Identification of 3-Methylthiopropionic Acid as an Intermediate in Mammalian Methionine Metabolism in Vitro*

Robert D. Steele and Norlin J. Benevenga

From the Department of Nutritional Sciences and Meat and Animal Science, University of Wisconsin, Madison, Wisconsin

Methionine has consistently been shown to be the most toxic amino acid in experiments devised to assess the relative toxicity of dietary amino acids (2-5). The addition of 2% or more of L-methionine to rat diets resulted in elevated plasma and tissue methionine levels, reduction in growth and food intake, and marked tissue abnormalities including lesions of the small intestine, liver, kidney, and pancreas, and, most notably, darkened and enlarged spleens due to accumulation of erythrocytes and deposition of hemosiderin (6-10). The oxidative metabolism of the methyl group of methionine has been extensively studied since it has been postulated to be involved in the severe toxicity of methionine (11).

Experiments by Case et al. (12) showed that the in vitro oxidation of the methyl carbon of methionine could not be accounted for via the intermediate formation and metabolism of choline. Other studies (13) showed that metabolism of the methionine methyl carbon probably by the glycine methyltransferase (E.C. 2.1.1.20) enzyme (14, 15) which gives rise to sarcosine could account for only one-fifth of the oxidation of the methionine methyl group. These results suggested that methionine may be metabolized by a pathway independent of its initial conversion to S-adenosyl-L-methionine, as was subsequently shown (16). They further identified formaldehyde and formate as being two intermediates in the oxidative metabolism of the methionine methyl carbon by this alternate pathway. Transamination of methionine to its keto analog, α-keto-γ-methylbutyrate, and further oxidation to CO₂ has been shown to account for a substantial amount of the oxidative metabolism of the methyl group of methionine (17). Methionine was recently shown to be a better substrate than leucine for a leucine transaminase purified to apparent homogeneity from rat liver mitochondria (18). Sulfur amino acids have also been shown to be effective amino donors in glutamine transaminase (19, 20) and histidine-pyruvate aminotransferase (21). Recently (1), our laboratory studied the effects of feeding rats 3-methylthiopropionate, the expected decarboxylation product of the keto acid of methionine. The incorporation of 2.57% 3-methylthiopropionate into a 10% casein diet resulted in growth depressions and markedly darkened spleens that were similar to those observed in rats fed a quantity of L-methionine equimolar to the level of 3-methylthiopropionate fed. These results suggested that an intermediate(s) in the transamination pathway may be responsible for the observed growth and tissue effects noted when animals were fed high levels of methionine.

The experiments presented here extend earlier observations (17) and show that, in addition to metabolism via the transsulfuration pathway, methionine may be oxidized by a transamination pathway as shown in Fig. 1. This oxidative pathway has also been observed in monkey liver and kidney homogenate preparations. Finally, we demonstrate for the first time that 3-methylthiopropionate is an intermediate in this pathway in both the rat and monkey and that this pathway represents a significant route of methionine oxidation in tissue homogenate preparations.
methylthiopropionate was kindly provided as the free acid by Dr. Rudolf Fiehn of Sigma Chemical Co. 3-Methylthiopropionate was also obtained by saponification of its methyl ester purchased from Aldrich Chemical Co. The 3-methylthiopropionate was extracted from the acidified reaction mixture with diethyl ether, neutralized, and lyophilized as the sodium or potassium salt. The overall purity was shown to be greater than 99% by thin layer chromatography and gas-liquid chromatography using the system described below. All other chemicals were purchased from Sigma Chemical Co.

Animals and Diet—Male rats of the Holtzman strain weighing 150 to 300 g were used in all experiments. They were individually housed in stainless steel cages with wire mesh bottoms in a room with a controlled 12-h light-dark cycle. All animals were offered water and a commercial lab chow ad libitum.

Rhesus monkeys (Macaca mulatta) were housed in individual cages at the Wisconsin Regional Primate Research Center, Madison, Wisc. They were fed Purina monkey chow and had free access to water. These animals were participants in a number of different experiments. Our laboratory was notified when fresh tissue samples could be obtained.

Tissue Preparation—Rats were killed by decapitation and the livers excised, placed on ice, and a 20% homogenate made in 0.25 M sucrose with a Potter-Elvehjem tube fitted with a Teflon pestle. Monkey livers were obtained either after sodium pentobarbital anesthesia or excision and immediately placed on ice. Homogenates were then prepared as described above for rats. In one experiment, monkey kidneys were obtained and a homogenate prepared exactly as described for monkey and rat liver preparations.

