Thyrotropin Releasing Hormone Stimulation of Prolactin Release

EVIDENCE FOR A MEMBRANE POTENTIAL-INDEPENDENT, Ca2+-DEPENDENT MECHANISM OF ACTION

(Received for publication, November 14, 1979, and in revised form, December 17, 1979)

Marvin C. Gershengorn
From the Department of Medicine, New York University Medical Center, New York, New York 10016

Thyrotropin releasing hormone (TRH) and high extracellular K+ induce prolactin release from rat pituitary cells (GH3 cells) in culture. TRH, as well as high membrane polarization was determined indirectly using the increase in 46Ca2+ efflux and stimulated prolactin release, had no effect on membrane polarization measured simultaneously. High K+, which also increased thyrotropin secretion may involve Ca2+ and stimulate prolactin release.

ACTION

Thyrotropin releasing hormone stimulation of prolactin and thyrotropin secretion may involve Ca2+ as a coupling agent in a manner similar to that for release of secretory products from a number of tissues (1, 2). Stimulated release of thyrotropin and prolactin from pituitary cells in vitro has been shown to be dependent upon Ca2+ in the incubation medium (3, 4). Manipulations which increase the concentration of cytosolic Ca2+, such as incubation of pituitary cells with ionophores (5) or high K+ (4, 6), increase hormone release. In electrophysiological studies, Ca2+ action potentials generated by pituitary cells in culture were increased in frequency in the presence of TRH (7–9). In experiments employing radioisotopic methods, TRH caused an increase in the rate of Ca2+ efflux from pituitary cells (5, 10, 11). Since the intracellular metabolism of Ca2+ is complex, and the probes used to delineate possible pathways of Ca2+ movement, such as agents that block ion channels and ionophores, are not specific (2), it has not been possible to demonstrate the pool(s) from which Ca2+ is mobilized by TRH. In fact, differentiation between an extracellular and intracellular pool(s) has not been made. If TRH were to induce an influx of extracellular Ca2+, this might occur either through a plasma membrane potential-dependent or -independent permeability channel. In recent experiments in which intracellular microelectrode recordings were performed, Dufy et al. (9) demonstrated that the TRH-induced increase in the frequency of action potentials generated by prolactin-secreting pituitary cells occurred in the absence of any detectable change in the resting membrane potential. Since action potentials generated by these cells were reduced or abolished by a Ca2+ channel blocker and only slightly changed in Na+-free medium, it was concluded that they were generated by a Ca2+ mechanism. These data suggest that after TRH, Ca2+ may be mobilized across the plasma membrane in the absence of any change in membrane potential.

In this report we have measured simultaneously the effect of TRH on the membrane potential and on Ca2+ efflux and prolactin release from rat pituitary cells of the GH3 strain. Membrane potential was measured indirectly by use of the lipid-soluble cation triphenylmethyl phosphonium ion which distributes itself across the plasma membrane in accordance with the membrane potential (12). Furthermore, we have compared the effects of TRH to those induced by high extracellular K+ which is known to depolarize pituitary cells and enhance membrane permeability to Ca2+.

EXPERIMENTAL PROCEDURES

Cell Culture—GH3 cells (American Type Culture Collection) were grown in Ham's F-10 medium supplemented with 15% horse serum and 2.5% fetal bovine serum at 37°C (13). Sixteen to forty hours prior to an experiment, the cells were washed with EDTA (0.02%) and incubated in Eagle's minimal essential medium for suspension culture supplemented with 15% horse and 3.75% fetal bovine sera (14). Cells for Ca2+ efflux studies were incubated in the presence of Ca2+ (2 μCi/ml) also. Immediately prior to an experiment, the cells were harvested by centrifugation at 180,000 X g for 5 min and resuspended in a solution containing 135 mM NaCl, 4.5 mM KCl, 1.5 mM CaCl2, 1.3 mM MgCl2, 5.6 mM glucose, 1 g/liter of ovalbumin, and 10 μM Hepes (pH 7.4) (BSS).

