Solubilized Cytochrome c Oxidase from Paracoccus denitrificans Is a Monomer*

Bernd Ludwig†, Michael Grabo, Ivan Gregor, Ariel Lustig, Martin Regenass, and Jürg P. Rosenbusch

From the Biocenter, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland

Cytochrome c oxidase purified from the bacterium Paracoccus denitrificans was analyzed by analytical ultracentrifugation. In the detergent octyltetra/pentaoxyethylene (C₈E₄₅), the isolated enzyme exhibits a molecular weight of 79,000 to 84,000. The detergent-solubilized enzyme is thus a monomer which contains one copy of each of the two subunits.

Bacterial cytochrome c oxidases have recently attracted increasing interest because their polypeptide structure is much simpler than that of the mitochondrial oxidases (1). The oxidase from the bacterium Paracoccus denitrificans, for example, has kinetic and spectral properties (2, 3) that are very similar, if not identical, to those of bovine heart oxidase, taoxyethylene (C₈E₄₅), the isolated enzyme exhibits a molecular weight of 79,000 to 84,000. The detergent-solubilized enzyme is thus a monomer which contains one copy of each of the two subunits (5). Cytochrome c oxidase from bovine heart, both in a detergent-solubilized state (6, 7) or when incorporated into densely packed vesicles (8, 9), has been described to exist as a monomer (heme a₃) or a dimer, depending on the choice of detergent. In a native membrane environment, the size of the functional unit of the eukaryotic enzyme is not known.

We have shown previously (3) that the minimal structural unit of the oxidase from P. denitrificans is composed of two nonidentical subunits, two heme groups (a and a₃), and two copper ions. In this study, we investigated by analytical ultracentrifugation whether solubilized oxidase is a monomer or an oligomer. Sedimentation equilibrium analysis, and the hydrodynamic study were carried out in the detergent octyltetra/pentaoxyethylene, whose partial specific volume allows determination of molecular properties without knowledge of the amount of detergent bound. Solubilized cytochrome c oxidase from Paracoccus proved to be a monomer with a mass of 79,000 to 84,000 daltons.

MATERIALS AND METHODS

Growth of P. denitrificans (ATCC 13 543) and purification of its cytochrome c oxidase were performed as published (3). Enzyme activity was measured spectrophotometrically (3) in the presence of 25 μM reduced horse heart cytochrome c after addition of phospholipid (Asolectin) and an at least 500-fold dilution with 50 mM KP, pH 7.0. Phospholipid bound to the isolated oxidase was determined according to Refs. 10 and 11; the presence of carbohydrate was assessed by periodic acid-Schiff stain (12) or by testing for binding of ¹²⁵I-concanavalin A. Heme was determined spectroscopically as is in (3), based on Δε (millimolar, 567-580 nm) = 21.7 for the pyridine hemochromogen (13).

Determination of Molecular Weight and Hydrodynamic Parameters—All experiments were performed in standard buffer (20 mM NaP₂O₄, 0.1 mM NaCl, pH 7.0) containing 1% C₈E₄₅, a detergent obtained by distillation from octyloxyethylene (14). It consists to ±90% of octyltetra- and pentaoxyethylene; the remaining ±10% are octylhexaoxyethylene and traces of other homologues (not shown). The density of the buffer, including C₈E₄₅, is 1.0055 g·cm⁻³; its relative viscosity 1.07 cP. The critical temperature of this fraction is 58 °C. The partial specific volume of the detergent micelles (vPM) is 0.992 cm³/g⁻¹; the product vPM·Mw (axis) = 0.597 cm³/g. The buoyant density of cytochrome c oxidase was determined using both sodium and potassium phosphatides (detection limit below 1 mol of P₄/mol of a₃) or carbohydrate moieties (as determined by periodic acid Schiff stain or concanavalin A binding) were detected in purified preparations. Cytochrome c oxidase was freed from Triton X-100 by preparative ultracentrifugation (4 h at 35,000 rpm; 100,000 × g) in 5-20% sucrose gradients containing 1% C₈E₄₅. If ³H-labeled Triton X-100 (0.246 mCi/g; Roehm and Haas, Philadelphia) was added in a 70-fold molar excess over oxidase, no radioactivity above background was detected in protein-containing fractions after centrifugation (detection limit < 0.06 mol of Triton/mol of a₃). These fractions were then pooled and used for all subsequent experiments. Analytical ultracentrifugation was performed at 4 °C in a Beckman Model E analytical ultracentrifuge equipped with a photoelectric scanning system. Speeds were 12,000 or 14,000 rpm for sedimentation equilibrium, and 56,000 rpm for sedimentation velocity experiments in Aang or AnD rotors, respectively. Zonal ultracentrifugations in sucrose density gradients containing 1% C₈E₄₅. If ²H-labeled Triton X-100 (0.246 mCi/g; Roehm and Haas, Philadelphia) was added in a 70-fold molar excess over oxidase, no radioactivity above background was detected in protein-containing fractions after centrifugation (detection limit < 0.06 mol of Triton/mol of a₃).