In incubation Conditions—Two-milliliter sample (0.4 g of tissue) of the homogenates were placed in 50-ml Erlenmeyer flasks and incubated under flowing oxygen for 1/2 h at 37°C in a shaking water bath. Except where noted, the incubation mixture contained the following in a final volume of 5 ml: 20 mM potassium phosphate buffer (pH 7.5), 1 mM NAD, 1 mM ATP, 5 mM MgCl₂, and 10 mM 14C-labeled methionine or a-keto-gamma-methylbutyrate. When methionine was the substrate, 10 mM sodium pyruvate or 10 mM a-keto-gamma-methylbutyrate was included as the cosubstrate for transamination since prior studies have shown that these two keto acids to be the most active under the highest activity for transamination of methionine in rat liver preparations (17). Water and 0.5 mM sucrose were added to give a final mixture 5 ml and 1,400 osmotic equivalents per flask. Reaction mixtures boiled for 1/2 min prior to the addition of the labeled substrate served as blanks. Incubations were killed after 1 h by the addition of 1 ml of 2% perchloric acid. Control studies showed the reaction to be linear for at least a 1 h incubation period. The CO₂ evolved during the incubations was trapped in 3 ml of an ethanol-aminemethylcellulose solution (1.2 v/v). The amount of radioactivity in aliquots of the trapping solution was determined by liquid scintillation spectrometry using the organic fluid described by Joffay and MacEachern (23). Sufficient counting error of less than 1%. Counting efficiency of each sample was determined by using an automatic external standard. The perchloric acid-killed samples were centrifuged at 15,000 × g for 15 min to sediment the proteins. The supernatants were neutralized with 6 N potassium hydroxide, centrifuged, lyophilized, and stored at −80°C until they could be assayed. In some experiments, the keto acid formed from methionine during the incubation was recovered as the phenylhydrazine-zone derivative from an aliquot of the supernatants. The precipitated phenylhydrazine was dissolved in ethanol and an aliquot counted for radioactivity as described (17).

Chromatographic Procedures—Ion exchange chromatography of methionine and its degradation products was performed using a glass cartridge (4 cm x 4 mm) packed with Dowex 1-X4-400 (acetate form) and eluted with a constant volume (600 ml) water/hydrochloric acid (1 N) gradient. The column flow rate was maintained at 0.5 ml per min. The eluate was monitored for radioactivity with a Packard flow cell and collected in a fraction collector. Fractions corresponding to radioactive peaks were combined, neutralized, and lyophilized.

Paper chromatography was run either in the ascending or descending direction on Whatman No. 1 paper and developed with butanol-1:acetic acid-water (25:3:5 v/v/v). Compounds were detected on the dried papers by exposure to iodine vapors. The papers were then cut into 1-cm strips and added to scintillation vials. Two milliliters of water and 15 ml of aqueous scintillation fluid (24) were added to the vials and counted as described above.

Column chromatography was used for the purification of larger amounts of isolated compounds. A glass column (2.8 x 58 cm) was packed with Whatman CF11 cellulose powder. The column was developed with butanol-1:acetic acid-water (12:5:3 v/v/v) with a flow rate of 1 ml per min. Fractions (12 ml) were collected and aliquots counted for radioactivity as described (17).

Gas-liquid chromatography was performed on a Packard model 419 gas chromatograph equipped with dual flame ionization detectors and fitted with 5 foot, 2 mm inner diameter glass columns packed with 10% SP-1200/1% H₂O on 80 to 100 mesh Chromosorb W AW (Supelco, Inc., Bellefonte, PA). The column temperature was maintained at 130°C and the detector and injection port temperatures were 175°C and 170°C, respectively. Nitrogen was used as a carrier gas at a flow rate of about 35 ml per min.

A stream splitter was fitted to the column just prior to the detector so that 90% of the effluent would be diverted and collected with a Packard model 852 gas fraction collector. The inlet tube that lead to the fraction collector was maintained at 190°C. The effluent was trapped in glass wool-filled cartridges inserted into a turntable which was manually advanced. The well in the turntable was filled with dry ice and ethanol to insure adequate condensation of the compounds in the column effluent onto the glass wool. The glass wool was expelled from the cartridge into a scintillation vial, water and aqueous scintillation fluid added, and the radioactivity determined as described above. The glass cartridge was also counted, but it was found to contain negligible amounts of radioactivity.

