Casein kinase, which catalyzes the transfer of the terminal phosphate of ATP to dephosphorylated caseins, was prepared from homogenates of lactating bovine mammary tissue by differential centrifugation, followed by extraction of the 66,000 x g particulate fraction with Triton X-100. The enzyme required divalent cations and showed comparable activities with 15 mM Ca²⁺, 15 mM Mg²⁺, and 1 mM Mn²⁺. Proteins with known primary structures were examined as substrates for casein kinase. Caseins (αs₁, β, and κ), pepsinogen, and pepsin (denatured) showed significant increases in rates of phosphorylation after phosphate groups were removed. The catalytic efficiency (ratio of Vₘₐₓ to Kₘ) indicates that dephosphorylated pepsin was the best substrate. Dephosphorylated αs₁- and β-caseins were significantly better substrates than native αs₁-casein and dephosphorylated pepsinogen. The susceptibility of pepsinogen (native and dephosphorylated) and α lactalbumin to enzymatic phosphorylation could be enhanced by converting the proteins to the reduced, carboxymethylated derivatives.

Further studies of β-casein indicate that the dephosphorylated phosphopeptide (residues 1 to 25) was phosphorylated at a much higher rate than dephosphorylated γ₁-casein (residues 29 to 209). The results suggest that casein kinase catalyzes the phosphorylation of 1 to 4 serine residues in the phosphopeptide region of β-casein. Human β-caseins, which occur in six forms differing only by zero to five phosphate groups, showed differences in specificity. The rate of phosphate incorporation in unphosphorylated human β-casein was 8 times that of human β-casein with two and four phosphate groups. The role of acidic residues (glutamic and aspartic acids and phosphoserine) on the COOH-terminal side of serines phosphorylated by casein kinase is discussed.

Casein kinase in the lactating mammary gland is believed to be the enzyme that converts unphosphorylated polypeptides to the native phosphorylated caseins found in milk. Investigations of milk protein synthesis in the mammary tissue of mice (1) and rats (2) provided evidence that phosphate groups are added to casein following synthesis of the polypeptide chain, thereby establishing that unphosphorylated casein is the intermediate which serves as an acceptor for phosphate. Casein kinase with a high specificity for dephosphorylated caseins has been found in the Golgi apparatus of rat mammary glands (3, 4). The enzyme is a cyclic AMP-independent protein kinase, which catalyzes the phosphorylation of dephosphorylated (deP) αs₁- and β-caseins by using ATP as a phosphate donor in the presence of divalent cations (Mg²⁺, Ca²⁺, Mn²⁺, or Co²⁺). While investigation of rat casein kinase was useful initially in characterizing the enzyme and defining the parameters required for activity, several studies (5, 6) have shown marked species differences in casein. Since bovine casein is well characterized, studies of casein kinase from the same animal have been undertaken.

An intriguing question concerns the specificity of casein kinase, since the phosphate groups always occur on specific serine (or threonine) residues in casein. The four major components of bovine casein, αs₁-, β-, κ-, and α₂-casein, contain 8, 5, 1 to 2, and 10 to 13 phosphate groups/molecule, respectively, with minor differences occurring in certain genetic variants (7–9). Mercuri et al. (10) observed that glutamic acid or phosphoserine occurs 2 residues to the right of every phosphorylated site in casein. These investigators postulated that casein kinase recognizes a potential phosphorylation site corresponding to the tripeptide sequence Ser/Thr-X−Glu/SerP. Manson et al. (11) further suggested that aspartic acid could also serve as a recognition site for casein kinase. They showed that αs₁-casein is identical with αs₁-casein in amino acid composition: αs₁-casein has an extra phosphate group located in the tripeptide SerP-Lys-Asp. Thus, aspartic and glutamic acids can be regarded as primary recognition sites for casein kinase, while phosphoserine would be a secondary site that becomes available as a result of the initial phosphorylation. The apparent requirement for an acidic residue near serine phosphorylated by casein kinase contrasts with findings on other types of protein kinases. Basic residues, particularly arginine, on the NH₂-terminal side of the phosphorylated serine are determinants of cyclic AMP-dependent protein kinase specificity (12–14).

