Insulin regulation of lipoprotein lipase was studied in fully differentiated 3T3-L1 fat cells. Insulin at low concentrations (10^{-7} to 10^{-10} M) elicited a rapid and maximal increase (~10-fold) in lipoprotein lipase release from the cells to the medium within 30 min and caused a 2- to 10-fold increase in total cellular lipoprotein lipase activity over a 2-day period. Insulin had no effect on cell lipoprotein lipase activity during the first 4 h of treatment. Prolonged exposure to insulin (½ to 4 days) resulted in additional increases in enzyme release rate, and increased the fractional release rate per h approximately 10-fold.

Stimulation of cellular lipoprotein lipase activity was dependent on the presence of glucose in the incubation medium. Although half-maximal increases in cell activity required 12 h of insulin treatment in glucose-containing medium, removal of either glucose or insulin resulted in loss of more than 50% of the stimulation in enzyme activity within 90 min. Addition of glucose to cells incubated 20 h with insulin in carbohydrate-free medium elicited a rapid and full response to insulin in 2 h. Fructose, mannose, and glucosamine could substitute for glucose in supporting this rapid response in insulin-pretreated cells, but only glucose, mannose, and fructose would support the effect in 24-h incubations with hormone.

Induction of the increase in lipoprotein lipase activity by glucose in insulin-pretreated cells was prevented by cycloheximide, but not by actinomycin D. In contrast, inhibitors of either protein (cycloheximide, puromycin) or RNA (a-amanitin, actinomycin D) synthesis completely blocked the response when added with insulin to cells incubated in medium containing glucose.

We propose that insulin regulates lipoprotein lipase in fat cells by three major actions: 1) it elicits a rapid release of enzyme from the cell through mechanisms which are independent of energy metabolism and protein synthesis; 2) it stimulates gene expression and synthesis of RNA independently of effects on hexose and amino acid transport; 3) it stimulates expression of the nuclear effects of the hormone at the translational level by increasing hexose uptake and the levels of regulatory glycolytic metabolites within the cells. Induction of the enzyme and its release thus appear part of a generalized pleotrophic growth response mediated by separable effects on membrane function and macromolecular synthesis.

Uptake of triacylglycerol from chylomicrons and very low density lipoproteins by adipose, heart, muscle, and other tissues requires its hydrolysis to partial glycerides and free fatty acids (1-3). This reaction is catalyzed by the exoenzyme lipoprotein lipase (EC 3.1.1.3) acting at the surface of the capillary endothelium (4). The activity of this enzyme regulates the rate of uptake of triacylglycerol by each tissue, and is differentially controlled by a number of hormonal and nutritional factors (5-7).

Insulin appears to be the major hormone regulating the activity of lipoprotein lipase in adipose tissue. Enzyme activity in the tissue is directly related to plasma insulin levels during fasting and feeding and is increased manyfold by injection of insulin (7-9).

Studies with segments of adipose tissue and isolated adipocytes showed that insulin and glucose are both required to maintain enzyme activity in vitro (9-13). Although these findings support the concept that insulin may regulate lipoprotein lipase activity in adipose tissue, a direct stimulatory effect of insulin on the activity in isolated mature adipocytes has not, to our knowledge, been reported.

We and others (14-17) recently documented the appearance of lipoprotein lipase in mouse 3T3-L1 cells as they differentiate from fibroblasts into fat cells in culture. Development of the enzyme was found to be a primary characteristic of the adipocyte phenotype, and the biochemical and functional properties of the enzyme were similar to that found in adipose tissue. Appearance of the enzyme early in the differentiation sequence was enhanced by several hormones and agents that promote adipose conversion, but it was most strongly affected by insulin (14). These results suggested that mature, fully differentiated 3T3-L1 fat cells might provide a useful system for examining hormonal control of the enzyme. This report describes a study of effects of insulin on lipoprotein lipase activity in such cells, and presents a model of mechanisms involved in the regulation of the enzyme in fat cells.

Experimental Procedures

Preparation of Cells—Starter cultures of 3T3-L1 cells were generously supplied by Dr. Howard Green, Massachusetts Institute of Technology, Cambridge, Mass. Cells were grown to confluence in 100-mm culture dishes with DME medium containing 20% calf serum, 50 U.S.C. Section 1734 solely to indicate this fact.

“An advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ To whom correspondence should be addressed.

*Preliminary reports of these findings were presented at the 60th and 61st Annual Meetings of the Endocrine Society, 1978 and 1979, and at the 63rd Annual Meeting of the American Society of Biological Chemists (1979) Fed. Proc. 88, 306. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed.

