Metabolism of Apolipoprotein E in Plasma High Density Lipoproteins from Normal and Cholesterol-fed Rats*

(Received for publication, January 18, 1982)

Ferdinand van't Hooft‡ and Richard J. Havel§

From the Cardiovascular Research Institute and Department of Medicine, University of California, San Francisco, California 94143

High density lipoproteins of rat blood plasma were labeled in vitro with radioiodinated apolipoprotein E and biologically with 3Hcholesterol esters. These two components, present in high density lipoproteins separated from serum of normal or cholesterol-fed rats by molecular sieve chromatography, were removed slowly from perfused livers and the labeled apolipoprotein E was also removed slowly from the blood of intact rats. However, when labeled serum was subjected to ultracentrifugation at a density of 1.21 g/ml before the floating apolipoprotein E-labeled high density lipoproteins were separated by chromatography, the labeled protein was rapidly removed from the blood of intact rats by uptake into the liver. About one-half of the labeled apolipoprotein E associated with high density lipoproteins was dissociated during ultracentrifugation, but most of it reassociated with these lipoproteins when the floating lipoproteins were remixed with the sedimented serum proteins. The apolipoprotein E in such reassociated high density lipoproteins was removed from the blood of intact rats at the slow rate observed when the high density lipoproteins were separated chromatographically from whole serum. About 90% of the labeled apolipoprotein E in centrifuged high density lipoproteins was shown by affinity chromatography to be associated with particles containing apolipoprotein A-I. Rapid hepatic uptake of apolipoprotein E in centrifuged high density lipoproteins may result from an altered conformation of the apolipoprotein E on the particle surface.

Apolipoprotein E appears to be critically involved in the hepatic uptake and metabolism of partially degraded (remnant) lipoproteins of intestinal and hepatic origin (1-4). The concentration of apo-E in rat plasma is the highest reported among mammals fed cholesterol-poor diets. This apo-E is found mainly in high density lipoproteins (5, 6). We have developed a method to study the metabolism of apo-E in plasma lipoproteins of rats by a specific labeling technique and have shown that this protein is slowly removed from the blood plasma when injected in vivo into normal and cholesterol-fed rats (7). However, apo-E in VLDL was found to be removed rapidly, together with cholesteryl esters, from lipoproteins of isolated rat livers. The metabolism of apo-E in vivo appeared to result from rapid equilibration of apo-E between VLDL and HDL in which it was rapidly metabolized, and HDL, in which it was metabolized slowly.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address, Biochemistry, I, Erasmus University, Medical Faculty, Rotterdam, The Netherlands.

§ To whom correspondence and requests for reprints should be addressed.

*This work was supported by Grant HL-14237 from the United States Public Health Service, Specialized Center for Research in Atherosclerosis. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

**The abbreviations used are: apo-E or A-I, apolipoprotein E or A-I; LDL, low density lipoproteins; VLDL, very low density lipoproteins; HDL, high density lipoproteins.
Metabolism of Apolipoprotein E in High Density Lipoproteins

Metabolic Studies—Labeled lipoproteins containing an amount of cholesterol equivalent to less than 5% of that in the corresponding lipoprotein in the blood of the recipient rat were injected through the femoral vein of animals anesthetized with diethyl ether and blood samples were collected from a tail vein (7). In some experiments, samples of liver were obtained at the end of the experiment for analysis of 125I (7). Isolated livers were perfused in a recirculating system with Krebs-Henseleit/glucose buffer containing 18% rat erythrocytes (7). For experiments with labeled HDL, the perfusate volume was 60 ml and samples of 2 ml were taken for analysis at the indicated intervals. For experiments with labeled VLDL, the perfusate volume was 35 ml and sample volumes were 1 ml. At the end of perfusions, livers were flushed with 60 ml of fresh perfusate and several samples were taken for analysis. Samples of blood, perfusate, and liver were subjected to analysis of triglyceric acid-soluble and insoluble 125I- or [3H]cholesterol esters exactly as described (7).