Casein kinases have been observed in the bovine lactating mammary gland (15, 16). These enzymes can phosphorylate deP αs₁-casein, but have low activities toward deP β-casein. This communication describes a bovine casein kinase, which can rephosphorylate both deP αs₁- and deP β-caseins and has properties similar to the enzyme associated with the Golgi membranes of rat mammary gland (4). We have examined protein substrates with known primary structures to determine whether the enzyme specificity conforms to the theory postulated by Mercuri et al. (10).

EXPERIMENTAL PROCEDURES

Materials—Milk proteins were isolated from the milk of individual cows homozygous for a particular variant. αs₁-Casein (17), β- and γ₁-caseins (18), κ-casein (19), and β-lactoglobulin (20) were prepared as described previously. α-Lactalbumin and α₂-casein were gifts from Drs. Marvin P. Thompson and Harold M. Farrell, Jr. of this laboratory. The phosphopeptide was isolated from a tryptic digest of β-

*The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
Human β-caseins were prepared by the method of Groves and Gordon (22). Pepsinogen and pepsin were from Worthington Biochemical Corp. and ovalbumin from Sigma Chemical Co. The basic trypsin inhibitor of bovine pancreas was kindly provided by Dr. M. Laskowski, Sr., of Roswell Park Memorial Institute. [γ-32P]ATP was obtained from the United States Department of Agriculture over others of a similar nature not mentioned.

The peptides were eluted with 6 ml of 30% acetic acid, as described by Kemp et al. (14). The peptides were more than 90% dephosphorylated. Carboxymethylated, whereas other amino acids were not modified. The peptides were carboxymethylated, whereas other amino acids were not modified.

RESULTS AND DISCUSSION

SOLUBILIZATION OF CASEIN KINASE—Several procedures were tested for their ability to solubilize the 66,000 × g pellet. Release of casein kinase into the supernatant solution after being centrifuged for 1 h at 66,000 × g was the criterion for solubilization. Alcohol and acetone at several concentrations were ineffective and only 20% of the casein kinase could be extracted with 1-butanol. Urea (4 M) produced complete loss of activity. Treatment of the pellet with phospholipase C was ineffective and trypsin destroyed casein kinase activity. Extraction of the pellet with Tris (0.4 M, pH 7.5), MgCl2 (0.1 M), or EDTA (0.02 M) followed by sonication for 1 min also failed to solubilize the enzyme. In contrast to these procedures, extraction of the pellet with Triton X-100 (>0.5%) solubilized an amount of casein kinase equivalent to that initially present in the pellet and resulted in a 6-fold increase in specific activity. The solubilized casein kinase required glycerol (10%) to maintain the stability of the enzyme at −20°C. Casein kinase in Golgi membranes—In the original studies on casein kinase, rat Golgi membranes were used as the enzyme source (3). Therefore, it seemed pertinent to compare the activity of the solubilized casein kinase prepared from lactating bovine mammary glands with the enzyme activity associated with Golgi membranes from the same tissue. The results (Table I) show that both enzymes were activated by Ca2+ as well as Mg2+. No activity was seen in the absence of divalent cations (data not shown). The solubilized casein kinase incorporated phosphate into deP α1-casein at 9.6 times the rate obtained for native α1-casein; similar results were obtained with Golgi casein kinase. Although these experiments are limited in scope, the results suggest that the solubilized casein kinase is derived from Golgi membranes.

Effect of pH on Casein Kinase Activity—Fig. 1 a and b illustrate the effect of pH on phosphate incorporation into deP α1- and β-caseins. Maximum activity in Tris and Mes buffers occurs as a broad peak from pH 7 to pH 8. Imidazole buffers enhance the activity of casein kinase with both substrates at higher pH values, the effect being most pronounced at pH 8. The nature of this activation has not been investigated.