A Varian 2790 gas chromatograph was used for gas chromatography- mass spectrometry studies. The column length and packing and column, injection port, and detector temperature were the same as described above. Helium was used as a carrier gas at a flow of about 30 ml per min. The gas chromatograph was connected to a DuPont 21-491B mass spectrometer. The system was of all glass construction and used a jet separator. The spectrometer scanned at 2 s per decade with a new scan being initiated every 10 s. Data were collected and processed on an AIE DS-50 data system (AIE Scientific Apparatus, Elmsford, NY). Peaks were detected by plots of selected ion currents or of total ion current versus scan number.
The results of a number of studies of methionine and α-keto-γ-methylbutyrate catabolism in rat and monkey tissue homogenates are shown in Table I. It is apparent that, in addition to rat liver, methionine undergoes transamination and subsequent oxidation in the monkey liver homogenate as well. The amount of radioactivity recovered in the phenylhydrazine derivative is an underestimation of transamination since once the keto acid is formed, it may be further oxidized as shown in Table I. A more correct estimation of transamination would be the sum of the radioactivity recovered as the phenylhydrazine and $^{14}CO_2$ when L-[1-14C]methionine is used as the radioactive substrate. From the phenylhydrazine data, it appears that the most effective amino group acceptor for transamination in the monkey tissue is the keto acid of methionine. This was also found to be the case with rat tissue preparations (17). When L-[38S]- or [1-14C]methionine were used as substrates, they yielded recoveries of labeled α-keto-γ-methylbutyrate as the phenylhydrazine derivative that were similar to those obtained with L-[methyl-14C]methionine.

Another interesting observation from these initial studies was the presence of a considerable capacity for transamination (but apparently not subsequent oxidation) of the methionine methyl carbon in monkey kidney preparations, as evidenced by a considerable recovery of radioactivity as the phenylhydrazone, but very little as $^{14}CO_2$. These results are again in agreement with recent work (17) with the rat showing marked transamination of methionine, but little capability of rat kidney preparations to oxidize α-keto-γ-[methyl-14C]methionine.

As was observed with the rat liver homogenate (16), the oxidation of the methionine methyl carbon in the monkey liver homogenate is not inhibited by the addition of saturating levels of S-adenosyl-L-methionine. While saturating levels of S-adenosyl-L-methionine in the rat did not inhibit methionine oxidation, the amount of radioactivity recovered as sarcosine was reduced by 75%, indicating that metabolism of the methionine methyl carbon via sarcosine was not an important route in the homogenate system. This remains to be tested in the monkey.

Table I

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Amino acceptor*</th>
<th>AdoMet§</th>
<th>MTP*</th>
<th>N*</th>
<th>$^{14}CO_2$</th>
<th>^{14}C-Phenylhydrazine</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rat liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM pyruvate</td>
<td>3</td>
<td>1.63 ± 0.03</td>
<td>13.4 ± 0.46</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]cKyMB</td>
<td>10 mM pyruvate</td>
<td>3</td>
<td>4.47 ± 0.25</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM pyruvate</td>
<td>10</td>
<td>0.25 ± 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monkey liver</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM pyruvate</td>
<td>2</td>
<td>0.25, 0.22</td>
<td>3.21, 3.00</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>2</td>
<td>0.32, 0.29</td>
<td>31.88, 31.48</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>2</td>
<td>0.42, 0.45</td>
<td>16.90, 16.25</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>2</td>
<td>0.51, 0.45</td>
<td>16.87, 15.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>4</td>
<td>0.43, 0.45</td>
<td>16.67, 15.70</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>3</td>
<td>0.78 ± 0.02</td>
<td>16.57 ± 0.08</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>10</td>
<td>0.28 ± 0.01</td>
<td>16.19 ± 0.10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>3</td>
<td>11.81 ± 0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]cKyMB</td>
<td>10 mM aKyMB</td>
<td>3</td>
<td>1.22 ± 0.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monkey kidney</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>3</td>
<td>0.09 ± 0.00</td>
<td>23.17 ± 0.22</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 mM [Me-14C]Met</td>
<td>10 mM aKyMB</td>
<td>10</td>
<td>0.04 ± 0.00</td>
<td>21.32 ± 0.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* The keto acid added to the reaction mixture as the amino group acceptor.
§ AdoMet = S-adenosyl-L-methionine.
* MTP = 3-methylthiopropionate.
* Number of observations.