Chemical Analyses—Protein was determined by a modified procedure of Lowry with bovine serum albumin as standard (16). Apo-protein E was measured by specific radioimmunoassay (5). Cholesterol in serum and in lipoprotein fractions separated by sequential preparative ultracentrifugation (14), or molecular sieve chromatography, was measured by a modification of a fluorometric enzymatic method (17, 18).

Affinity Chromatography of HDL—An amount of chromatographically separated HDL, equivalent to that contained in 1 ml of plasma, was dialyzed against 0.15 M NaCl, 0.02% sodium azide, and 0.04% disodium EDTA, pH 7.4, and applied to an affinity column (18) (1 x 10 cm) prepared with monospecific rat anti-apo-A-I. The column was maintained at 6°C. Fractions containing unbound lipoprotein were collected for analysis of apo-E. The capacity of this column for apo-A-I was ~3 mg. When 1 mg of isolated apo-E was applied to the column, no detectable protein was retained.

RESULTS

Uptake and Catabolism of Chromatographically Separated 125I-Apo-E HDL by the Perfused Liver—HDL from chow-fed rats, labeled biologically with [3H]cholesterol and in vitro with 125I-apo-E, were separated from serum on 6% agarose columns and dialyzed against Krebs-Henseleit buffer (Fig. 1). In four experiments, about one-fourth of the [3H]cholesterol esters was removed from the perfusate in 4 h. After a lag of 30 min, trichloroacetic acid-soluble 125I increased linearly in the perfusate and, after 4 h, the amount of 125I-apo-E catabolized approximately equalled the amount of the labeled protein taken up. At this time, 14.7 ± 3.5% of the [3H] cholesteryl esters and 12.5 ± 2.7% of the 125I-apo-E in the perfusate was associated with VLDL, separated by chromatography. Thus, under the conditions of this experiment, the bulk of the labeled cholesteryl esters and apo-E remained associated with HDL. The total amount of 125I and 3H recovered in perfusate and liver at the end of the perfusion was 95.6 ± 2.1% and 97.3 ± 4.1%, respectively.

In these experiments, the rate of accumulation of trichlo-roacetic acid-soluble 125I in the perfusates (38% after 4 h) exceeded the rate of removal of [3H]cholesterol esters (23%) (p < 0.05). This observation raises the possibility that a subfraction of HDL, rich in apo-E, is rapidly degraded by the liver. This was investigated further in experiments with apo-E-rich and apo-E-poor subfractions of HDL, taking advantage of the fact that apo-E is contained mainly in larger particles than those in which apo-A-I is the major protein component (7, 12). Such subfractions of HDL were obtained from the leading and trailing portions of the HDL elution profile from 6% agarose columns, each of which contained approximately equal amounts of cholesterol. As shown in Fig. 2, the rates of removal of [3H]cholesterol esters from apo-E-rich and apo-E-poor HDL subfractions by the perfused liver were virtually identical.

Effect of Ultracentrifugation on the Composition and Metabolic Properties of 125I-Apo-E HDL—Rat serum, incubated with 125I-apo-E, was subjected to ultracentrifugation at a non-protein solvent density of 1.21 g/ml. The supernatant fraction was subjected to chromatography on 6% agarose gel. The infranatant fraction contained 47.7 ± 2.3% of the 125I-apo-E (n = 4), which represented about one-half of the recovered 125I (total recovery was 94.1 ± 1.7%). When the original serum was subjected to chromatography on 6% agarose gel, only 13.6 ± 1.6% of the 125I-apo-E was recovered in the region expected for unbound apo-E, indicating that about 35% of the 125I-apo-E was dissociated from lipoproteins during ultracentrifugation. In Fig. 3A, elution profiles of 125I-apo-E-labeled serum and the labeled lipoproteins separated by ultracentrifugation at 1.21 g/ml are compared. It is evident that most of the 125I-
The extent to which ultracentrifugation affected the association of apo-E and apo-A-I, the other major protein component of rat HDL, on HDL particles was evaluated by immunoadsorption. The HDL fraction of samples of rat serum and of the 1.21 g/ml supernatant fraction of serum were obtained by chromatography on 6% agarose columns and then passed through an anti-A-I affinity column. The fraction of apo-E that was not adsorbed to the column was taken as an estimate of the unassociated apo-E. As shown in Table I, only about 10% of the apo-E appeared to be in HDL particles that did not contain apo-A-I, both in native serum and after ultracentrifugation.