The abbreviations used are: DME medium, Dulbecco’s modified Eagle’s medium; PGE2, prostaglandin E2; MSA, multiplication stimulating activity.
tiate into mature fat cells as follows: The cells were cultured 2 days previously (14). Confluent 3T3-L1 cells were stimulated to differentiate to mature cells in 20% calf serum-DME medium containing 0.5 mM 1-methyl-3-isobutylxanthine; 6 to 8 days in 20% calf serum-DME medium containing 5 μg of insulin/ml and 1 mM triacylglycerol (Intrapluid), and finally 4 days in 10% calf serum-DME medium. Mature 3T3-L1 fat cells were then maintained, without insulin, in 10% calf serum-DME medium. Cell growth media were changed three times per week. Experiments were performed with cultures in which at least 80% of the cells were in 10% serum-DME medium for 2 to 4 weeks (14) or as described above.

Later studies, we found that mature cells gave reproducible responses and did not always increase when the cells were treated with insulin. In later studies, we found that mature cells gave reproducible responses to insulin if the cells were cultured an additional 3 to 7 days in 5% serum-DME medium before being exposed to insulin. Therefore, this procedure was adopted for preparing all cells used in the present work. It is not known why reduction of serum increased sensitivity to insulin, but it could be related to a depletion of serum factors other than insulin, since insulin concentrations in the sera used were quite low (<10^{-11} M).

Determination of Lipoprotein Lipase Activity—Lipoprotein lipase activity in incubation media was measured in aliquots of media filtered through 0.2-μm “Milllex” membrane filters. To prevent adsorption of lipase to the filters, the latter were previously washed with 5 to 10 ml of 10% serum-DME medium. Filtered media were held at 4°C and assayed within 30 min.

Lipoprotein lipase activity of cells was determined in our previous work (14) by measuring the activity present in aqueous extracts of differentiating cells. Although this procedure was suitable for studies of differentiating cells, the high lipid content of mature cells required prior extraction of fat to prevent dilution of the specific activity of tri[9,10-3H]oleoylglycerol used in the lipase assay. Thus, lipase activity of cells in the present study was determined in aqueous extracts of defatted cells. Culture dishes were rinsed with iced DME medium and the cells scraped into 1 ml of iced 50 mM NH4Cl, 10 mM KH2PO4, pH 8.1, containing 3 units of heparin/ml (Buffer AH). The cell suspension was sonicated 15 s at 4°C and aliquots taken for triacylglycerol determination. Triacylglycerol samples were assayed as described earlier (14). Different aliquots of each sample, generally 40 and 100 μl, were assayed in duplicate. Lipolytic activity was linear with respect to both time and amount of sample assayed. One unit of lipolytic activity represents release of 1 amol of fatty acid/min at 37°C. It should be noted that lipoprotein lipase activity in cells was measured in aqueous extracts of defatted cells, whereas the activity in media was measured directly in filtrates of the media. Consequently, direct comparison of the amounts of activity in the two compartments may not be valid. The lipase activity present in cell extracts and that released into the incubation medium had a pH optimum of 8.3 and was inhibited >80% by inclusion of 1 mM NaCl or omission of serum (a source of the activator peptide, apolipoprotein CIII) in the assay mixture. These properties are identical with those of partially purified lipoprotein lipase from differentiating 3T3-L1 cells (14).

Chemical Analyses—DNA was measured by the method of Hinegardner (18), using calf thymus DNA as standard, and triacylglycerol by the method of Chernick (19). Insulin radioimmunoassays were performed as described earlier (20). Insulin radioimmunoassay assays were kindly performed by Dr. Emmanuel Van Obberghen, National Institute of Arthritis, Metabolism, and Digestive Diseases (21). Measurement of 3H-labeled fatty acid was made with a Beckman LS 8000 β spectrometer using Beckman GP scintillation solvent and automatic counting correction techniques.

| Addition to medium | n | Lipoprotein lipase activity (units/mg DNA) | % control
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>5</td>
<td>0.34 ± 0.02</td>
<td>100</td>
</tr>
<tr>
<td>Insulin (1 μg/ml)</td>
<td>5</td>
<td>1.45 ± 0.22</td>
<td>426 ± 64</td>
</tr>
<tr>
<td>MSA (1 μg/ml)</td>
<td>5</td>
<td>1.01 ± 0.13</td>
<td>297 ± 41</td>
</tr>
<tr>
<td>High serum (20%)</td>
<td>5</td>
<td>0.42 ± 0.08</td>
<td>124 ± 24</td>
</tr>
<tr>
<td>Prolactin (1 μg/ml)</td>
<td>5</td>
<td>0.46 ± 0.05</td>
<td>139 ± 12</td>
</tr>
<tr>
<td>Placental lactogen (1 μg/ml)</td>
<td>5</td>
<td>0.40 ± 0.03</td>
<td>118 ± 7</td>
</tr>
<tr>
<td>PGF2α (1 μg/ml)</td>
<td>5</td>
<td>0.34 ± 0.02</td>
<td>100 ± 6</td>
</tr>
<tr>
<td>17β-Estradiol (10^{-8} M)</td>
<td>5</td>
<td>0.45 ± 0.05</td>
<td>132 ± 11</td>
</tr>
<tr>
<td>Progestrone (10^{-7} M)</td>
<td>5</td>
<td>0.49 ± 0.09</td>
<td>144 ± 20</td>
</tr>
<tr>
<td>Triiodothyronine (10^{-8} M)</td>
<td>5</td>
<td>0.36 ± 0.05</td>
<td>100 ± 14</td>
</tr>
<tr>
<td>Dexamethasone (10^{-7} M)</td>
<td>4</td>
<td>0.33 ± 0.14</td>
<td>97 ± 46</td>
</tr>
<tr>
<td>Growth hormone (1 μg/ml)</td>
<td>3</td>
<td>0.43 ± 0.03</td>
<td>126 ± 8</td>
</tr>
</tbody>
</table>