RESULTS

Fig. 1 shows the result of sedimentation equilibrium centrifugation carried out and presented according to standard procedures. Evaluation of the results of all equilibrium sedimentation experiments, as well as of the hydrodynamic properties of cytochrome c oxidase are shown in Table I. Examination of both sedimentation and diffusion coefficients reveals values lower than those of soluble proteins with comparable polypeptide mass, since the hydrodynamic properties of the protein-detergent complex (18), rather than those of the protein moiety, are observed. Nevertheless, their combination yields the protein mass, rather than that of the complex (19).

The results of enzymic activities after molecular size determination are shown in Table II. All assays were performed upon reconstitution with phospholipids (Asolectin), since the

1 Schneider, G. and Daum, G., unpublished observations.
2 The abbreviations used are: C₈E₄₅, a mixture of octyltetra- and octyloxyethylene; SDS, sodium dodecyl sulfate.

5576
enzyme exhibits very low, if any, activity in either Triton X-100 or C₅E₄.

Discussion

The estimated mass of cytochrome c oxidase from *P. denitrificans* is 84,000 ± 9,000 daltons in the nonionic detergent C₅E₄ (Table I). The values observed are likely to be correct to within about 10%, as shown in Table I, and discussed in detail elsewhere (19). Together with the stoichiometry of its subunits (20), these results strongly suggest that the monomer of cytochrome c oxidase consists of one large and one small subunit. It is interesting to compare the values presented here with the molecular weight estimated from SDS-polyacrylamide gel electrophoresis and with the values derived from determinations of the tightly bound ligands, heme and copper. The sum of the subunit molecular weights, as determined by gel electrophoresis in SDS, is lower (Table III). This is not surprising, as apparent molecular weights of membrane proteins estimated from migration rates in gels containing SDS are notoriously unreliable. A relevant example is subunit I of mammalian oxidase for which the molecular weight, calculated from its DNA sequence, is considerably higher than the apparent molecular weight, estimated from SDS-polyacrylamide gel electrophoresis (23). Since subunits I of the mitochondrial and the *Paracoccus* oxidase appear to be homologous (3), the value of 45,000 for the molecular weight of

Table II

<table>
<thead>
<tr>
<th>Enzyme fraction</th>
<th>Specific activity (nmol of cytochrome c oxidized/min × mg of protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stock enzyme</td>
<td>30.5</td>
</tr>
<tr>
<td>After sucrose gradient centrifugation</td>
<td>16.7</td>
</tr>
<tr>
<td>After sedimentation velocity centrifugation</td>
<td>19.4</td>
</tr>
<tr>
<td>After sedimentation equilibrium centrifugation</td>
<td>12.7</td>
</tr>
<tr>
<td>After thin layer gel filtration (peak fractions)</td>
<td>11.1-16.8</td>
</tr>
</tbody>
</table>

Table III

<table>
<thead>
<tr>
<th>Method</th>
<th>Molecular weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ultracentrifugal analyses (this study)</td>
<td>79,000-84,000</td>
</tr>
<tr>
<td>Apparent molecular weight from SDS-polyacrylamide gel electrophoresis (3)</td>
<td>71,000-74,000</td>
</tr>
<tr>
<td>Heme to protein ratio</td>
<td>69,500⁺</td>
</tr>
<tr>
<td>Copper to protein ratio</td>
<td>67,000⁺</td>
</tr>
</tbody>
</table>

*Heme determined spectrophotometrically (see "Materials and Methods") and protein according to Lowry et al. (21) in the presence of 0.5% SDS.

