Pyruvate, Phosphate Dikinase

METAL CATION REQUIREMENTS AND INACTIVATION OF THE ENZYME BY SULFHYDRYL AGENTS*

(Received for publication, January 16, 1978, and in revised form, June 7, 1978)

George Michaels,§ Yoram Milner,§ Beverly R. Moskovitz, and Harland G. Wood

From the Department of Biochemistry, Case Western Reserve University School of Medicine, Cleveland, Ohio 44106

THE JOURNAL OF BIOLOGICAL CHEMISTRY
Printed in U. S. A.

The metal cation requirements of pyruvate, phosphate dikinase from Bacteroides symbiosus have been examined with respect to both the overall reaction and the three partial reactions. The overall reaction and all three partial reactions require a divalent cation (Mg$^{2+}$, Mn$^{2+}$, or Co$^{2+}$). Although Mn$^{2+}$ and Co$^{2+}$ are very effective activators at low concentrations in two of the three partial reactions, they each inhibit one partial reaction at higher concentrations. Mg$^{2+}$ is not inhibitory to any of the partial reactions and thus is the most effective divalent ion activator for the complete overall reaction. The monovalent cation requirement of the dikinase (Tl$^+$, NH$^+$, or K$^+$) was found to reside completely in the P-enolpyruvate, pyruvate partial reaction, which is consistent with the involvement of monovalent cations in enolization reactions.

Fully purified dikinase possesses a maximum of 18 sulfhydryl groups/dimeric molecule of which two or three are essential for enzymatic activity. The number of sulfhydryl groups decreased during loss of enzyme activity with aging. The relative reactivity of the sulfhydryl groups of the native enzyme (E), phosphorylated enzyme (Ep), and pyrophosphorylated enzyme (Ep)p was compared. The sulfhydryl groups of Ep react with 5,5-dithiobis(2-nitrobenzoic acid) (DTNB) at a higher rate than that of either E or Ep with a concomitant increased rate of loss of enzyme activity. However, Ep in the form of the transition state analog complex (consisting of Ep, Me$^{2+}$, oxalate, and an activating monovalent cation) shows a decreased reactivity of the sulfhydryl groups and decreased inhibition of the enzyme by DTNB. Apparently, a conformation change occurs during formation of the complex which protects the essential sulfhydryl groups.

Dikinase is dimeric and exhibits some properties of half-site reactivity. The sulfhydryl groups of the di-phosphorylated enzyme (Ep)p were found to be more reactive with DTNB than those of the monophosphorylated enzyme (Ep) but the sulfhydryl groups of the transition state analog complex of Ep were less reactive and the enzymatic activity was less subject to inactivation by DTNB. Apparently, when only one subunit of the enzyme is phosphorylated, the nonphosphorylated subunit may still react with DTNB.

* This investigation was supported by Grant No. BMS 74-22692 from the National Science Foundation. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

§ Present address, Department of Pediatrics, University of Cincinnati, Cincinnati, Ohio 45229.
¶ Present address, Department of Biological Chemistry, Hebrew University, 20 MaMila St., Jerusalem, Israel.

The pyruvate, phosphate dikinase reaction involves (1-3) a three-site Tri Uni Uni Ping-Pong mechanism via partial Reactions 1a, 1b, and 1c:

\[
\begin{align*}
E + ATP & \rightleftharpoons E_p + \text{AMP} \quad (1a) \\
E_p + P_i & \rightleftharpoons E + PP_i \quad (1b) \\
E_p + \text{pyruvate} & \rightleftharpoons E + \text{P-enolpyruvate} \quad (1c)
\end{align*}
\]

ATP + P_i + pyruvate \rightleftharpoons AMP + PP_i + P-enolpyruvate

This reaction sequence predicts the existence of three independent exchange reactions and three independent forms of the enzyme (E, Ep, and Ep)p). Although the studies of the dikinase from plants have not supported the above mechanism (4), kinetic data, exchange reactions, and the isolation of the three forms of the enzyme have demonstrated the validity of this mechanism for the enzymes from Bacteroides symbiosus (5, 6) and Propionibacterium shermanii (3, 6).