TABLE 1

Effect of hormones on lipoprotein lipase activity in mature 3T3-L1 fat cells

Mature 3T3-L1 fat cells were preincubated in 5% serum-DME medium for 4 days and then treated for 4 days with the agents listed below in 5% serum-DME medium. Media were replaced every 2 days. Results are means ± S.E. of n experiments.

Fig. 1. Short term effects of insulin on cell lipoprotein lipase (LPL) and release of enzyme into the medium. Mature 3T3-L1 fat cells were preincubated in 5% serum-DME medium for 5 days. Cells were then incubated in 5% serum-DME medium with 10^{-7} M insulin for the periods indicated. Control cells were incubated without insulin for 4 h. A, cell lipoprotein lipase activity. B, rate of lipoprotein lipase release from the same cells was determined by measuring enzyme activity in the medium at the end of incubation and dividing by the incubation time. Results are means ± S.E. of five determinations.
RESULTS

Effect of Various Hormones on Cell Lipoprotein Lipase Activity

The effect of various hormones on lipoprotein lipase activity in mature 3T3-L1 fat cells is shown in Table I. All cells were treated for 4 days. Insulin and the insulin-like growth factor, MSA, increased lipoprotein lipase activity in mature cells 2- to 3-fold. Neither insulin nor MSA had any effect on cell triacylglycerol content or total DNA content of cultures during 4-day treatment. Serum at a high concentration (20%), and other agents (prolactin, PGF₂α, and 1-methyl-3-isobutylxanthine) which enhanced development of lipoprotein lipase activity during differentiation of 3T3-L1 cells (14), had no effect on enzyme activity in mature cells. This suggests that the increase in activity previously observed with these agents in developing cells was probably related to accelerated differentiation rather than to a direct effect of the agents on lipoprotein lipase activity. Estrogen and progesterone, reported to alter lipoprotein lipase activity of adipose tissue in vivo (22, 23), had no effect on the enzyme in these cells.

Triiodothyronine, dexamethasone, and growth hormone, sub-

Materials—Cell culture media were prepared by the National Institutes of Health Media Unit. Calf serum was obtained from GIBCO, Grand Island, N. Y. (Lots C-873112 and E-181011). Intralipid was purchased from Cutter Laboratories, Oakland, Calif. Crystalline porcine zinc insulin (25 units/mg) was provided by the Eli Lilly Co., Indianapolis, Ind. Urine prolactin, NIH-oPRL-S11, and ovine growth hormone, NIH-oGH-S11, were gifts from the National Institute of Arthritis, Metabolism and Digestive Diseases Hormone Distribution Program. Human placental lactogen was purchased from Nutritional Biochemicals, Cleveland, Ohio. PGF₂α, trimethylamine salt was a gift from Dr. John Pike, Upjohn Co., Kalamazoo, Mich. MSA was a gift from Dr. Matthew Rechler, National Institute of Arthritis, Metabolism and Digestive Diseases. 1-Methyl-3-isobutylxanthine was purchased from Aldrich Chemicals, Milwaukee, Wis. Estradiol-17β, progesterone, purineic di-HCl, actinomycin D, cycloheximide, 3,3',5-triiodothyronine, dexamethasone, N-phosphatidylcholine, glucosamine, 2-deoxyglucose, fucose, N-acetylgalactosamine, fructose, galactose, mannose, mannosamine, dihydroxyacetone, and pyruvate were obtained from Sigma, St. Louis, Mo. Crystalline bovine serum albumin (Lot N 72906) was from Armour Pharmaceuticals, Phoenix, Ariz. Trioleoylglycerol (Lot Z-IT) was obtained from the Hormel Institute, Austin, Minn. Heparin (150 units/mg) and α-amanitin were purchased from Calbiochem, La Jolla, Calif. Phosphatidylcholine and triglyceride (201 mg/3 mmol) was purchased from Amersham/Searle Corp., Arlington Heights, Ill. Conventional reagents were of analytic or spectral quality.