Cell Perfusion—The perfusion system is a modification of the method described by Lowry and McMartin (15). Fifteen million cells were stirred with 1 ml of settled resin (Bio-Gel P-2, 200 to 400 mesh, Bio-Rad Laboratories) which had been swollen in BSS and placed in a 3-ml disposable syringe on top of a nylon mesh (20 μm). Two milliliters of additional resin were placed on top of the cell column and it was perfused with BSS (0.5 ml/min) at 26°C; the perfusate was collected in a fraction collector.

TPMP* Distribution Measurement—Cells (1 X 10⁶/50 μl of BSS) were incubated at 25°C in the presence of 0.1 mM [H]TPMP* (360 Ci/mmol, New England Nuclear) with constant stirring. At the indicated times, 50-μl portions were taken in duplicate, layered on top of 55 μl of silicone F-20 in 400-μl polyethylene tubes, and centrifuged at 8,000 X g for 60 s in a high speed centrifuge (Eppendorf model 2201) (16). The tubes were cut below the silicone layer and the cell pellets were counted. A zero time control was obtained by separating cells immediately after addition of [H]TPMP* to correct for adsorption of [H]TPMP*; this value was subtracted from all experimental values.

Ca2+ and [H]TPMP* Efflux Studies—These were performed employing the perfusion system by measuring Ca2+ and H radioactivity in the perfusate. For the Ca2+ efflux experiments, cells were incubated for 16 to 40 h in the presence of Ca2+ (2 μCi/ml) as
described above. In different experiments, stimuli were 100 nm [3H]-TRH (15 Ci/ml, New England Nuclear), 1 μM unlabeled TRH (Beckman), and 50 mM K+, prepared by substituting KCl for NaCl in the BSS (high K+ BSS). For the experiments in which, in addition, [3H]TPMP⁺ efflux was measured, 7.5 × 10⁵ cells were incubated with ⁴⁵Ca²⁺ prior to stirring with the resin. For the [³H]TPMP⁺ efflux studies, the cells were perfused with BSS with 0.1 mM unlabeled TPMP⁺. ⁴⁵Ca and ³H radioactivity were analyzed in a dual region liquid scintillation counting system (Tri-Carb 460C, Packard Instruments); counts in the ³H region were corrected for spillover of ⁴⁵Ca.

Rat prolactin was measured in the perifusate by a double antibody radioimmunoassay (17) using reagents kindly supplied by the National Institute of Arthritis, Metabolism and Digestive Disease Pituitary Hormone Distribution Program and Dr. A. F. Parlow.

RESULTS AND DISCUSSION

The time course of the effect of TRH on ⁴⁵Ca²⁺ efflux from GH₃ cells is shown in Fig. 1. The cells in the column had accumulated 38,000 cpm of ⁴⁵Ca/10⁶ cells during the preincubation period. There was a nearly constant rate of ⁴⁵Ca⁺ efflux after 13 min of perfusion. A 0.6-min pulse (from 16.2 to 16.8 min) of [⁴⁵]TRH induced a dramatic increase in the efflux rate which persisted for at least 3.5 min. There was a delay of between 0.8 and 1.0 min between the appearance of [³H]TRH and ⁴⁵Ca⁺ radioactivity peaks. This delay appears to be due to exclusion of [³H]TRH from the polycrylamide beads in which the cells are supported since, when [³H]TRH and ⁴⁵Ca⁺ were injected simultaneously into the perfusion system in the absence of cells, a similar delay was observed. Therefore, no measurable lag period for the TRH effect on ⁴⁵Ca⁺ efflux was found.

The time course of TPMP⁺ uptake is shown in Fig. 2. When the proton conductor carbonyl cyanide m-chlorophenyl hydrazone or high K⁺ was added, the accumulated TPMP⁺ was lost from the cells. These observations are consistent with the suggestion that TPMP⁺ is distributing across the GH₃ plasma membrane in accordance with the membrane potential difference since these factors are known to depolarize cells. After approximately 90 min, in control incubations, cell-associated TPMP⁺ reached a plateau value of 0.80 nmol/10⁶ cells. The intracellular volume of GH₃ cells was measured using capillary tubes and found to be 1.4 ± 0.072 μl/10⁶ cells (mean ± S.E.). Using this value, it was possible to calculate the ratio of the intracellular to intracellular concentrations of TPMP⁺. Insertion of this ratio into the Nernst equation gave a value of 50 ± 1.7 mV for the membrane potential of GH₃ cells. This value is identical to that obtained by direct intracellular recording (−49 ± 0.27 mV) (9); thus, TPMP⁺ distribution appears to be a valid measure of membrane polarization in GH₃ cells.