The dikinase of B. symbiosus appears to fulfill the position in glycolysis normally occupied by pyruvate kinase (6-8). Like pyruvate kinase, the dikinase from most sources has an absolute requirement for both a monovalent and a divalent cation (6, 9). Since the dikinase reaction can be separated into partial reactions, it has permitted analysis of the cation activation of the dikinase in a way that has not been possible with pyruvate kinase.

The dikinases from various sources are generally unstable and this has been a major difficulty in their study (6, 9). It has been suggested that the dark inactivation and light inactivation of the dikinase of plants involves the oxidation and reduction, respectively, of essential sulfhydryl groups (10, 11). Sugiyama and Shirahashi (11) have shown that the tetrameric dikinase from maize has 34 sulfhydryl groups. The present communication is the first study of the reactivity of the sulfhydryl groups of the dikinase from a highly purified bacterial enzyme.

EXPERIMENTAL PROCEDURES

Materials

Pyruvate, phosphate dikinase was prepared from B. symbiosus by the method of Milner et al. (12). Imidazole, Tris base, tricyclohexylammonium P-enolpyruvate, trisodium P-enolpyruvate, sodium salts of AMP and ATP, and sodium pyruvate were obtained from Sigma. All substrates were titrated to the appropriate pH before use except for pyruvate, which was kept at pH 3 before use so as to minimize polymer formation. Thallium nitrate was from K & K, and other metal salts were analytical grade obtained either from Fisher or...
Metal Requirements and Sulfhydryl Groups of Dikinase

RESULTS

Effect of Cations

Divalent Cations The overall reaction of the dikinase is significantly activated in both directions by Mg$^{2+}$, Mn$^{2+}$, or Co$^{2+}$, as shown in Fig. 1. Mg$^{2+}$ proved to be a better activator than the other two cations, although the apparent K_m for Mn$^{2+}$ appears to be the lowest of the three. Other divalent cations did not activate the enzyme, including Ba$^{2+}$, Sr$^{2+}$, Ca$^{2+}$, Fe$^{3+}$, Cu$^{2+}$, and Zn$^{2+}$.

The activation of the exchange reactions by divalent cations is shown in Fig. 2. The relative ineffectiveness of Mn$^{2+}$ and Co$^{2+}$ in the overall reaction can be explained by the inhibition of Mn$^{2+}$ of the P$_i$, PP, exchange and by Co$^{2+}$ of the P-enolpyruvate, pyruvate exchange at concentrations required for rapid ATP, AMP exchange. It is interesting that Mn$^{2+}$ at low concentrations gives somewhat the same activation profile for the P$_i$, PP, exchange as it does in the overall reaction in the direction of pyruvate formation.

Monovalent Cations—Monovalent cations are required for activity in the overall reaction in both directions, as shown in Fig. 3. The apparent K_m values appear to be lower in the direction of P-enolpyruvate formation, which is similar to the results which Sugiyama obtained using the dikinase from corn leaves (15). The requirement for monovalent cation in the exchange reactions of the dikinase is shown in Fig. 4. It is clear that only the P-enolpyruvate, pyruvate exchange reaction requires the presence of monovalent cations and the requirement is absolute. The K_m values for the activating monovalent cations are of the same relative magnitudes as for the overall reaction.

Sulfhydryl Groups and the Activity of Dikinase

Inactivation of the Dikinase—The dikinase is inhibited by various agents known to react with sulfhydryl groups, including p-HMB (not shown), N-ethylmaleimide, and DTNB, but not by iodoacetate or iodoacetamide (Table I).

Ultracentrifugation of the enzyme with various concentrations of p-HMB demonstrated that there was formation of the monomeric 5 S species from the active dimeric 8 S form of the enzyme (Fig. 5) and that the amount increased as the percentage inhibition of the dikinase increased. When the enzyme is reactivated by incubation at room temperature in 50 mM dithiothreitol for 30 min, the sedimentation coefficient again becomes 8 S.