Apparent Km for ATP and Casein—The effect of ATP concentration on the phosphorylation of deP β-casein is shown in Fig. 2. The apparent Km value for ATP, computed from a double reciprocal plot (Fig. 2, inset), is 131 μM for deP β-casein. For deP α1-casein, an apparent Km value of 145 μM was obtained under similar conditions. The two values are similar but are higher than the apparent Km (80 μM) for rat Golgi casein kinase (4). The rate of phosphorylation of deP α1- and deP β-caseins was studied as a function of substrate concentration. The results for deP β-casein are shown in Fig. 3. The apparent Km value obtained from a double reciprocal plot of the data (Fig. 3). The apparent Km value obtained from a double reciprocal plot of the data (Fig. 3). The apparent Km value obtained from a double reciprocal plot of the data (Fig. 3). The apparent Km value obtained from a double reciprocal plot of the data (Fig. 3). The apparent Km value obtained from a double reciprocal plot of the data (Fig. 3).
Effect of Divalent Cations on Rate of Phosphorylation—Casein kinase activity is stimulated by Ca$^{2+}$, Mg$^{2+}$, Mn$^{2+}$, and Co$^{2+}$ (Fig. 4). Mn$^{2+}$ at 1 mM is as effective as 15 mM Ca$^{2+}$ or Mg$^{2+}$. Little activity is seen in the absence of divalent cations.

The data presented in Fig. 4 were obtained with deP β-casein, which is soluble in the presence of Ca$^{2+}$, Mn$^{2+}$, and Mg$^{2+}$ but precipitates at high concentrations of Co$^{2+}$ (>4 mM). Thus, the low activity of casein kinase with Co$^{2+}$ may be attributed to the insolubility of deP β-casein under the assay conditions used. Native caseins and deP α_ω-casein precipitate in the presence of Mn$^{2+}$, Ca$^{2+}$, and Co$^{2+}$ at the concentrations used in this experiment. However, in the presence of 10 mM MgCl$_2$, the protein substrates were completely soluble.

Effect of Removing Phosphate Groups from Proteins on Casein Kinase Activity—Casein kinase was tested on a variety of phosphoprotein substrates as well as their dephosphorylated derivatives. The proteins examined included bovine caseins, pepsinogen, and pepsin. Since pepsin is denatured at pH values above 6.0, alkali-denatured pepsin was prepared (30) and used for the experiments. The results (Table II) show that all the proteins became more susceptible to enzymatic phosphorylation after conversion to the dephosphorylated derivatives. Best substrates were deP α_ω- and deP β-caseins and deP pepsin. The high rate of phosphate incorporation in the deP caseins (α_ω and β) gives support to the theory of Mercier et al. (10) that glutamic acid N + 2 residues from serine is essential to casein kinase specificity. The tripeptide Ser-X-Glu occurs five times in deP α_ω-casein, three times in deP β-casein (A$^\alpha$ and B), and twice in deP β-casein C, but is absent from the phosphorylated native caseins (7). DeP κ-casein can be phosphorylated by casein kinase but at a rela-

<table>
<thead>
<tr>
<th>Substrate</th>
<th>Casein kinase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Phosphoprotein</td>
</tr>
<tr>
<td>α_ω-Casein B</td>
<td>2.4</td>
</tr>
<tr>
<td>α_ω-Casein B</td>
<td>0.6</td>
</tr>
<tr>
<td>α_ω-Casein A$^\alpha$</td>
<td>0.5</td>
</tr>
<tr>
<td>β-Casein B</td>
<td>0.2</td>
</tr>
<tr>
<td>β-Casein C</td>
<td>0.8</td>
</tr>
<tr>
<td>κ-Casein</td>
<td>0.09</td>
</tr>
<tr>
<td>Pepsinogen</td>
<td>0.1</td>
</tr>
<tr>
<td>Pepsin (denatured)</td>
<td>2.5</td>
</tr>
</tbody>
</table>
tively slow rate. Serine 49 (Ser-P-Pro-Glu), the phosphorylated residue in \(\kappa \)-casein, is probably the site modified.

