron spin-nuclear spin interaction, then the distinction between a possible mercaptide sulfur and the more typical nitrogenous (histidine?) trans axial ligand to the heme iron of the cytochromes P-450 and chloroperoxidase cannot be made based upon these ESR spectral results.

The optical absorbance spectral properties of both the ferric- and ferrous-NO complexes of cytochromes P-450 are unique relative to those of other hemoproteins, e.g. red-shifted Soret band maxima for both the ferric- and ferrous-NO complexes. This suggests that the interaction which gives rise to the 450 nm Soret absorbance band maximum of the ferrous-CO complex is present in both oxidation states of the enzyme at least when nitric oxide is bound. These data are consistent with the scheme shown in Fig. 11. Griffin and Peterson (39) have shown by pulsed proton NMR that the substrate-free cytochrome P-450cam (A) is readily accessible to bulk solvent, since protons exchanging readily with bulk solvent approached to within approximately 2.7 to 3.0 Å of the low spin ferrie ion,

![Fig. 10. Proposed bonding scheme for the NO complexes of cytochromes P-450 and P-420. The protoporphyrin IX moiety is represented by the heavy vertical line (see text for a complete description).](image)

![Fig. 11. Diagram illustrating the reactions of NO with cytochrome P-450cam.](image)
suggested that the protons are probably on an atom within the inner coordination sphere of the heme iron. Furthermore, it was reasoned that the most likely candidate for this ligand was in fact water. A more extensive investigation has subsequently confirmed these data (40). Thus contrary to recent reports (41, 42), the replaceable sixth ligand of low spin substrate free cytochrome P-450 (A) is not an imidazole moiety. The current study has shown that the optical absorbance spectrum of the ferric-NO complex of cytochrome P-450 (D) is the same whether the heme iron was initially low spin (A) (water as the presumed replaceable ligand) or high spin (B) (pentacoordinate). This is shown in Reactions 1 and 2 of Fig. 11 in which the fifth ligand of the heme iron is the same. The Mossbauer spectral (43) and magnetic susceptibility (44) studies of ferrous cytochrome P-450 have shown that the heme iron of the ferrous form (C) is high spin (pentacoordinate) in either the presence or absence of camphor. The addition of O2, CO, or NO to ferrous cytochrome P-450 results in the formation of low spin ferrous forms (E, F), and it is reasonable to assume that these ligands attack the vacant position 6 of the heme iron. The optical absorbance and ESR spectra of the ferrous-NO complex of cytochrome P-450 (in the presence or absence of camphor) are the same whether it is formed by the addition of NO to the ferrous enzyme (Reaction 4) or by reduction of the ferric NO complex (Reaction 3). It has already been shown that CO and O2 are directly competitive with each other for binding to the heme iron (19) and now NO can be added to this group. These results may be reasonably interpreted to indicate that the fifth ligand of cytochrome P-450, represented by X in Fig. 11, does not change during Reactions 3 to 6. Therefore, the recent proposal (42) that O2 and CO bind on opposite sides of the heme iron to account for the "unusual" optical absorbance spectrum of the CO complex and "normal" spectrum of the O2 complex seems quite unlikely.

REFERENCES

Studies of the oxygen binding site of cytochrome P-450. Nitric oxide as a spin-label probe.
D H O’Keeffe, R E Ebel and J A Peterson