The major and heretofore unobserved finding from these initial studies was that, while S-adenosyl-L-methionine did not inhibit recovery of $^{14}CO_2$ from methyl-labeled methionine, the addition of 10 to 20 mM 3-methylthiopropionate to the homogenate inhibited $^{14}CO_2$ recovery substantially in the rat liver and monkey liver and kidney. The conversion of α-keto-γ-[methyl-14C]methionine to $^{14}CO_2$ in the monkey liver homogenate was virtually completely inhibited (98%) by 3-methylthiopropionate, indicating that the inhibitory effect may be on the transamination pathway of methionine metabolism. The dilution of methionine methyl carbon oxidation by varying levels of 3-methylthiopropionate in rat and monkey liver homogenates is shown in Fig. 2. In the rat, maximal inhibition was at 2.5 mM, whereas a 3-methylthiopropionate concentration of 2.5 mM was required for maximum inhibition in the monkey liver homogenate. The degree of inhibition by the addition of 10 to 20 mM 3-methylthiopropionate in both
the rat and monkey is in agreement with the initial experiments shown in Table I. The addition of 2.5 mM 3-methylthiopropionate to the rat liver homogenate resulted in a 70% decline in the recovery of the carboxyl carbon of methionine as \({^{14}}\text{C}_2 \text{O}_4 \) (from 7.26 ± 0.08 to 2.18 ± 0.11 \(\mu \)mol/g/h for \(N = 4 \)). A similar depression was seen when \(\alpha \)-keto-\(\gamma \)-methiolbutyrate was used as the substrate. Therefore, in addition to acting as a potential trapping pool, 3-methylthiopropionate inhibited the oxidation of methionine apparently by product inhibition of the decarboxylation of the \(\alpha \)-keto acid of methionine.

That the inhibition of methionine oxidation by 3-methylthiopropionate may be due simply to a general inhibition of cellular metabolism was ruled out because no inhibition of the oxidation of 10 mM \([U\text{-}^{14}\text{C}] \)glucose to \({^{14}}\text{CO}_2 \) by 3-methylthiopropionate was observed at any concentration tested (Fig. 2). Thus, the effect of 3-methylthiopropionate on methionine oxidation is most likely specific and not due to a depressed capability for general oxidation.

If the dilution of methionine catabolism in either the rat or monkey liver homogenate system by 3-methylthiopropionate is because 3-methylthiopropionate is an intermediate, then radioactive 3-methylthiopropionate should be produced during the incubation. Experiments with rat and monkey liver homogenates were performed to test this hypothesis using \(L\text{-}[methyl\text{-}^{14}\text{C}] \)methionine. Since 2.5 mM and 7.5 mM 3-methylthiopropionate were found to give maximal inhibition of \({^{14}}\text{CO}_2 \) recovery from methyl-labeled methionine in the rat and monkey liver homogenate, respectively, these levels were used in these experiments as a trapping pool. After a 1-h incubation, the reactions were killed by adding 1 ml of 2 N perchloric acid to the 5-ml incubation mixture and the supernatants recovered, neutralized with 6 N potassium hydroxide, recentrifuged, and lyophilized. A representative chromatogram from a rat liver homogenate sample separated on a Dowex 1 column is shown in Fig. 3. Samples chromatographed from monkey liver homogenates showed qualitatively identical elution profiles. The radioactivity that eluted at the front is almost entirely due to unreacted methionine. The sharp peak that eluted at Fraction 21 has not been identified but is due to a nonenzymatic reaction of the substrate since it was also found after chromatography of a boiled tissue blank. The broad peak that eluted between Fractions 36 and 52 cochromatographed with \(\alpha \)-keto-\(\gamma \)-methylbutyrate. The smaller peak that eluted between Fractions 25 and 30 was not observed when 3-methylthiopropionate was omitted from the incubation mixture. Chromatography of standard 3-methylthiopropionate on this same system yielded a single peak, as detected by the nitroprusside reaction, which eluted at approximately the same volume as the 3-methylthiopropionate-dependent peak seen between Fractions 25 and 30 in Fig. 3. Therefore, this radioactive peak was collected, neutralized, lyophilized, and used in further studies to determine whether or not it was indeed 3-methylthiopropionate.