Native \(\alpha_\text{k} \)-casein showed a significant rate of phosphate incorporation despite the fact that the protein contains no Ser-X-Glu sequence. However, serine 41 occurs in the sequence Ser-Lys-Asp. Since \(\alpha_\epsilon \)-casein is identical with \(\alpha_\epsilon \)-casein except for an extra phosphate group located on serine 41, this serine is a possible site for phosphorylation. Manson et al. (11) noted that no other Ser-X-Asp occurs in \(\beta \)- and \(\beta \prime \)-caseins.

The one phosphate group in pepsin is located at position 68 in the sequence Ser-Lys-Asp. Since \(\alpha_\sigma \text{O} \)-casein is identical with \(\alpha_\sigma \text{O} \)-casein and \(\beta \text{O} \)-caseins. The low rate of phosphate incorporation into \(\alpha_\epsilon \)-casein (Table II) indicates a lack of potential sites and supports the concept that casein kinase converts \(\alpha_\epsilon \)-casein to \(\alpha_\epsilon \text{O} \)-casein.

If glutamic and aspartic acids are recognition sites for casein kinase, pepsin and pepsinogen should be excellent substrates. The one phosphate group in pepsin is located at position 68 in the configuration Ser-P-Gln-Glu (31). In addition, two Ser-X-Glu and two Ser-X-Asp segments occur and may be responsible for the phosphorylation of pepsin as shown in Table II.

The rate of phosphorylation increased more than 3-fold when pepsin was dephosphorylated. It is possible that serine 68 in pepsin exists in a unique environment that makes it particularly susceptible to enzymatic phosphorylation. The lower rates observed for native and dephosphorylated pepsinogen compared to denatured pepsin may reflect an influence of tertiary structure on the availability of potential phosphorylation sites.

Kinetic Constants—The apparent \(K_m \) and \(V_{\max} \) values were determined for protein substrates (Table III). The caseins (\(\alpha_\epsilon \text{O} \)-casein and dephosphorylated \(\alpha_\epsilon \)-, and \(\beta \)-caseins) had similar \(K_m \) values, higher than those observed for pepsin and pepsinogen. The catalytic efficiency (ratio of \(V_{\max} \) to \(K_m \)) indicates that denatured \(\text{deP} \) pepsin is the best substrate of the proteins tested, while \(\text{deP} \) \(\alpha_\epsilon \)- and \(\text{deP} \) \(\beta \)-caseins are better substrates than \(\alpha_\epsilon \)-casein and \(\text{deP} \) pepsinogen.

Effect of Protein Denaturation on Rate of Protein Phosphorylation by Casein Kinase—Bylund and Krebs (32) indicated that the tertiary structure of proteins can mask phosphorylation sites, which become accessible when the protein is denatured. Therefore, the rate of phosphate incorporation in several proteins and their denatured derivatives (reduced and carboxymethylated) was examined (Table IV). The results show that chemical modification of pepsinogen doubled its rate of phosphorylation by casein kinase. Even greater enhancement of casein kinase activity (4.7 units) was observed when deP pepsinogen was tested after base denaturation (pH 10 for 3 days at 4°C). Thus, denaturation by two methods converts deP pepsinogen into a better substrate and provides an explanation for the differences between native pepsinogen and denatured pepsin in phosphorylation rates observed in Table II.