The dikinase slowly inactivates when kept at 4°C in buffered solution, particularly when the protein concentration is less than 0.5 mg/ml. This inactive enzyme, like the p-HMB-inactivated enzyme, has a sedimentation coefficient of 5 S but it is not reactivated by dithiothreitol. However, a role for

Methods

Protein—Protein of the purified dikinase was determined by multiplying the optical density at 280 nm by 1.3 to give the concentration in milligrams/ml (12).

Radioactivity—Radioactivity of both 14C- and 32P-containing samples was determined with either a Nuclear Chicago Mark I or Unilux liquid scintillation counter.

Assay of Overall Reaction—The dikinase was assayed in the direction of pyruvate formation using the dimethylphenylhydrazine procedure as previously described (12). A modification of the inorganic pyrophosphatase assay of Cartier and Thuiller (13) was utilized to assay the enzyme in the direction of P-enolpyruvate formation. The incubation mixture had the following composition in micromoles/ml, in a total volume of 0.1 ml: Tris/acetate (pH 7.5), 200; enolpyruvate, 2.5; NH$_4$Cl, 50; ATP, 2.14; MgCl$_2$, 15; neutralized bovine serum albumin, 4 mg/ml; and an appropriate amount of the dikinase. After a 5- to 15-min incubation at room temperature, the reaction was terminated by adding 0.2 ml of 40 mM ammonium molybdate in 2.5 N H$_2$SO$_4$ and mixing. Then, 0.2 ml of 100 mM triethylamine HCl, pH 3, was added and an insoluble precipitate formed which contained all of the 32P. After adding 0.5 ml of water, the mixture was centrifuged 4 min in an Eppendorf 5417 centrifuge. The radioactivity of aliquots of the supernatant solution, which contained the 32PP, was determined.

Assay of Exchange Reactions—The chromatographic systems used in the exchange reaction have been described previously (2) and details are given in the legend of Fig. 2.

Determination of Sulfhydryl Groups—The method used was essentially that of Habeeb (14). The reaction mixtures are described in the figure and table legends. The optical density at 420 nm was monitored with time using a Zeiss spectrometer. In some experiments, samples were taken directly from the cuvette and added to assay media for determination of enzymatic activity.

Production of $[^{32}P]P$E^-P—The incubation mixture consisted of the following, in micromoles/ml, in a total volume of 0.14 ml: imidazole-HCl (pH 6.8), 70; $[^{32}P]P$-enolpyruvate, 0.65; MgCl$_2$, 14; NH$_4$Cl, 70; and 8.2 nmol of dikinase. After a 15-min incubation at room temperature, the entire mixture was chromatographed on a column (0.8 cm x 10 cm) of Sephadex G-50 equilibrated with 50 mM imidazole-HCl (pH 6.8) containing 20 mN NH$_4$Cl. Fractions of 5 drops were collected in the liquid scintillation counter.

Production of $[^{32}P]P$E^-P—Pyruvate, phosphate dikinase is dimeric and under the above conditions, on the average, only one subunit is phosphorylated. Formation of the diphosphorylated enzyme requires a higher concentration of P-enolpyruvate. The incubation mixture consisted of the following in micromoles/ml, in a total volume of 0.275 ml: imidazole-HCl (pH 6.8), 36; $[^{32}P]P$-enolpyruvate, 3.86; MgCl$_2$, 14; NH$_4$Cl, 70; and 7.3 nmol of dikinase. After 15 min incubation at room temperature, the entire incubation mixture was chromatographed as above. There was 15 nmol of phosphate incorporated in 7.8 nmol of enzyme.

Sulfhydryl Groups and the Activity of Dikinase

Inactivation of the Dikinase—The dikinase is inhibited by various agents known to react with sulfhydryl groups, including p-HMB (not shown), N-ethylmaleimide, and DTNB, but not by iodoacetate or iodoacetamide (Table I).

Ultracentrifugation of the enzyme with various concentrations of p-HMB demonstrated that there was formation of the monomeric 5 S species from the active dimeric 8 S form of the enzyme (Fig. 5) and that the amount increased as the percentage inhibition of the dikinase increased. When the enzyme is reactivated by incubation at room temperature in 50 mM dithiothreitol for 30 min, the sedimentation coefficient again becomes 8 S.