⁺ As α, but iron determined by atomic absorption (3).

⁻ As α, but copper determined by atomic absorption (3).

Table I

<table>
<thead>
<tr>
<th>Method</th>
<th>Hydrodynamic properties</th>
<th>M, ± standard deviation</th>
<th>Number of Experiments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sedimentation equilibrium (analytical ultracentrifugation)</td>
<td>84,000 ± 9,000⁺</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>s₂₀,w (analytical ultracentrifugation; cf. above)</td>
<td>4.1 ± 0.3 S</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>D₅ₐₜ (calculated from M, and s₂₀,w; cf. above)</td>
<td>4.7·10⁻⁷ cm²s⁻¹</td>
<td>NA⁺</td>
<td></td>
</tr>
<tr>
<td>s₁₅,w (zonal centrifugation in sucrose gradient)</td>
<td>4.2 ± 0.25</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Dₑₑᵉ</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* As α, but iron determined by atomic absorption (3).

⁺ As α, but copper determined by atomic absorption (3).

⁺⁺ Experiments of two independent preparations.

⁻ Determinations at concentrations from 0.2 to 0.25 mg/ml were normalized to water and 20 °C by standard procedures. They were not extrapolated to zero concentrations.

⁺ Not applicable.

Fig. 1. Determination of cytochrome c oxidase mass by analytical ultracentrifugation to equilibrium. After conclusion of the experiment, the enzyme still exhibited 42% of the specific activity of the stock enzyme (Table II). The molecular weight, derived from the slope shown, is 81,000. Simultaneous experiments with enzyme whose activity was reduced after sedimentation exhibited tendencies to dissociate and to aggregate. Centrifugations were performed in standard buffer (see "Materials and Methods"). Absorbance was scanned at 280 nm. The detergent C₅E₄ was present at a concentration of 1%.

Fig. 2.
Paracoccus oxidase subunit I may well represent an underestimation. Heme a can be quantitated spectrophotometrically based on the pyridine hemochromogen, but different literature values for the extinction coefficient of the pyridine hemochromogen (see Ref. 24) do not allow conclusive evaluation of the results obtained. Values for copper and (heme-) iron, as determined by atomic absorption analysis, are biased by the assumption that the metal content only reflects specifically bound metal ions, and that no heme or copper had been lost during purification.

We conclude that, in the nonionic detergent used, cytochrome c oxidase from *P. denitrificans* exists as a monomer containing one copy of each of two subunits, two copper atoms and two heme a groups. Of course, this study does not answer the question whether monomers or oligomers represent the functional entity, since *Paracoccus* oxidase exhibits very low enzymic activity in the detergent used in this study as well as in all other detergents tested so far. Nevertheless, if oligomerization is required for activity, the structure of the enzyme in a monomeric state is not irreversibly perturbed in the detergents used. Lack of activity in the solubilized state could either reflect inhibition of cytochrome c binding, or reversible structural alterations of the enzyme.

Acknowledgments—We thank G. Schatz for helpful discussions in the course of this work, G. Schneider and G. Daum for performing the concanavalin A binding assay, and L. Tamm for a phospholipid determination according to Ref. 11.

REFERENCES
Solubilized cytochrome c oxidase from Paracoccus denitrificans is a monomer.
B Ludwig, M Grabo, I Gregor, A Lustig, M Regenass and J P Rosenbusch

Access the most updated version of this article at http://www.jbc.org/content/257/10/5576

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/257/10/5576.full.html#ref-list-1