Table III

<table>
<thead>
<tr>
<th>Substrate</th>
<th>(K_m)</th>
<th>(V_{\max})</th>
<th>(V_{\max}/K_m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\alpha_\epsilon \text{-Casein})</td>
<td>0.05</td>
<td>0.65</td>
<td>0.05</td>
</tr>
<tr>
<td>Dephosphorylated (\alpha_\epsilon)-casein</td>
<td>0.05</td>
<td>0.65</td>
<td>0.05</td>
</tr>
<tr>
<td>Dephosphorylated (\alpha_\epsilon \text{-Casein A})</td>
<td>0.05</td>
<td>0.65</td>
<td>0.05</td>
</tr>
<tr>
<td>Dephosphorylated pepsinogen</td>
<td>0.05</td>
<td>0.65</td>
<td>0.05</td>
</tr>
<tr>
<td>Dephosphorylated pepsin (de-</td>
<td>0.05</td>
<td>0.65</td>
<td>0.05</td>
</tr>
</tbody>
</table>

Native \(\alpha \)-lactalbumin also became more susceptible to enzymatic phosphorylation after reduction and carboxymethylation. The unfolding obtained by the cleavage of four disulfide bonds must expose potential sites. The sequence of \(\alpha \)-lactalbumin has two Ser-X-Asp but no Thr/Ser-X-Glu segments (7). Thus, if acidic residues are determinants of specificity, aspartic acid residues must be involved.

Dephosphorylated ovalbumin is a better substrate than native ovalbumin; however, its rate of phosphorylation is low compared with other substrates. \(\kappa \)-Casein (7), \(\beta \)-lactoglobulin (7), and basic trypsin inhibitor (33) each contain at least one tripeptide Ser-X-Glu segment but no Ser-X-Asp segments. When these proteins were reduced and carboxymethylated, there was little change in the rates of phosphate incorporation. While glutamic acid might be necessary for casein kinase catalysis, the data suggest that additional factors must be involved or that the sites are still unavailable in the derived proteins.

Rate of Phosphate Incorporation into \(\beta \)-Casein and Fragments Derived from \(\beta \)-Casein—To determine which sites are phosphorylated by casein kinase, we examined peptides from \(\beta \)-casein. Fig. 5 shows the sequence of \(\beta \)-casein A', indicating the location of the phosphopeptide (residues 1 to 25) and of \(\gamma_\text{C} \)-casein (residues 29 to 209). There are four phosphate groups in the phosphopeptide, which are well separated from the one phosphate group in \(\gamma_\text{C} \)-casein. When these peptides were tested as substrates for casein kinase (Table V), deP phosphopeptide was phosphorylated at a much faster rate than the \(\gamma_\text{C} \)-caseins (native and dephosphorylated). The results suggest that casein kinase rapidly phosphorylates from one to four serines in the phosphopeptide region of the molecule. \(\beta \)-Casein C (see Fig. 5) has only four phosphate groups, all in the phosphopeptide. Therefore, the high rate of phosphorylation of deP \(\beta \)-casein C (shown in Table II) must be entirely attributed to the serine in the phosphopeptide region.

Rate of Phosphorylation of Human \(\beta \)-Caseins—Human \(\beta \)-casein is an excellent model for specificity studies since it occurs in six forms, containing from zero to five phosphate groups on an identical polypeptide chain (22). Sequence studies of four forms indicate that all the phosphate groups are located at the NH2-terminal end of the molecule (34). When the human \(\beta \)-caseins were examined as substrates for casein kinase, the unphosphorylated human \(\beta \)-casein was phosphorylated at a much greater rate than the human \(\beta \)-caseins containing two and four phosphate groups per molecule (Table VI). Thus, serines 9 and 10 must be available for a high rate of phosphorylation to occur and are likely sites phosphorylated by casein kinase. The low activity of casein kinase toward the di- and tetraphosphorylated human \(\beta \)-caseins in-
Mammary Casein Kinase

Comparison of Substrates Phosphorylated by Casein Kinase—An underlying assumption in this research is that casein kinase is repurposing serine residues from which the phosphate groups were removed. Although this seems to be a valid assumption, complete proof will depend on locating the specific serines that are phosphorylated. Experiments directed toward this objective are in progress.