TRH had no effect on the accumulation of TPMP⁺ in these static incubations (Fig. 2). This was so if TRH and TPMP⁺ were added to GH₃ cell suspensions simultaneously or if TRH was added after TPMP⁺ had reached its plateau value (18, 19). These data suggest that TRH has no effect on resting membrane polarization of GH₃ cells and confirm the findings of Dufy et al. (9).

The effects of TRH and high K⁺ on ⁴⁵Ca⁺ efflux, [³H]TPMP⁺ efflux, and prolactin release measured simultaneously are shown in Fig. 3. This system allows for simultaneous measurement of these parameters, thereby permitting analysis of the temporal sequence of these changes which may suggest a causal relationship. Because a homogeneous (cloned) population of cells was used in these studies, the changes observed are probably occurring in all cells. In agreement with the findings of other workers, TRH and high K⁺ caused an increase in the rate of efflux of ⁴⁵Ca⁺ (5) and stimulated release of prolactin (4). In this perfusion system, the amount of prolactin released by high K⁺ was greater than that released by 1 μM TRH. In contrast to the qualitatively similar effects of TRH and K⁺ on ⁴⁵Ca⁺ efflux and prolactin release, the effects on [³H]TPMP⁺ efflux were different. High K⁺ caused a dramatic increase in the rate of efflux of [³H]TPMP⁺ which was consistent with depolarization of the plasma membrane as observed in the static incubations. TRH had no detectable effect on [³H]TPMP⁺ efflux in this and several other perfusion systems.

\[
\frac{\Delta V}{g} = \frac{RT}{F} \ln \left(\frac{[TPMP]^+_{out}}{[TPMP]^+_{in}} \right)
\]
TRH Effect on Ca\(^{2+}\), Membrane Potential, and Prolactin Release

Fig. 3. Effects of TRH and high K' on \(^{45}\text{Ca}^{2+}\) efflux, \(^{[3H]}\text{TPMP}^{+}\) efflux, and prolactin release from GH\(_3\) cells. GH\(_3\) cells were incubated with \(^{45}\text{Ca}^{2+}\) (2 \(\mu\text{Ci/ml}\)) for 16 h as described (see Fig. 1). Another portion of cells was incubated in BSS with 0.1 mm \(^{[3H]}\text{TPMP}^{+}\) (360 Ci/mol) at 26°C for 2 h. Equal numbers of cells (7.5 \(\times\) 10\(^{6}\)) prelabeled with \(^{45}\text{Ca}^{2+}\) or \(^{[3H]}\text{TPMP}^{+}\) were mixed, placed in the perfusion column, and perfused with BSS containing 0.1 mm unlabeled TPMP\(^{+}\) (0.5 ml/min) at 26°C. After 28 min, 1 \(\mu\text{M}\) TRH was added to the perfusate for 1 min and after 41 min, the perfusate was changed to high K' BSS with unlabeled TPMP\(^{+}\) for 1 min. The perfusion effluent was collected at 1-min intervals and analyzed for \(^{45}\text{Ca}^{2+}\) and \(^{3H}\) radioactivity and prolactin. The dashed line in the upper panel represents the limit of detectability of the assay.

REFERENCES

Acknowledgments—I wish to thank Ma. Elizabeth Geras, Mr. Mario Rebecchi, and Mr. Brian G. Rubin for their expert technical assistance and Ms. Patricia Wilson for her secretarial assistance.
Thyrotropin releasing hormone stimulation of prolactin release. Evidence for a membrane potential-independent, Ca2+-dependent mechanism of action.

M C Gershengorn

Access the most updated version of this article at http://www.jbc.org/content/255/5/1801

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/255/5/1801.full.html#ref-list-1