Collagen Fibril Formation in Vitro

THE ROLE OF THE NONHELICAL TERMINAL REGIONS*

Robert A. Gelman, Donald C. Poppke, and Karl A. Piez
From the Laboratory of Biochemistry, National Institute of Dental Research, National Institutes of Health, Bethesda, Maryland 20205

We showed previously that fibril formation in vitro from rat tail tendon collagen requires a temperature-dependent initiation (Step 1) following which linear assembly to form thin filaments (Step 2) proceeds as rapidly at 4°C as at 26°C. Step 3, lateral assembly of filaments to form fibrils, is again temperature-dependent. We now find that Step 1 is complete in 6 min at 26°C and the time is independent of collagen concentration in the range 0.08 to 0.39 mg/ml. Collagen treated with pepsin, which removes the nonhelical ends but leaves the triple helix intact, forms fibrils by a similar mechanism. However, Step 1 is altered or absent and early temperature changes produce a complex response consistent with an alternate, counterproductive pathway. Assembly is also much slower, particularly Step 2, and the fibrils formed are abnormal in that native banding is often absent and short tactoidal forms are common. These results suggest that in the assembly of fibrils from normal collagen the nonhelical ends are involved in an early conformational change and critically regulate later steps.

We have previously selected a set of optimal conditions for in vitro assembly of native collagen fibrils from rat tail tendon collagen (1). Kinetic and morphologic studies have shown that assembly under these conditions is a multistep process (2). Step 1 involves a temperature-dependent change which leads to an unidentified intermediate. Step 2 is formation of long thin filaments by a process that is not reversed by cooling. The filaments have not been characterized but may be 5-fold helical microfibrils. Step 3, which is associated with the characteristic turbidity increase, is lateral association of thin filaments to form native banded fibrils. This last step is temperature-dependent and is reversed by cooling, if covalent cross-linking is prevented by prior reduction of the aldehydes that are normally present.

A variety of studies have shown that the nonhelical ends of the collagen molecule must play a critical role in fibril formation since their removal by limited proteolysis affects both the kinetics of assembly (3, 4) and the morphology of the product (5, 6). The experiments reported here were designed to examine the effect of the absence of the nonhelical ends on the individual steps of assembly. For this purpose, we have studied Step 1 in more detail and we have compared the behavior of pepsin-treated collagen to normal and reduced collagen.

* The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
treated collagen had a different character. If the data were plotted as a function of log time, the slopes at \(t_{1/2} \) were the same for normal and reduced collagen showing that they assembled by the same mechanism (1, 2), while the slope for pepsin-treated collagen was steeper (not shown). Another way to express this difference is by the ratio \(t_{lag}/t_{1/2} \) where \(t_{lag} \) is a measure of the length of the turbidity lag and can be approximated as \(t_{lag}/t_{1/4} \) (2), the latter two terms being the times to one-quarter and three-quarters of the turbidity change. This ratio was 0.74 for both normal and reduced collagen but was 0.84 for pepsin-treated collagen.

When the samples were cooled after fibril formation was complete, the turbidity decreased only slightly for normal collagen but returned nearly to baseline for reduced and pepsin-treated collagen (Fig. 1). This behavior of reduced collagen was previously observed and explained by the inhibition of cross-linking that occurs through lysine-derived aldehydes that are normally present in collagen (2). A similar behavior for pepsin-treated collagen was expected since the lysine-derived aldehydes are located in the nonhelical ends. The more rapid and complete reversal of turbidity for pepsin-treated collagen than reduced collagen (Fig. 1) presumably reflects a more complete loss of aldehydes by proteolysis than reduction.

Reheating the cold samples again resulted in the formation of fibrils but with greatly shortened \(t_{1/2} \) values (Fig. 1). The turbidity of the reduced collagen increased abruptly on reheating while the turbidity of the pepsin-treated sample increased more slowly in a sigmoidal manner with \(t_{1/2} = 66 \) min. This value was the same whether the sample was cooled 16 h (Fig. 1) or 64 h (not shown). This time was about one-half the time observed on the first heating and an initial period of constant turbidity was brief or absent. The different behavior of the reduced and pepsin-treated collagen may reflect incomplete reversal in the former case as a result of a small amount of cross-linking. The slightly lower plateau on reheating the pepsin-treated collagen compared to the first time (Fig. 1) is unexplained. It may be related to the impression of somewhat improved order of the fibrile formed, as noted below, since turbidity depends on the nature of the aggregate as well as its concentration.