The best substrates for casein kinase are bovine deP α-casein and β-casein, deP pepsin, and unphosphorylated human β-casein. A prominent feature of the primary structure of α-casein and β-caseins (bovine and human) is a region of homology which includes a cluster of 4 phosphoserines. This sequence in bovine β-casein includes residues 14 to 21; Glu-SerP-Leu-SerP-SerP-SerP-Glu-Glu (Fig. 5). An identical sequence occurs in human casein in residues 5 through 12 (see Table VI). In α-casein, this peptide is found in residues 63 to 70 with the substitution of isoleucine for leucine (7). That this region in bovine β-casein is the site of phosphorylation has been shown by studies on deP β-casein C and the deP phosphopeptide of β-casein, both of which have only four serine sites. Experiments on human β-casein suggest that one to two serines, adjacent to glutamate residues (Ser-Ser-Glu-Glu), are phosphorylated by casein kinase. The phosphorylated sequence in pepsin has the structure Thr-SerP-Gln-Glu (31), which is similar to the phosphorylated region in casein, namely, adjacent hydroxyamino acids (Thr-SerP) and glutamic acid in the N + 2 position. However, the salient features of casein and pepsin required for recognition by casein kinase are unclear at the present time.

If Ser-X-Glu is a necessary configuration, additional factors must be involved. This tripeptide is found in β-lactoglobulin (7), deP ρ-casein (7), basic trypsin inhibitor (33), and deP ovalbumin (35), all poor substrates for casein kinase. On the other hand, α-lactalbumin (denatured) and α-casein, which have Ser-X-Asp but no Ser-X-Glu segments (7), were phosphorylated at an appreciable rate.

Casein kinase does not readily phosphorylate proteins, which contain Thr-X-Glu in their primary structures. Results indicate that threonine 3 and serines 6 and 8 are unlikely phosphorylation sites although these sites occur phosphorylated in human β-casein with five phosphate groups. If, as suggested by Mercier et al. (10), potential phosphorylation sites correspond to Ser-X-SerP and Thr-X-Glu, our results do not support this idea. Since all six human β-caseins including the fully phosphorylated form are found in milk, phosphorylation of threonine 3 and serines 6 and 8 probably occurs by another mechanism. Another enzyme may be required or casein kinase may need a different environment.

Comparison of Substrates Phosphorylated by Casein Kinase—An underlying assumption in this research is that casein kinase is repurposing serine residues from which the phosphate groups were removed. Although this seems to be a valid assumption, complete proof will depend on locating the specific serines that are phosphorylated. Experiments directed toward this objective are in progress.

The best substrates for casein kinase are bovine deP α-casein and β-casein, deP pepsin, and unphosphorylated human β-casein. A prominent feature of the primary structure of α-casein and β-caseins (bovine and human) is a region of homology which includes a cluster of 4 phosphoserines. This sequence in bovine β-casein includes residues 14 to 21; Glu-SerP-Leu-SerP-SerP-SerP-Glu-Glu (Fig. 5). An identical sequence occurs in human casein in residues 5 through 12 (see Table VI). In α-casein, this peptide is found in residues 63 to 70 with the substitution of isoleucine for leucine (7). That this region in bovine β-casein is the site of phosphorylation has been shown by studies on deP β-casein C and the deP phosphopeptide of β-casein, both of which have only four serine sites. Experiments on human β-casein suggest that one to two serines, adjacent to glutamate residues (Ser-Ser-Glu-Glu), are phosphorylated by casein kinase. The phosphorylated sequence in pepsin has the structure Thr-SerP-Gln-Glu (31), which is similar to the phosphorylated region in casein, namely, adjacent hydroxyamino acids (Thr-SerP) and glutamic acid in the N + 2 position. However, the salient features of casein and pepsin required for recognition by casein kinase are unclear at the present time.