Fig. 2. Long term effects of insulin on cell lipoprotein lipase (LPL) and release of enzyme into the medium. Mature 3T3-L1 fat cells were preincubated in 5% serum-DME medium for 5 days. Cells were then incubated in 5% serum-DME medium for up to 4 days with 10⁻⁷ M insulin. Control cells were incubated 4 days without insulin. A, cell lipoprotein lipase activity. B, rate of release of lipoprotein lipase from the same cells during the last 2 h of incubation. Results are means ±S.E. of three determinations.

Fig. 3. Relationship between insulin concentration and its effects on cell lipoprotein lipase (LPL) and release of enzyme into the medium. Mature 3T3-L1 fat cells were preincubated 4 days in 5% serum-DME medium. A, cell lipoprotein lipase activity was determined after incubating cells for 24 h with insulin at the concentrations indicated. B, rate of release of lipoprotein lipase was determined in separate experiments during a 2-h incubation with hormone. Results are means ±S.D. of duplicate determinations.
Insulin Regulation of Lipoprotein Lipase

FIG. 4. Time course of insulin withdrawal. Mature 3T3-L1 fat cells were preincubated 3 days in 5% serum-DME medium. Cells were then incubated in 5% serum-DME medium with (○) or without (●) 10^{-8} M insulin. After 4 days, insulin was withdrawn by washing the cells twice with DME medium adjusted to pH 6.2 and then adding 5% serum-DME medium containing no insulin. A, cell lipoprotein lipase (LPL) activity. The correlation coefficient of the least squares regression curve fitted to the data points between 0 and 3 h, lipoprotein lipase = 2.51 units e^{-0.52t}, is 0.99. B, rate of release of lipoprotein lipase from the same cells determined during the final 90 min of incubation. The correlation coefficient of the fitted least squares regression curve between 0 and 6 h, lipoprotein lipase = 225 milliunits e^{-0.035t}, is 0.99. Values are means ±S.E. of three to four determinations.

FIG. 5. Nutritional requirements for the effect of insulin on cell lipoprotein lipase (LPL). Mature 3T3-L1 fat cells were preincubated 5 days in 5% serum-DME medium. Cells were then incubated 24 h with (●) or without (○) 10^{-8} M insulin in: A, DME medium containing 5% serum, 25 mM glucose, and nominal concentrations of essential and nonessential amino acids; B, medium without serum; C, medium without amino acids; D, medium without glucose; E, medium without glucose and amino acids. Values are means ±S.E. of three determinations.

stances that promote generalized cell growth in culture, were also without effect on enzyme activity.

Effect of Insulin on Cell Lipoprotein Lipase and Release of the Enzyme into the Incubation Medium

Time Course—Rapid effects of insulin were assessed by incubating cells with the hormone for 4 h and measuring lipase activity in extracts of dried, defatted cell powders and in the incubation medium. Insulin treatment had little or no effect in 4 h on enzyme activity in cells (Fig. 1A), whereas it immediately increased the release of lipase into the medium (Fig. 1B). The rate of enzyme release increased from ~1 to ~10 milliunits·mg DNA^{-1}·h^{-1} in 30 min and remained at that level during the next 3½ h.

An effect of insulin on lipoprotein lipase activity in cells
Insulin Regulation of Lipoprotein Lipase

did not occur after longer periods of treatment (Fig. 2A). Lipase activity increased from -0.2 to 1.2 units mg DNA^-1 in 2 days, and was unchanged during the next 2 days. A half-maximal effect occurred after ~18 h. This response was accompanied by a parallel increase in rate of release of enzyme to the medium measured during the last 2 h of incubation (Fig. 2B). The rate of lipase release was ~1 milliunit mg DNA^-1 h^-1 in cells incubated without hormone and ~80 milliunits mg DNA^-1 h^-1 in cells incubated with insulin for 2 to 4 days. The time required for a half-maximal increase in enzyme release, ~24 h, was similar to that required for a half-maximal increase.

Fig. 7. Effect of glucose withdrawal on lipoprotein lipase (LPL) in insulin-treated cells. Mature 3T3-L1 fat cells were preincubated 4 days in 5% serum-DME medium. Cells were then incubated 24 h in 5% serum-DME medium with (0) or without (O) 10^-7 M insulin. At zero time, media were removed from insulin-treated cultures and the cells were washed twice with 10 ml of DME medium containing no glucose. Cells were then incubated up to 12 h in DME medium containing 10^-7 M insulin, but no glucose. The decay in activity between 0 and 1 h is fitted to the regression lipoprotein lipase = 1.73 units e^{-0.05t} (r = 0.97). Values are means ± S.E. of three to four determinations.