Concentration Dependence—We have shown that the rate of assembly of normal and reduced collagen, expressed as the reciprocal of \(t_{1/2} \) or \(t_{lag} \) is directly proportional to the concentration (1, 2). The same result was obtained for pepsin-treated collagen; the slope of the line through data plotted as \(-\log t_{1/2} \) as a function of log concentration was 1.0 (Fig. 2).

Critical Concentration—For many assembly processes, it is found that there is a concentration below which no product is formed. For normal and reduced collagen, this concentration, termed the critical concentration, is very small and not significantly different from zero (1, 2). Similarly, when the change in turbidity, a measure of amount of product, for fibril formation from pepsin-treated collagen was plotted as a function of initial collagen concentration, the least squares line through the data extrapolated to a value close to zero (Fig. 3). This result may be subject to a large error because it was not possible to measure low concentrations, but the critical concentration is certainly very small.
Initiation of Fibril Formation, Step 1—we have shown that with normal or reduced collagen, when the temperature is raised to 26°C to initiate fibril formation, after 10 min the sample can be cooled to 4°C for the remainder of the turbidity lag and then returned to 26°C without affecting \(t_{1/2} \) or any other feature of assembly (2). Prior to doing similar experiments with pepsin-treated collagen, we examined this initiation step in more detail with normal collagen. We found that if the initial time of heating at 26°C was less than 6 min, \(t_{1/2} \) increased. However, the minimal 6-min period was not dependent on collagen concentration in the range 0.08 to 0.39 mg/ml (Fig. 4).

When similar experiments were undertaken with pepsin-treated collagen, a very complex behavior was observed. Cooling to 4°C after an initial period at 35°C not only increased \(t_{1/2} \), but increased it in excess of the time at 4°C; it seemed that cooling led to some change incompatible with normal assembly that had to be undone. These experiments were not pursued in detail. However, we also examined the effect of an initial period at 4°C after mixing with buffer to raise the pH of the collagen solution. With normal and reduced collagen we previously reported that \(t_{1/2} \), measured from the time of heating, was independent of the earlier period at 4°C. Assembly

\[
\text{Fig. 4. Dependence of } t_{1/2} \text{ of fibril formation on initial time at 26°C for normal collagen at } 0.08 (\bigcirc), 0.10 (\bullet), 0.20 (\square), \text{ and } 0.39 (\blacklozenge) \text{ mg/ml. The temperature of the samples was initially 26°C for the times shown, then reduced to 4°C for the remainder of the turbidity lag, and raised again to 26°C. The last point in each set was taken at approximately the end of the turbidity lag and therefore the time at 4°C was zero for that point. The lines were approximated to show the two steps, the first ending at 6 ± 1 min.}
\]

more than the extra time at 4°C. Apparently, early changes at 4°C were compatible with assembly but later changes were not.

Morphology—Samples were taken for electron microscopy during the course of fibril formation from pepsin-treated collagen in the same manner as for normal and reduced collagen in our earlier experiments (1, 2). At the turbidity plateau (Fig. 1, 150 min), fibrils formed from pepsin-treated collagen were usually rope-like with a twisted filamentous substructure and occasional areas of native banding. Fully formed fibrils tended to form dense clumps on the grid. Although pictures were taken in less populated areas, the general morphological characteristics of the fibrils themselves did not vary in any observable manner. The banding sometimes was oblique as observed by others using protease-treated collagen (4, 8). Ends were visible in every field and short tactoidal forms were common. Samples taken during the turbidity increase or immediately after cooling contained a larger proportion of these tactoids; they varied in size, the smallest being about 1 µm long, and appeared to be intermediate forms. These features, shown in Fig. 6, A and B, are in sharp contrast to fibrils formed from normal and reduced collagen. Although normal fibrils are not as well ordered when made at 35°C as at lower temperatures (1), native banding was common and the fibrils were very long with ends rarely seen (Fig. 6D). Short tactoids were not present.