The dikinase slowly inactivates when kept at 4°C in buffered solution, particularly when the protein concentration is less than 0.5 mg/ml. This inactive enzyme, like the p-HMB-inactivated enzyme, has a sedimentation coefficient of 5 S but it is not reactivated by dithiothreitol. However, a role for

Fig. 1. Concentration dependence of pyruvate, phosphate dikinase on divalent cations for catalysis of the overall reaction. A, P-enolpyruvate formation; PCO$_2$ pyruvate formation. The reaction was assayed as described under "Methods" except that the MgCl$_2$ concentration was varied or replaced by other divalent cations.
sulfhydryl groups in age inactivation is suggested by the results presented in Table II. Enzyme of original specific activity 24 IU/mg was incubated for 14 days at 4°C in the presence of the indicated concentrations of p-HMB. At the end of this time, the activity remaining was determined by assaying all the samples in the presence of dithiothreitol. The enzyme originally most inhibited by the p-HMB retained the most activity, suggesting that essential sulfhydryl groups of the enzyme may have been protected from oxidation by the presence of the attached p-HMB. If so, the oxidation must be intrasubunit since the inactivation is accompanied by dissociation which would not occur if an intersubunit disulfide were formed.

Number of Sulfhydryl Groups of the Dikinase—Determination of the number of sulfhydryl groups of the purified active enzyme has given variable results, ranging from 12 to 18/dimeric molecule. Results, however, are quite reproducible for a given enzyme preparation at a given time.1

Comparison of the Rate of Reaction of DTNB with Different Forms of the Dikinase and the Effect of Oxalate on the

1 G. Michaels and B. R. Moskovitz, unpublished results.

Reactions—As shown in Table III, there is a significant difference in the rates of reaction of the sulfhydryl groups of the three forms of the dikinase with DTNB. The phosphorylated form reacts the fastest and the nonphosphorylated form, the slowest. Furthermore, the reaction of the enzyme with DTNB is accompanied by inactivation of the enzyme; the phosphorylated dikinase is inactivated at the highest rate and the native form, the slowest (Fig. 6A). Experiments were also conducted (Fig. 6B) to determine the effect of oxalate on the inactivation of the enzyme with DTNB. It is seen by comparison of Fig. 6, A and B, that there was considerable stabilization of the E_p form by oxalate and that the stabilization was
Table I
Effect of some sulfhydryl reagents on the activity of the dikinase

The incubation mixture contained 10.8 μg of dikinase (specific activity, 7.8 IU/mg) and 1.0 μmol of inhibitor in a total volume of 110 μl. Incubation was for 5 min at room temperature. Ten-microliter aliquots were assayed for pyruvate formation in the overall reaction (see "Methods").

<table>
<thead>
<tr>
<th>Reagent</th>
<th>Specific activity</th>
<th>Inhibition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control (H2O)</td>
<td>7.8</td>
<td>0</td>
</tr>
<tr>
<td>Iodoacetamide</td>
<td>7.2</td>
<td>8</td>
</tr>
<tr>
<td>N-Ethylmaleimide</td>
<td>8.0</td>
<td>0</td>
</tr>
<tr>
<td>Iodoacetate</td>
<td>1.9</td>
<td>76</td>
</tr>
<tr>
<td>DTNB</td>
<td>1.9</td>
<td>76</td>
</tr>
</tbody>
</table>

Table II
Reactivation by dithiothreitol of dikinase stored in different concentrations of p-HMB

Dikinase, 1.90 mg/ml, which had previously been ultracentrifuged with various concentrations of p-HMB, was stored 2 weeks at -4°C with the concentrations of p-HMB indicated. Assay before storage was done in the absence of dithiothreitol while that done after storage was done with the addition of 10 mM dithiothreitol to the regular assay system. Assay was for pyruvate formation (see "Methods").