Table II

Carbohydrate specificity of the 24-h response to insulin in lipoprotein lipase activity

Mature 3T3-L1 fat cells were preincubated in 5% serum-DME medium for 4 days. Cells were then incubated in DME medium containing 5% dialyzed serum, 10^-7 M insulin, and the indicated concentration of each carbohydrate. Lipoprotein lipase activity of cells was determined after 24 h. Results are means ± S.D. of two experiments.

<table>
<thead>
<tr>
<th>Carbohydrate added</th>
<th>Insulin</th>
<th>Lipoprotein lipase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose</td>
<td>10</td>
<td>0.75 ± 0.03</td>
</tr>
<tr>
<td>Glucose</td>
<td>10</td>
<td>2.31 ± 0.21</td>
</tr>
<tr>
<td>Fructose</td>
<td>10</td>
<td>2.13 ± 0.02</td>
</tr>
<tr>
<td>Mannose</td>
<td>10</td>
<td>2.41 ± 0.06</td>
</tr>
<tr>
<td>Galactose</td>
<td>10</td>
<td>0.79 ± 0.03</td>
</tr>
<tr>
<td>Pyruvate</td>
<td>20</td>
<td>0.65 ± 0.06</td>
</tr>
<tr>
<td>Dihydroxyacetone</td>
<td>20</td>
<td>0.24 ± 0.09</td>
</tr>
<tr>
<td>Glucosamine</td>
<td>10</td>
<td>0.17 ± 0.06</td>
</tr>
<tr>
<td>Fucose</td>
<td>10</td>
<td>0.10 ± 0.04</td>
</tr>
</tbody>
</table>

Fig. 8. Effect of glucose addition to cells incubated with or without insulin in carbohydrate-free medium. Mature 3T3-L1 fat cells were preincubated in 5% serum-DME medium for 6 days. Cultures were divided into three groups and incubated in glucose-free DME medium containing 5% dialyzed serum with (O) or without (O), (A) 10^-7 M insulin for 20 h. At time zero, the media of two groups (O), (A) were replaced with 5% dialyzed serum-DME medium containing 10^-7 M insulin plus 25 mM glucose. Media of the third group (C) were replaced with 5% dialyzed serum-DME medium containing 25 mM glucose, but no insulin. Lipoprotein lipase (LPL) activity in these cell groups was compared with that in cells incubated 24 h with (O), or without (C) 10^-7 M insulin in complete DME medium containing 5% dialyzed serum and 25 mM glucose. Values are means ± S.E. of three to four determinations.

Fig. 9. Dependence of the insulin effect on lipoprotein lipase (LPL) in carbohydrate-deprived cells on glucose concentration. Mature 3T3-L1 fat cells were preincubated in 5% serum-DME medium for 4 days. Cells were treated for 20 h with 10^-7 insulin in glucose-free 5% dialyzed serum-DME medium. Cells were then incubated in 5% dialyzed serum-DME medium containing 10^-7 M insulin and the indicated concentrations of glucose for 2 h and lipoprotein lipase activity determined. Results are means ± S.D. of two experiments.

in cell lipoprotein lipase activity, ~18 h. The amount of enzyme released per hour by untreated cells was equivalent to ~0.8% of the activity found in the cells at the end of incubation, whereas that released by insulin-treated cells was ~3, 4, and 8% at 1, 24, and 96 h, respectively. Thus, prolonged insulin treatment also increased the fraction of lipoprotein lipase released to the medium.

Concentration-Effect Relationship—The dose-response relationship between insulin and cell lipoprotein lipase activity was determined in cells incubated with the hormone for 24 h
The dose-response relationship between insulin and the release of lipoprotein lipase into the medium was examined with cells exposed to the hormone for 2 h (Fig. 3B). A maximal response was again observed at insulin concentrations >10^-6 M, and a half-maximal response at 3 to 5 x 10^-6 M.

Time Course of Effect of Insulin Withdrawal — The rate at which lipoprotein lipase activity declined after insulin withdrawal was studied in cells incubated with 10^-7 M hormone for 4 days. The procedure used to remove insulin was similar to that described and evaluated by Rosen et al. (24). Cell lipoprotein lipase activity declined exponentially, following hormone removal, with an apparent half-time of decay (t1/2 = 2.6 h) (Fig. 4A). Enzyme activity 6 to 24 h after withdrawal was similar to that in cells not exposed to insulin. The decline in rate of enzyme release occurred at a slightly faster rate (t1/2 = 1.7 h) than the decay in cell activity, but did not reach basal levels until more than 6 h after hormone removal.