The lyophilized samples from both the rat and monkey experiments (Fractions 25 to 30, Fig. 3) were dissolved in acid and extracted with diethylether. The ether extract was concentrated under nitrogen and aliquots spotted on paper. After development, a major radioactive peak was detected in all samples at an \(R_F \) of approximately 0.82. A spot with an \(R_F \) of 0.83 was observed with a standard sample of 3-methylthiopropionate. A minor radioactive spot was sometimes detected at an \(R_F \) of about 0.69. When the unknown was treated with hydrogen peroxide prior to paper chromatography, the radioactivity at \(R_F \) 0.82 was decreased, whereas the radioactivity in the spot at \(R_F \) 0.60 was elevated. When care was taken to prevent the samples from oxidation, however, the amount of radioactivity recovered at \(R_F \) 0.60 was minimal. When 3-methylthiopropionate was treated with hydrogen peroxide before chromatography, an iodine-positive spot was detected with an \(R_F \) of about 0.60, indicating that the unknown cochromatographed with standard 3-methylthiopropionate and with its oxidation product, the sulfoxide or sulfone derivative. \(\alpha \)-Keto-\(\gamma \)-methylbutyrate, a possible contaminant, had an \(R_F \) of 0.70, which was clearly separated from the radioactive spot detected at an \(R_F \) of 0.82. Therefore, the majority of the recovered radioactivity was not likely to have been due to contamination by the keto acid of methionine. Similar results were obtained when samples were developed in the ascending direction with the same solvent system.

Lyophilized samples of the radioactive peak from the animal exchange chromatography (Fractions 25 to 30, Fig. 3) were also extracted with 95% ethanol, diluted with water (50%), and applied to a cellulose column to isolate larger amounts of the purified labeled compound. A representative chromatogram from a monkey liver sample is shown in Fig. 4. Again, the chromatograms of rat liver samples were qualitatively identical and for brevity are not shown. A sharp band of radioactivity eluted after 20 fractions with a small but distinct peak following. The large peak that appeared after 50 fractions was not always present indicating that it perhaps may have been a degradation product formed during chromatography or that it may have been due to sporadic contamination from the sharp peak (Fractions 21 to 23, Fig. 3) that eluted just in front of this 3-methylthiopropionate-dependent peak during anion exchange chromatography.

The main portion of the peak at Fractions 20 to 25 (Fig. 4) minus the leading and trailing edges was combined and evaporated at 50°C under reduced pressure. A standard solution of 3-methylthiopropionate was added to some develop-
opine solvent and subjected to the same evaporation procedure. Samples from rat and monkey experiments and the standard 3-methylthiopropionate (for comparison purposes) were dissolved in ether and subjected to gas-liquid chromatography as detailed above. Elution profiles of three samples are shown in Fig. 5. The similarity of the chromatograms from these three samples is striking. A peak was observed with a retention time of about 19% min in all three samples and accounted for about three-fourths of the total peak area.

Standard 3-methylthiopropionate treated in the same manner as the experimental samples led to minor products, presumably degradation products from sample breakdown on the column or perhaps from other products formed during the preparative procedure. However, no significant peaks other than that seen with the standard reference were observed in either the rat or monkey liver homogenate samples.

In order to verify that the radioactivity injected into the chromatograph was associated with one or more of the peaks shown in Fig. 5, a portion of the eluate (90%) was diverted with a stream splitter and counted for radioactivity. Also, in addition to using L-[methyl-14C]methionine, L-[15S]methionine and L-[1-14C]methionine were used as substrates in the rat and monkey liver homogenate incubations. Thus the sulfur- and methyl-labeled substrates should yield radioactive 3-methylthiopropionate and the carboxyl-labeled substrate should yield 14CO2 and nonradioactive 3-methylthiopropionate if the proposed pathway of methionine catabolism is correct (Fig. 1).