Samples (taken, either just before the turbidity increase (Fig. 1, 80 min) or after cooling overnight after the turbidity plateau, showed thin filaments as illustrated in Fig. 6C. They were usually seen only in tangled clumps probably because isolated filaments would not hold sufficient stain to be easily recognized. It is unlikely that these filaments were artifacts since similar filaments were often present with fibrils and indeed seemed to form the substructure of fibrils. The filaments from pepsin-treated collagen were similar to those from normal and reduced collagen (2) in that minimal diameters were 2 to 4 nm and wider filaments were often seen to be composed of two or more thinner filaments. They differed in
FIG. 6. Electron micrographs of collagen preparations negatively stained with 2% phosphotungstic acid, pH 7.4. A and B, fibrils formed from pepsin-treated collagen at 35°C. Normal banding, which is sometimes oblique (arrows), is occasionally present. The fibrils are filamentous and twisted and short tactoidal forms are common. A typical tactoid is circled. Magnification, × 33,000. C, filaments formed from pepsin-treated collagen fibrils by cooling to 4°C. Similar filaments are present at the end of the turbidity lag period and reversibly form fibrils as in A and B. Magnification, × 46,000. D, fibrils formed from normal collagen at 35°C. Normal banding is common and fibrils are very long. Magnification, × 33,000.
that the distance over which a smooth contour could be followed was much less, suggesting that the filaments from pepsin-treated collagen were much shorter. However, ends were difficult to identify and lengths could not be measured. No order could be seen in the filaments. When filaments were reheated to form fibrils a second time, the impression was gained that the fibrils were less distorted and that native banding was more frequent than the first time.

DISCUSSION

We have shown that in vitro assembly of fibrils from pepsin-treated collagen has many characteristics in common with assembly from normal or reduced collagen. (a) There is a period that is dominated by linear assembly without a change in turbidity followed by lateral assembly associated with the turbidity increase. (b) Lateral assembly but not linear assembly is reversed by cooling. (c) Fibril formation is most simply described as an accretion process since the reciprocal of t_1 is proportional to collagen concentration and the critical concentration is essentially zero. (d) The product is filamentous fibrils with, in some places, characteristic native collagen banding.

There are, however, some major differences between normal and pepsin-treated collagen which provide information about the process. These differences and possible interpretations based on our multistep model (2) are as follows.

1. The response to temperature changes early in assembly is very different. Since the initial temperature-dependent, concentration-independent response of normal collagen, Step 1, is abolished or altered by removal of the nonhelical ends of the collagen molecule, we conclude that these ends are critically involved in this step. How they are involved is not known, but the chemistry of the nonhelical ends and of regions in the helical portion of the molecule with which they probably associate in the native fibril (9, 10), suggest highly specific interactions. These interactions would require molecular association which is not reflected in the apparent absence of a concentration dependence, suggesting that there may be a rate-limiting conformational change as part of Step 1.

2. Electron microscopy of material taken before the turbidity begins to increase shows that although linear growth of thin filaments occurs with pepsin-treated collagen, they appear to be considerably shorter than those formed from normal collagen during Step 2 (2). Furthermore, the increased $t_{1/2}$ observed after an initial cooling of pepsin-treated collagen suggests that there is an alternate, counterproductive pathway. The difficulties in linear assembly are also reflected in the greatly increased $t_{1/2}$ and the greater proportion of $t_{1/2}$ to t_1 compared to normal collagen. Once formed, fibrils appear to be stable since $t_{1/2}$ of reassembly is independent of the time at 4°C.

3. Lateral assembly, Step 3, occurs with pepsin-treated collagen but the fibrils are much shorter, distorted, and less commonly banded than fibrils formed from normal collagen. A characteristic feature of pepsin-treated collagen is the formation of short tactoids, particularly early in Step 3. They are similar to those reported by Trelstad et al. (11), but are larger and appear later in the assembly process. We do not see them with normal collagen.

Since fibrils form from pepsin-treated collagen, even though abnormal, the properties necessary for fibril formation must be inherent to a certain extent in interactions between the helical bodies of collagen molecules. However, it is evident that the nonhelical ends critically regulate the normal progression of events.

REFERENCES

Collagen fibril formation in vitro. The role of the nonhelical terminal regions.
R A Gelman, D C Poppke and K A Piez

Access the most updated version of this article at http://www.jbc.org/content/254/22/11741

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at
http://www.jbc.org/content/254/22/11741.full.html#ref-list-1