These findings (Figs. 1 to 4) demonstrate that insulin produces a rapid increase in release of lipoprotein lipase in mature fat cells, and a slower increase in both enzyme activity in cells and the fraction of enzyme released to the medium. Removal of insulin resulted in rapid reversal of both effects.

Requirement of Hexose for Insulin Stimulation of Cell

TABLE III

<table>
<thead>
<tr>
<th>Carbohydrate added</th>
<th>Lipoprotein lipase activity</th>
<th>0 min</th>
<th>45 min</th>
<th>90 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>0.10 ± 0.02</td>
<td>0.82 ± 0.04</td>
<td>0.82 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>D-Glucosamine</td>
<td>0.50 ± 0.04</td>
<td>1.00 ± 0.12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Mannose</td>
<td>0.51 ± 0.05</td>
<td>0.91 ± 0.16</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Fructose</td>
<td>0.38 ± 0.04</td>
<td>0.64 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Mannosamine</td>
<td>0.19 ± 0.06</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>N-Acetyl-D-glucosamine</td>
<td>0.14 ± 0.04</td>
<td>0.15 ± 0.06</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2-Deoxy-D-glucose</td>
<td>0.10 ± 0.03</td>
<td>0.12 ± 0.04</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Galactose</td>
<td>0.13 ± 0.06</td>
<td>0.17 ± 0.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pyruvate</td>
<td>0.14 ± 0.07</td>
<td>0.19 ± 0.08</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE IV

Effect of cycloheximide and actinomycin D on the lipoprotein lipase response to glucose in insulin-pretreated, glucose-deprived cells

Mature 3T3-L1 fat cells were incubated in 5% serum-DME medium for 5 days. Cells were then incubated 20 h in glucose-free DME medium containing 5% dialyzed calf serum and insulin (10^-7 M). Cultures were then incubated with 10^-7 M insulin and inhibitors as indicated for 24 h. Lipoprotein lipase activity was determined at 24 h. Results are means ± S.E. of three to five determinations.

<table>
<thead>
<tr>
<th>Addition</th>
<th>Lipoprotein lipase activity</th>
<th>0 min</th>
<th>30 min</th>
<th>60 min</th>
<th>120 min</th>
</tr>
</thead>
<tbody>
<tr>
<td>D-Glucose</td>
<td>0.11 ± 0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Glucose + cycloheximide</td>
<td>0.32 ± 0.04</td>
<td>0.54 ± 0.06</td>
<td>0.98 ± 0.03</td>
<td></td>
<td></td>
</tr>
<tr>
<td>D-Glucose + actinomycin D</td>
<td>0.37 ± 0.04</td>
<td>0.76 ± 0.09</td>
<td>0.94 ± 0.05</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Insulin Regulation of Lipoprotein Lipase

This study demonstrates that insulin exerts two major regulatory effects on lipoprotein lipase in mature 3T3-L1 fat cells: A rapid increase in release of the enzyme from cells to the medium and a slower increase in cell enzyme activity (Figs. 1 and 2). Both effects occurred at low, physiologically relevant concentrations of insulin (Fig. 3) and mimic previously observed effects of the hormone on lipoprotein lipase in adipose tissue.

Adipocytes isolated from rats injected with insulin released increased amounts of lipoprotein lipase during incubation (9). Release of enzyme from such cells was maximal 20 min after hormone injection and persisted over a 4-h period. Enzyme activity in the cells remained unchanged throughout this response. In the present work, release of lipoprotein lipase from mature 3T3-L1 cells was maximal within 30 min after insulin addition, and also occurred without a significant effect on cell enzyme activity (Fig. 1). Incubation of the 3T3-L1 cells with insulin for prolonged periods (½ to 4 days) resulted in further increases in lipase release in parallel with a large rise in cell enzyme activity (Fig. 2). This was accompanied by a 10-fold increase in the fraction of cell enzyme activity released to the medium per h. These results indicate that insulin acts acutely to liberate a small fraction, or pool, of enzyme which increases as a function of the total enzyme activity of the cell. Vanhove et al. (29) recently reported that the amount of enzyme in plasma membranes of fat cells was increased in fed rats, which could be expected to have increased plasma insulin levels. These observations suggest that interaction of insulin with its cell surface receptors may result in changes in membrane conformation or chemical activities which alter binding of the enzyme to the membrane and increase enzyme release to the medium.

The mechanisms by which lipoprotein lipase is synthesized and released from parenchymal cells are presently unknown. Earlier authors have proposed that release of enzyme from rat adipocytes involves conversion or "activation" of a high molecular weight cellular form to a smaller, more active, "secreted" form (30, 31). Although one report (32) suggested that such a form could represent artifacts of enzyme preparation, it seems possible that insulin could act to stimulate release by enhancing such an enzymatic conversion process. However, the fact that insulin was also reported to have no effect on the relative proportion of enzyme present in each form argues against this possibility (9). Since lipoprotein lipase is believed to be a glycoprotein, it is also possible that insulin could enhance release by stimulating exocytotic secretion processes similar to those involved in the secretion of other exoenzymes (33). More definitive resolution of the actual processes involved will probably await definition of the basic nature of the release mechanism itself. The physiological significance of enzyme release by isolated fat cells is, therefore, difficult to evaluate at this time.