<table>
<thead>
<tr>
<th>p-HMB μM</th>
<th>Before storage</th>
<th>After storage</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>45.7</td>
<td>45.7</td>
</tr>
<tr>
<td>10</td>
<td>43.2</td>
<td>43.2</td>
</tr>
<tr>
<td>40</td>
<td>41.6</td>
<td>41.6</td>
</tr>
<tr>
<td>100</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>200</td>
<td>16.3</td>
<td>16.3</td>
</tr>
<tr>
<td>300</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>400</td>
<td>2.2</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Fig. 5. Sedimentation velocity ultracentrifugation of pyruvate, phosphate dikinase in the presence of p-hydroxymercuribenzoate (p-HMB). Enzyme, 1.90 mg/ml, in 50 mM imidazole-HCl, pH 6.8, was incubated at 25°C for 15 min in the presence of the indicated concentrations of p-HMB. The samples were then placed on ice, assayed, and the ultracentrifugation begun within the hour. All samples were centrifuged at 60,000 rpm. A and B were at 1.2°C with the photographs being taken at 80 min after reaching speed. C and D were at 4.0°C and the photographs were taken 76 min after reaching speed. Sedimentation, right to left. A, No p-HMB; specific activity, 24.0 IU/mg. B, 10.0 μM p-HMB; specific activity, 22.7 IU/mg. C, 100 μM p-HMB; specific activity, 8.6 IU/mg. D, 200 μM p-HMB; specific activity, 4.5 IU/mg.

Table III
The reactivity of the sulfhydryl groups of different forms of enzyme with DTNB

Conditions as in Fig. 6A. The standard error of the estimates was ±0.4.

<table>
<thead>
<tr>
<th>Time</th>
<th>E</th>
<th>Ep</th>
<th>Epp</th>
</tr>
</thead>
<tbody>
<tr>
<td>min</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.25</td>
<td>1.4</td>
<td>1.6</td>
<td>2.1</td>
</tr>
<tr>
<td>1.5</td>
<td>2.0</td>
<td>2.8</td>
<td>3.6</td>
</tr>
<tr>
<td>3.5</td>
<td>2.7</td>
<td>3.8</td>
<td>4.7</td>
</tr>
<tr>
<td>5.5</td>
<td>3.3</td>
<td>4.8</td>
<td>5.7</td>
</tr>
<tr>
<td>8</td>
<td>4.5</td>
<td>6.1</td>
<td>6.9</td>
</tr>
<tr>
<td>12</td>
<td>5.4</td>
<td>7.1</td>
<td>7.8</td>
</tr>
</tbody>
</table>

Fig. 6. Comparison of the inactivation of E, Ep, and Epp by DTNB in the presence and absence of oxalate. A, the incubation mixture contained, in a total volume of 0.50 ml: Tris/acetate (pH 7.2), 200 mM; DTNB, 0.5 mM; MgCl2, 4.0 mM; NH4Cl, 10 mM; and the dikinase (4.8 units), E form (□—□). In addition, for the Ep form (○—○), 1.0 mM P-enolpyruvate was added and for the Epp form (△—△) 2.0 mM ATP was added. The experiments of B were similar except oxalate (1.0 mM) was added.
The role of metals in its mechanism. The finding that monovalent cations are required only in the P-enolpyruvate, pyruvate exchange reaction (Fig. 4) is in accord with the observations by Suelter (17) that many enzymes which require monovalent cations involve keto-enol transformations in their transition states. In accord with this hypothesis, Nowak and Mildvan (18) found evidence that the monovalent cation activator of pyruvate kinase may be involved in forming a bridge between the enzyme and the carboxyl group of P-enolpyruvate. The studies of James et al. (19), with the same system, showed that an activating monovalent cation (K⁺) increased the affinity of pyruvate kinase for both P-enolpyruvate and pyruvate, whereas a nonactivating monovalent cation ((CH₃)₄N⁺) did not.