These experiments with rat and monkey liver homogenate preparations were performed and the samples processed exactly as above. The distribution of radioactivity recovered upon gas-liquid chromatography of some of the samples is shown in Table II. In both species, the majority of the radioactivity recovered was associated with the peak that eluted at 19% min when either L-[methyl-14C]or [15S]methionine was the substrate. However, in incubations conducted with L-[1-14C]methionine as the substrate, the total radioactivity recovered was considerably less and was distributed more or less over the entire elution profile, with apparently the major-

![Fig. 4.](http://www.jbc.org/)

Table II. Distribution of radioactivity recovered during gas-liquid chromatography of isolated metabolites from rat and monkey liver homogenate incubations.

<table>
<thead>
<tr>
<th>Species</th>
<th>Labeled substrate</th>
<th>Column retention time (min)</th>
<th>Percentage of recoverya</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0–4</td>
<td>5–8</td>
</tr>
<tr>
<td>Rat</td>
<td>Me.14C Met (2)b</td>
<td>5.2 ± 0.1</td>
<td>5.0 ± 1.6</td>
</tr>
<tr>
<td></td>
<td>[15S] Met (2)</td>
<td>2.3 ± 0.4</td>
<td>1.7 ± 0.4</td>
</tr>
<tr>
<td></td>
<td>[1-14C] Met (2)</td>
<td>21.9 ± 0.5</td>
<td>20.6 ± 0.4</td>
</tr>
<tr>
<td>Monkey</td>
<td>Me.14C Met (3)</td>
<td>10.9 ± 1.4</td>
<td>5.6 ± 0.8</td>
</tr>
<tr>
<td></td>
<td>[15S] Met (3)</td>
<td>7.3 ± 0.8</td>
<td>2.7 ± 0.1</td>
</tr>
<tr>
<td></td>
<td>[1-14C] Met (2)</td>
<td>10.7 ± 0.9</td>
<td>21.6 ± 5.5</td>
</tr>
</tbody>
</table>

a (Total counts per min recovered/cpm injected) × 100.

b Number of observations.

c Results are reported as the mean ± S.E.
ity of the radioactivity retained on the column. In addition, 2.18 μmol/g/h of 3-CO₂ were recovered during these incubations with L-[1-¹⁴C]methionine, indicating that decarboxylation of the keto acid of methionine had occurred even in the presence of a trapping pool of 3-methylthiopropionate.

Attempts were made to separate the radioactivity corresponding to the peak detected at 19½ min when L-[methyl-³⁵S]methionine were the labeled precursors. The radioactivity remained associated with the peak corresponding to standard 3-methylthiopropionate (19½ min) when the retention times were altered by changing carrier gas flow rate or by increasing or decreasing column temperature. Thus, it appeared that the majority of the radioactivity recovered with these compounds during isolation was associated with the compound that eluted from the column at about 19½ min (Fig. 5).

Further comparison of the unknown compounds with standard 3-methylthiopropionate was carried out by gas chromatographic separation on a column packed and prepared so that the effluent from the column could be analyzed by mass spectrometry. A mass spectrum of the column eluate was taken every 10 s. Analysis of the spectra showed that the peak that eluted from the column at about 19½ min gave a spectrum that was compatible with 3-methylthiopropionate (Fig. 6). Spectral analysis also showed that the radioactive peak isolated after cellulose column chromatography of both the rat and monkey liver tissue samples was also 3-methylthiopropionate (Fig. 6). Spectra of all samples taken at the beginning, middle, and end of the elution of the radioactive peak at 19½ min (Fig. 5) were essentially identical. The material which eluted at the front appeared to be mostly solvent ether, some residual butanol, and unidentified breakdown products of 3-methylthiopropionate. Again no differences in the mass spectra of these compounds eluted in the first few minutes (0 to 5 min) could be detected between the rat and monkey experimental samples and the 3-methylthiopropionate reference standard.

The possibility that the radioactive 3-methylthiopropionate recovered was not due to an enzymatically catalyzed reaction but due to spontaneous decarboxylation of the α-keto-γ-methylbutyrate during sample preparation was checked by carrying 10 mM α-keto-γ-[¹⁴C]methylbutyrate through the sample preparation procedure. Gas chromatographic analysis of the samples indicated that approximately 0.6% of the radioactivity in the keto acid sample was recovered as 3-methylthiopropionate. This amounts to approximately 15% (8,000 dpm versus 70,000 dpm) of the activity recovered in 3-methylthiopropionate when L-[methyl-¹⁴C] or [³⁵S]methionine is incubated with a liver homogenate. Thus, while nonenzymatic decarboxylation may occur, it is clearly not sufficient to account for the substantial amount of radioactivity recovered in the 3-methylthiopropionate pool.