In contrast to its effects on enzyme release, insulin stimulation of lipoprotein lipase in 3T3-L1 fat cells required extended periods of exposure to the hormone (cf. Figs. 1 and 2). Little effect was seen during the first 4 h, and maximal effects occurred after 2 days. Maximal increases in lipoprotein lipase activity in rat adipose tissue were observed in vivo 3 to 4 h after injection of the hormone and half-maximal effects were seen in 1 to 2 h (9). This difference may be related to the continuous exposure of adipocytes to insulin and serum factors in vivo, as opposed to the withdrawal of insulin and high serum levels required for demonstrating the response in 3T3-
Insulin stimulates glucose transport and metabolism in 3T3-L1 fat cells as in fat cells derived from adipose tissue (24, 34). Our data (Figs. 5 and 6) indicate that insulin's effect on cellular lipoprotein lipase is dependent on its effects on hexose uptake and metabolism. Incubation with glucose at concentrations between 0.5 and 5 mM for 24 h resulted in large responses to the hormone, whereas glucose at even high concentrations, up to 25 mM, had little effect on the activity of untreated cells. Treatment of cells with insulin for 20 h in the absence of glucose did not alter lipoprotein lipase activity, while addition of glucose to such cells evoked a rapid and full response in 2 h and a half-maximal increase in 30 min (Fig. 8). Thus, the rapid response observed in adipose tissue in vivo following injection of insulin may simply reflect the time course of insulin's effects on glucose transport into the intact tissue (35).

The presence of glucose was essential not only for induction of the response to insulin, but also for maintenance of activity in insulin-treated cells. Removal of either insulin or glucose resulted in a decrease of insulin-stimulated lipase activity with half-times much shorter than those required for enzyme induction (Figs. 4 and 7). This implies that expression of activity may depend on increased levels of glucose or its metabolites within the cells. In prolonged 24-h incubations support for the response was limited to hexoses which enter the glycolytic sequence, and whose transport and metabolism are increased by insulin (glucose, fructose, and mannose). In short term (i.e. 45 to 90 min) incubations of insulin-treated, carbohydrate-deprived cells, the same requirements prevailed, with the exception that glucosamine, which was inhibitory during prolonged experiments, was also effective (Tables I and III).

Although the identity of the glucose metabolite(s) which could mediate this effect is not yet known, two speculative interpretations can be offered. Since a number of different sugar residues have been identified in lipoprotein lipase preparations obtained from various sources (36–38) it is possible that hexose is required as a structural component for synthesis of the enzyme or protein essential to its activity. Glycoprotein glucosamine is derived in animal cells primarily from fructose 6-phosphate with glucosamine 6-phosphate being the direct intermediate (98). As each of the hexoses which support the response are fructose phosphate precursors, formation of glucosamine and its incorporation into proteins may be rate limiting in carbohydrate-deprived cells. Alternatively, increased levels of this or other metabolites within the glycolytic sequence could enhance activity of newly synthesized proteins directly by processes analogous to those by which insulin-induced increases in glucose 6-phosphate levels appear to regulate glycogen synthetase activity in fat cells (40), or they could regulate activity indirectly by interacting with factors that control protein synthesis at the ribosomal level (41, 42).

Since cycloheximide inhibited the response to glucose (Table IV), it seems most likely that the mechanism of this effect does involve new protein, possibly enzyme, synthesis. It is of interest in this regard that recent immunotitration studies by Jansen et al. (43) have shown that the increase in adipose tissue lipoprotein lipase which occurs in fed rats is due to increased enzyme protein. It will be of considerable interest to determine whether a similar mechanism exists in 3T3-L1 cells.

Ashby et al. (44) recently suggested that glucose may exert post-translational controls on the activity of lipoprotein lipase. They observed that addition of glucose to intact epididymal fat bodies of fasted rats results in an increase in enzyme activity which is blocked by respiratory poisons, but not by cycloheximide. Their data suggest that full expression of the lipase response in the tissue may also depend on cellular energy balance. Insulin was reported to have no effect on the cycloheximide-insensitive response to glucose, suggesting that the origin of this effect is different from that observed in our studies of insulin-treated, carbohydrate-deprived cells (Fig. 8). In our experiments, glucose addition to carbohydrate-deprived cells or to glucose-supplemented cells had little effect on basal enzyme activity (Figs. 6 and 8). Thus, the phenomena they observed may not be involved in the regulation of lipoprotein lipase activity in the 3T3-L1 cell line.