Direct evidence of the role of monovalent cations in tautomerization of pyruvate has recently been obtained by Moskovitz and Wood (20) using [3-Tl]pyruvate and the phosphorylated form of the dikinase (Eₓ). They found that the monovalent cation is required for enolization (measured by formation of tritiated water) and the divalent cation for the phosphoryl transfer. Thus, partial reaction 1c actually consists of two parts:

\[E_p + \text{pyruvate} \xrightarrow{\text{Me}^+} E_p \xrightarrow{\text{Me}^+} \xrightarrow{\text{oxalate}} \xrightarrow{\text{oxalate}} \text{p-enolpyruvate} \]

Study of the partial reactions has also provided information concerning action of the divalent cations. Mg²⁺, at its optimum concentration, is the most effective divalent ion for the overall reaction (Fig. 1). The lower activity of Mn²⁺ and Co²⁺ compared to Mg²⁺ may be explained by their effects on the three partial reactions. Although Mn²⁺ and Co²⁺ are more effective than Mg²⁺ at low concentrations in the P-enolpyruvate, pyruvate, and PP₆P partial reactions, they are not effective at the same concentrations in the ATP, AMP' partial reaction. At higher concentrations, where they are effective in the ATP, AMP partial reaction, they inhibit one or the other of the partial reactions. Mg²⁺ is not effective in any of the partial reactions at low concentrations but it activates all three partial reactions at higher concentrations (Fig. 2) and thus is the most effective in the overall reaction.

The poor activation of the P₆P, PP₆P exchange reaction by Mn²⁺ at higher concentrations may be due to inhibition by the soluble high molecular weight complex of Mn²⁺ and PP₆P, described by Cooperman and Mark (21). A similar activation profile by Mn²⁺ was observed with thiamin pyrophosphatase (22).

Activation profiles by Co²⁺ similar to those with pyruvate, phosphate dikinase have been observed in the overall reaction of pyruvate kinase (23). Since Co³⁺ is known to change from octahedral to tetrahedral geometry more easily than either Mg²⁺ or Mn²⁺, it was considered by Mildvan and Cohn (24) that the poor activation by Co³⁺ of pyruvate kinase might be caused by this change. However, no evidence for a blue shift in the visible spectrum of enzyme-bound Co³⁺ consistent with the tetrahedral metal was discerned (24). A similar study of the enzyme-bound spectrum of dikinase-Co³⁺ in the presence of various substrates was likewise unrevealing. Thus, it remains unclear why Co³⁺ is a poor activator of the dikinase.

In his original observations regarding activation of the dikinase from B. symbiosus by divalent cations, Reeves (25) did not find activation of the enzyme by either Mn²⁺ or Co²⁺ in the direction of P-enolpyruvate formation, although both of these cations were activators in the direction of pyruvate formation. The most likely explanation of the discrepancy is

which react in the presence and absence of oxalate is greater with the diphasphorylated enzyme. Furthermore, the protection by oxalate against inactivation by DTNB is much greater with \(E_p \) than it is with \(E_p \) (Fig. 8, C compared to D).

DISCUSSION

The fact that the reaction of the dikinase consists of three distinct partial reactions has permitted the present study of

\[E_p + \text{pyruvate} \xrightarrow{\text{Me}^+} E_p \xrightarrow{\text{Me}^+} \xrightarrow{\text{oxalate}} \xrightarrow{\text{oxalate}} \text{p-enolpyruvate} \]
that assays in the direction of P-enolpyruvate formation require an alkaline pH and there is rapid inactivation of the dikinase in this pH range, particularly at low protein concentration. This problem was minimized in the present studies by stabilizing the dikinase with the addition of bovine serum albumin (5).

Pyruvate, phosphate dikinase from a variety of sources has been found to be unstable. In the case of the dikinase of B. surnhosiss, this instability is due, at least in part, to the reactivity of its sulfhydryl groups. Accompanying the reaction of these groups, there is dissociation of the active dimeric enzyme with a sedimentation coefficient of 8 S to an inactive monomeric form with a sedimentation coefficient of 5 S. Furthermore, when the sulphydryl groups react with p-HMB the reaction of the enzyme with p-HMB apparently protects the sulfhydryl groups from oxidation and prevents the irreversible inactivation which occurs when the enzyme is stored in the absence of p-HMB (Table II).