If Ser-X-Glu is a necessary configuration, additional factors must be involved. This tripeptide is found in β-lactoglobulin (7), deP ρ-casein (7), basic trypsin inhibitor (33), and deP ovalbumin (35), all poor substrates for casein kinase. On the other hand, α-lactalbumin (denatured) and α-casein, which have Ser-X-Asp but no Ser-X-Glu segments (7), were phosphorylated at an appreciable rate.

Casein kinase does not readily phosphorylate proteins, which contain Thr-X-Glu in their primary structures. Results indicate that threonine 3 and serines 6 and 8 are unlikely phosphorylation sites although these sites occur phosphorylated in human β-casein with five phosphate groups. If, as suggested by Mercier et al. (10), potential phosphorylation sites correspond to Ser-X-SerP and Thr-X-Glu, our results do not support this idea. Since all six human β-caseins including the fully phosphorylated form are found in milk, phosphorylation of threonine 3 and serines 6 and 8 probably occurs by another mechanism. Another enzyme may be required or casein kinase may need a different environment.

Comparison of Substrates Phosphorylated by Casein Kinase—An underlying assumption in this research is that casein kinase is repurposing serine residues from which the phosphate groups were removed. Although this seems to be a valid assumption, complete proof will depend on locating the specific serines that are phosphorylated. Experiments directed toward this objective are in progress.

The best substrates for casein kinase are bovine deP α-casein and β-casein, deP pepsin, and unphosphorylated human β-casein. A prominent feature of the primary structure of α-casein and β-caseins (bovine and human) is a region of homology which includes a cluster of 4 phosphoserines. This sequence in bovine β-casein includes residues 14 to 21; Glu-SerP-Leu-SerP-SerP-SerP-Glu-Glu (Fig. 5). An identical sequence occurs in human casein in residues 5 through 12 (see Table VI). In α-casein, this peptide is found in residues 63 to 70 with the substitution of isoleucine for leucine (7). That this region in bovine β-casein is the site of phosphorylation has been shown by studies on deP β-casein C and the deP phosphopeptide of β-casein, both of which have only four serine sites. Experiments on human β-casein suggest that one to two serines, adjacent to glutamate residues (Ser-Ser-Glu-Glu), are phosphorylated by casein kinase. The phosphorylated sequence in pepsin has the structure Thr-SerP-Gln-Glu (31), which is similar to the phosphorylated region in casein, namely, adjacent hydroxyamino acids (Thr-SerP) and glutamic acid in the N + 2 position. However, the salient features of casein and pepsin required for recognition by casein kinase are unclear at the present time.

If Ser-X-Glu is a necessary configuration, additional factors must be involved. This tripeptide is found in β-lactoglobulin (7), deP ρ-casein (7), basic trypsin inhibitor (33), and deP ovalbumin (35), all poor substrates for casein kinase. On the other hand, α-lactalbumin (denatured) and α-casein, which have Ser-X-Asp but no Ser-X-Glu segments (7), were phosphorylated at an appreciable rate.

Casein kinase does not readily phosphorylate proteins, which contain Thr-X-Glu in their primary structures. Results indicate that threonine 3 and serines 6 and 8 are unlikely phosphorylation sites although these sites occur phosphorylated in human β-casein with five phosphate groups. If, as suggested by Mercier et al. (10), potential phosphorylation sites correspond to Ser-X-SerP and Thr-X-Glu, our results do not support this idea. Since all six human β-caseins including the fully phosphorylated form are found in milk, phosphorylation of threonine 3 and serines 6 and 8 probably occurs by another mechanism. Another enzyme may be required or casein kinase may need a different environment.

Comparison of Substrates Phosphorylated by Casein Kinase—An underlying assumption in this research is that casein kinase is repurposing serine residues from which the phosphate groups were removed. Although this seems to be a valid assumption, complete proof will depend on locating the specific serines that are phosphorylated. Experiments directed toward this objective are in progress.