In contrast to acute effects of insulin on various aspects of membrane and metabolic function, continuous exposure of adipose and other cells to insulin promotes a more delayed anabolic response characterized by increased synthesis of many different proteins. We reported earlier (14) that induction of the enzyme in differentiating 3T3-L1 cells requires prolonged treatment with insulin and noted that its appearance coincided with a large increase in protein content per cell. Others have shown that a variety of different enzymes is also increased by insulin during this period (45–47). These findings, together with the prolonged latent period and extended time course of the response in the mature cell (Fig. 2), suggest that the effect is not specific for induction of lipoprotein lipase, but rather, involves a generalized increase in proteins characteristic of the adipocyte phenotype. α-Amanitin, actinomycin D, puromycin, and cycloheximide blocked induction of this response (Fig. 10), indicating that these effects appear to be mediated through increased synthesis of both RNA and protein.

The cellular processes by which insulin might increase nuclear expression remain unknown (48). The present results indicate that the absence of glucose does not inhibit these effects. The insulin response occurring 2 h after glucose ad-

2 S. S. Chernick, R. J. Gardiner, and R. O. Scow (1979) submitted for publication.

Fig. 11. Schematic model for insulin regulation of lipoprotein lipase (LPL) in fat cells. Interaction of insulin (I) with its receptor-effector system (R-E) is postulated as having three major effects: 1) direct stimulation of enzyme release by an energy- and protein synthesis-independent mechanism which may involve decreased enzyme binding to the plasma membrane or the conversion of a large precursor to a more active form which is then released; 2) stimulation of gene expression which leads to increased enzyme formation by processes dependent on new RNA synthesis; and 3) stimulation of the hexose transport system (TS) and increased formation of regulatory glycolytic intermediates which are required for expression of the increase in enzyme activity (see text).
dition to cells preincubated with hormone for 20 h, but without carbohydrate, was equivalent to that in cells incubated with insulin plus glucose for 24 h (Fig. 8). Rosen et al. (24) reported that prolonged incubation of 3T3-L1 fat cells with insulin in the absence of glucose leads to an increase in V_{max} of the hexose transport system when glucose was added, consistent with an increase in the number or activity of hexose transport units. Cycloheximide completely blocked this response and actinomycin D inhibited it approximately 50%. Both studies imply that effects of the hormone which involve increased RNA synthesis may not result simply from increased transport of substrate into the cells.

Fig. 11 presents a schematic model of our interpretation of present and previous findings concerning regulation of lipoprotein lipase in fat cells by insulin. Interaction of insulin with its receptors is considered to exert three major effects which affect enzyme activity. Stimulation of enzyme release appears to result from rapid alterations in enzyme binding to the plasma membrane, or perhaps from the “activation” and release of a less active precursor enzyme form (30). We suggest that this effect is energy-independent, does not require new protein synthesis, and is probably not dependent on function of cytoskeletal elements because it is unaffected by NaN$_3$ 2,4-dinitrophenol, cycloheximide, colchicine, and cytochalasin E, and it does not require glucose. Stimulation of lipoprotein lipase activity in the cells is depicted as the result of interactions which initiate a generalized increase in nuclear expression, including genes coding for the enzyme and perhaps for other proteins which modify its activity. This effect apparently requires increased RNA synthesis and occurs in the absence of glucose or other carbohydrate substrates. We have recently observed that antibodies to human insulin receptors duplicate insulin’s stimulation of lipoprotein lipase in these cells (49). These findings indicate that cytoplasmic or membrane actions of the ligand-receptor complex itself may be sufficient to initiate this nuclear response, but the mechanism of this effect remains unknown. The results of the present study indicate that effective translation of these more primary nuclear events into a realized increase in enzyme activity depends upon insulin’s ability to increase glucose transport and thus increase the levels of as yet unidentified glycolytic intermediates which enhance protein synthesis in the cell.

Acknowledgments—We thank Dr. Emmanuel Van Obberghen for performing insulin determinations and Dr. C. Ronald Kahn for comments and constructive criticism on the manuscript. Mrs. Edna Hill provided assistance with DNA determinations.

REFERENCES

45. Mackall, J. C., Student, A. K., Polakis, S. E., and Lane, M. D. (1976) J. Biol. Chem. 251, 6462-6464

3 P. M. Spooner, manuscript in preparation.
Insulin regulation of lipoprotein lipase activity and release in 3T3-L1 adipocytes. Separation and dependence of hormonal effects on hexose metabolism and synthesis of RNA and protein.
P M Spooner, S S Chernick, M M Garrison and R O Scow

Access the most updated version of this article at http://www.jbc.org/content/254/20/10021.citation

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/254/20/10021.citation.full.html#ref-list-1