The reactivity of the sulfhydryl groups of the pyrophosphorylated (E_p), phosphorylated (E_p), and nonphosphorylated forms of the enzyme (E) with DTNB have been found to differ. The E_p form being the most reactive (Table III). Apparently, phosphorylation causes conformational changes in the dikinase which increases the exposure of sulfhydryl groups. In the presence of oxalate, Mg^{2+}, and Tl^+ or NH_4^+, the reactivity of the sulfhydryl groups of E_p with DTNB is decreased (Fig. 7A) and the inactivation is decreased (Fig. 7B). This protection of oxalate against inactivation apparently specific for very reactive and essential sulfhydryl groups since, in 2 min in the absence of oxalate, the enzyme is 70 to 80% inactivated (Fig. 7B) when only two or three sulfhydryl groups had reacted (Fig. 7A). The slow inactivation in the presence of oxalate may be due to nonglycyl oxidation of sulfhydryl groups which are not at the catalytic site.

Previous studies by paramagnetic resonance (26) have indicated that there is a specific strong interaction of oxalate with the phosphorylated form of the dikinase and that the E_p form of the enzyme is required for the oxalate binding. It appears by the criteria of Wollenden (27) that the E_p-Mg^{2+}-oxalate complex represents a transition state analog complex. The EPR spectrum of the enzyme bound Mn^{2+} changes drastically in the presence of monovalent cations and the E_p-Mn^{2+}-oxalate complex resembles the spectrum of Mn^{2+} in the solid state, suggesting a highly immobilized Mn^{2+} which is protected from the buffering action of solvent molecules. This interaction is believed to occur because of the strong structural resemblance of oxalate and enolpyruvate which is postulated to be the true transition state of the enzyme complex. It is suggested that the immobilized and very rigid structure of the E_p-Mn^{2+}-oxalate complex causes a conformation change in an area much larger than the divalent cation site thus causing numerous sulfhydryl groups to be protected from the action of DTNB. Reed and Morgan (28) have shown that oxalate is a potent inhibitor of pyruvate kinase; however, monovalent cations had no effect on the strong binding of oxalate to pyruvate kinase.

Pyruvate, phosphate dikinase exhibits some properties of half-site reactivity. The dikinase is dimeric but only one phosphorpy group is incorporated per mol of enzyme unless the ratio of P-enolpyruvate to enzyme is high (5, 16). In addition, homogeneous preparations exhibit a specific activity of either 12 or 24 units/mg, but the enzyme of specific activity of 24 usually reverts unpredictably and spontaneously to specific activity of 12 (5, 16). Only 1 mol of oxalate binds to the enzyme but 2 mol of Mn^{2+} are tightly bound (26). With diethylpyrocarbonate, it has been shown that two histidyl groups are directly involved in the catalysis but combination of 1 mol of bromopyruvate with the enzyme causes complete inactivation of the enzyme (16). The inactivation by bromopyruvate apparently occurs by combination with a sulphydryl group near the keto acid site (16). These results are in accord with the present results which show that the activity of the enzyme is dependent on the presence of certain free sulphydryl groups.

In the EPR studies by Michaels et al. (26) only one oxalate was bound. Thus, the dikinase was probably monophosphorylated and the oxalate apparently only combines with the subunit which is phosphorylated. Presumably, it is the subunit which is phosphorylated which is protected by oxalate from the action of DTNB. If both subunits are phosphorylated (E_p) there should be a greater protection by oxalate against the action of DTNB than with the monophosphorylated (E_p) form. The results in Fig. 8 show that this is true. These results indicate that DTNB reacts most efficiently with nonphosphorylated (and therefore nonoxalated) sites. The use of oxalate offers the prospect of a relatively rapid assay of the percentage of phosphorylated sites on the enzyme without use of radioactive substrates. The actual importance of these findings in relation to the mechanism of the dikinase catalysis will require further experimentation.

REFERENCES

Pyruvate, phosphate dikinase. Metal cation requirements and inactivation of the enzyme by sulfhydryl agents.
G Michaels, Y Milner, B R Moskovitz and H G Wood

Access the most updated version of this article at http://www.jbc.org/content/253/21/7656.citation

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/253/21/7656.citation.full.html#ref-list-1