The best substrates for casein kinase are bovine deP α-casein and β-casein, deP pepsin, and unphosphorylated human β-casein. A prominent feature of the primary structure of α-casein and β-caseins (bovine and human) is a region of homology which includes a cluster of 4 phosphoserines. This sequence in bovine β-casein includes residues 14 to 21; Glu-SerP-Leu-SerP-SerP-SerP-Glu-Glu (Fig. 5). An identical sequence occurs in human casein in residues 5 through 12 (see Table VI). In α-casein, this peptide is found in residues 63 to 70 with the substitution of isoleucine for leucine (7). That this region in bovine β-casein is the site of phosphorylation has been shown by studies on deP β-casein C and the deP phosphopeptide of β-casein, both of which have only four serine sites. Experiments on human β-casein suggest that one to two serines, adjacent to glutamate residues (Ser-Ser-Glu-Glu), are phosphorylated by casein kinase. The phosphorylated sequence in pepsin has the structure Thr-SerP-Gln-Glu (31), which is similar to the phosphorylated region in casein, namely, adjacent hydroxyamino acids (Thr-SerP) and glutamic acid in the N + 2 position. However, the salient features of casein and pepsin required for recognition by casein kinase are unclear at the present time.

If Ser-X-Glu is a necessary configuration, additional factors must be involved. This tripeptide is found in β-lactoglobulin (7), deP ρ-casein (7), basic trypsin inhibitor (33), and deP ovalbumin (35), all poor substrates for casein kinase. On the other hand, α-lactalbumin (denatured) and α-casein, which have Ser-X-Asp but no Ser-X-Glu segments (7), were phosphorylated at an appreciable rate.

Casein kinase does not readily phosphorylate proteins, which contain Thr-X-Glu in their primary structures. Results indicate that threonine 3 and serines 6 and 8 are unlikely phosphorylation sites although these sites occur phosphorylated in human β-casein with five phosphate groups. If, as suggested by Mercier et al. (10), potential phosphorylation sites correspond to Ser-X-SerP and Thr-X-Glu, our results do not support this idea. Since all six human β-caseins including the fully phosphorylated form are found in milk, phosphorylation of threonine 3 and serines 6 and 8 probably occurs by another mechanism. Another enzyme may be required or casein kinase may need a different environment.
obtained with the tetraphospho human β-casein, which has one Thr-X-Glu segment, and with native κ-casein, which has two Thr-X-Glu segments, indicate that these proteins were poor substrates for casein kinase.

Results obtained with the diphaspho human β-casein indicate that Ser-X-SerP is not a sequence readily recognized by casein kinase. According to the hypothesis of Mercier et al. (10), phosphorylation occurs in a sequential manner; serine residues must be phosphorylated to generate phosphoserines, which can act as specifiers for further phosphorylation. Examination of human β-caseins supports such a mechanism.

Two forms of human β-casein predominate, the diphaspho form with phosphate groups on primary sites and the tetraphospho form with phosphate groups on secondary as well as primary sites (22, 24). Whether bovine caseins are phosphorylated in a similar manner is not known. However, it is possible that several enzymes might be required, since our results cannot account for complete phosphorylation of casein by one enzyme. The protein substrates used in this study should provide tools for locating casein kinases with different specificities with the ultimate objective of learning how fully phosphorylated caseins are synthesized in the lactating mammary gland.

Acknowledgments—We express our thanks to Harold J. Dower for the amino acid analyses and to Maureen Nowak for preparing the reduced, carboxymethylated proteins and for performing acrylamide gel electrophoresis on the dephosphorylated proteins. We are indebted to Dr. Edward S. Szymanski for valuable discussions and help during this study.

REFERENCES
Properties of casein kinase from lactating bovine mammary gland.
E W Bingham and M L Groves

Access the most updated version of this article at
http://www.jbc.org/content/254/11/4510.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/254/11/4510.citation.full.html#ref-list-1