\(^{125}\)I-apo-E HDL, isolated by gel chromatography of either whole serum or the \(d < 1.21 \text{ g/ml}\) fraction obtained by ultracentrifugation, was injected into intact rats. As shown in Fig. 4A, ultracentrifugation caused a dramatic increase in the rate of removal of the \(^{125}\)I-apo-E from the blood. In two experiments, 51.2% and 58.7% of the injected \(^{125}\)I-apo-E in ultracentrifuged HDL was found in the liver 15 min after injection of the ultracentrifuged HDL. In the experiments shown in Fig. 4A, the HDL were injected into rats approximately 3 days after the serum was labeled with apo-E. Comparable results were obtained when HDL prepared from uncentrifuged serum were injected immediately after elution from agarose columns.

Table I

Affinity chromatography of apo-E-containing HDL from cholesterol-fed rats

<table>
<thead>
<tr>
<th>Preparation of HDL</th>
<th>Apo-E applied to column</th>
<th>Apo-E not bound to antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chromatographically separated from serum</td>
<td>107 ± 12</td>
<td>9 ± 4</td>
</tr>
<tr>
<td>Chromatographically separated from ultracentrifuged lipoproteins</td>
<td>58 ± 9</td>
<td>6 ± 3</td>
</tr>
</tbody>
</table>

Fig. 3. Molecular sieve chromatography of \(^{125}\)I-apo-E-labeled lipoproteins from rats fed standard chow. A, separation on a column of 6% agarose gel of \(^{125}\)I-apo-E in 10 ml of serum from rats fasted for 24 h (A—A) and in lipoproteins separated from serum by ultracentrifugation at a density of 1.21 g/ml (Δ—Δ). The first peak represents \(^{125}\)I-apo-E in VLDL and the second peak that in HDL. Unassociated apo-E is represented by the third peak (not seen in separated lipoproteins). The absorbance of serum lipoproteins and proteins at 280 nm is also shown (O—O). B, separation on a column of 6% agarose gel of \(^{125}\)I-apo-E in 10 ml of serum (A—A) and in serum that had been subjected to ultracentrifugation at a density of 1.21 g/ml to separate lipoproteins, which were then remixed with the serum proteins that had sedimented to the bottom of the centrifuge tube (Δ—Δ).

apo-E dissociated by ultracentrifugation was derived from the HDL. In four such experiments, 10.2 ± 4.5% of the \(^{125}\)I-apo-E added to the serum was lost from VLDL, whereas 48.1 ± 9.1% was lost from HDL. In spite of this large loss of \(^{125}\)I-apo-E from HDL, the elution volume of the HDL-associated apo-E was unaltered by ultracentrifugation. In one experiment, in which unlabeled serum and its 1.21 g/ml supernatant fraction were compared, elution of apo-E from the 6% agarose columns was measured by radioimmunoassay. Losses of apo-E mass from VLDL and HDL during ultracentrifugation were comparable to those observed with \(^{125}\)I-apo-E (not shown).
As shown in Fig. 3B, the 125I-apo-E dissociated from HDL during ultracentrifugation at a density of 1.21 g/ml was found to reassociate with the lipoprotein when the supernatant and infranatant fractions were remixed. After such recombination of 125I-apo-E, only 20.2 ± 2.1% of the labeled protein was unassociated with VLDL and HDL separated on 6% agarose columns, as compared with 12.7 ± 3.7% when the same samples of uncentrifuged serum were applied to the columns. Comparable results were obtained for reassociation of apo-E mass, as determined by radioimmunoassay in other experiments.