Mass spectral analysis of the peak that eluted just prior to 3-methylthiopropionate in some samples (Fig. 5) suggested that it may be the butyl ester of 3-methylthiopropionate, most likely formed during or after cellulose column chromatography. To test this, the butyl ester of 3-methylthiopropionate was prepared as follows. To 5 g of 3-methylthiopropionate, 7 g of butanol was added plus 1 ml of concentrated sulfuric acid and the mixture refluxed for 25 min. After cooling, the reaction mixture was diluted with water, mixed, and the organic layer was separated, collected, anhydrous sodium carbonate added, and the mixture filtered. When a 0.1-μl sample of the filtrate was injected into the gas chromatograph as above, a large peak eluted at 16 min, the same retention time as the compound suspected as being the butyl ester of 3-methylthiopropionate. A smaller peak appeared at 19½ min due to unreacted 3-methylthiopropionate. From this we have concluded that the peak eluting in front of 3-methylthiopropionate at 16 min most likely is the butyl ester of 3-methylthiopropionate. Since it was also observed when the reference solution was chromatographed, it was probably an artifact formed during cellulose column chromatography or subsequent preparation of samples.

DISCUSSION

These experiments demonstrate that in both the rat and monkey methionine is catabolized via transamination and subsequent decarboxylation of the keto acid to 3-methylthiopropionate. While this was accomplished by the use of a trapping pool, attempts to isolate 3-methylthiopropionate without a diluting pool have to date been unsuccessful. Our preliminary experiments indicate that the methyl carbon of 3-methylthiopropionate is oxidized to carbon dioxide quite rapidly *in vitro* (about 3 times the rate of methionine) and probably *in vivo* as well. As the isotope dilution studies in Fig. 2 indicate, this pathway appears to account for about 95% of the total oxidation of the methionine methyl carbon in the rat liver homogenate system and about 50% of the total in a monkey liver homogenate. These results are consistent with the observations of Case and Benevenga (16) that 75% of methionine oxidation could be inhibited by S-methyl-L-cysteine in a rat liver homogenate, probably by competing with methionine at the transamination step.

To our knowledge, this is the first demonstration of the formation of 3-methylthiopropionate in a mammalian system. The occurrence of the methyl ester of 3-methylthiopropionate has been demonstrated in pineapple juice (25). Another laboratory (26) identified 3-methylthiopropionate in the medium of an ethionine-resistant strain of *Neurospora* but later showed that it was an artifact produced from α-keto-γ-methylbutyrate during isolation. In studies with planarian, Arima et al. (27) identified trans-3-methylthioacrylic acid and 3-methylthiopropionate when a strain of *Streptomyces* was incubated in a medium containing L-methionine. They suggested that 3-methylthiopropionate was formed from the deamination or transamination of methionine followed by decarboxylation, and that 3-methylthioacrylic acid was then formed from 3-methylthiopropionate. In studies with *Esche-
with those seen in methionine toxicity, indicating that the impaired capabilities of transsulfuration have been exceeded or exceeded. If the keto acid of methionine. A final observation alluded to that this infant had an impairment in its ability to catabolize methionine metabolism was apparently normal in that no yllactic acid in the urine. The transsulfuration pathway of tyrosine who excreted methionine, α-keto-y-methiolbutyrate, with an elevated plasma concentration of methionine and a-keto acids and then by decarboxylation to the free fatty acid.

From the data in Table I and Fig. 2, the transamination pathway of methionine catabolism must be a significant pathway of the methionine methyl carbon as CO₂ by as much as 85% in the rat and 50% in the monkey tissue homogenate. While the fraction of methionine metabolized by this pathway of methionine catabolism must be a significant path-

Acknowledgments—We wish to thank Linda Haas for her technical assistance in these studies and Dr. Alva D. Mitchell for many helpful discussions during the course of this work. We also acknowledge the laboratory of Dr. Heinrich K. Schmaus for assistance with the mass spectrometry studies.

REFERENCES
Identification of 3-methylthiopropionic acid as an intermediate in mammalian methionine metabolism in vitro.
R D Steele and N J Benevenga