TABLE II

<table>
<thead>
<tr>
<th>Fraction (density in g/ml)</th>
<th>Total cholesterol mg/dl</th>
</tr>
</thead>
<tbody>
<tr>
<td><1.006</td>
<td>130.6 ± 10.8*</td>
</tr>
<tr>
<td>1.006-1.019</td>
<td>76.0 ± 11.8</td>
</tr>
<tr>
<td>1.019-1.063</td>
<td>45.1 ± 6.3</td>
</tr>
<tr>
<td>>1.063</td>
<td>15.5 ± 4.6</td>
</tr>
</tbody>
</table>

* Mean ± S.D. (total cholesterol and apo-E levels in uncentrifuged serum were 295.7 ± 6.9 and 41.9 ± 5.1 mg/dl, respectively).

Metabolism of 125I-Apo-E in Lipoproteins from Hypercholesterolemic Rats—As shown in Table II, the cholesterol content of VLDL, HDL, and LDL and of apo-E in serum was substantially increased in rats fed the cholesterol-rich diet for 2 weeks. In confirmation of previous reports, the VLDL had predominantly β-mobility upon electrophoresis in agarose gel. The level of apo-E was about double that of chow-fed rats (12) and, in contrast to the situation in chow-fed rats, most of the apo-E was associated with VLDL rather than HDL (Fig. 5A). However, the apo-E in HDL was associated with larger particles in serum of cholesterol-fed rats (compare Fig. 5A in which the elution peak for HDL is at tube 51 with Fig. 5B in which the elution peak is at tube 58). The distribution of 125I-
apo-E, added to serum from hypercholesterolemic rats, was comparable to that of apo-E mass; 15.7 ± 2.4% of the 125I-apo-E remained unassociated with VLDL or HDL (n = 4). As in normal rats (7), the 125I-apo-E was stable as determined by rechromatography of the isolated fractions, and the labeled apo-E readily exchanged between VLDL and HDL, both in vitro and after injection into intact rats (not shown). The rate of removal of $[^{3}H]$cholesterol esters in HDL from hypercholesterolemic rats, during perfusion through livers of chow-fed rats (Fig. 6), was similar to that observed with HDL from chow-fed rats (Fig. 1), as was the rate of production of trichloroacetic acid-soluble 125I-apo-E. In these experiments with HDL from cholesteryl-fed rats, 17.2 ± 5.7% of the $[^{3}H]$cholesterol esters and 12.4 ± 3.5% of the 125I-apo-E remaining in the perfusate after 4 h was associated with VLDL. Recovery of 125I and ^{3}H in liver and perfusate at the end of the experiments was 96.3 ± 2.5 and 92.7 ± 5.1%, respectively.

Similar experiments were performed with doubly labeled VLDL from hypercholesterolemic rats (Fig. 7). The rates of removal of 125I-apo-E and $[^{3}H]$cholesterol esters from the perfusate were indistinguishable, but somewhat more rapid than observed with VLDL from chow-fed rats (7). At the end of the 21-min perfusion period, 11.2 ± 2.0% of the $[^{3}H]$cholesterol esters and 17.9 ± 7.2% of the 125I-apo-E remaining in the perfusate after 4 h was associated with VLDL. Recovery of 125I and ^{3}H in liver and perfusate at the end of the experiments was 96.3 ± 2.5 and 92.7 ± 5.1%, respectively.

The effect of ultracentrifugation upon the composition and metabolic properties of labeled HDL was studied, as described for HDL from chow-fed rats. Less 125I was dissociated from lipoproteins during ultracentrifugation of serum of hypercholesterolemic rats at a density of 1.21 g/ml (17.4 ± 3.4%) than in the case of chow-fed rats. Most of the apo-E was lost from HDL, such that only 64.7 ± 8.9% of that originally present remained after ultracentrifugation. As with chow-fed rats, 125I-apo-E in ultracentrifuged HDL from cholesteryl-fed rats was removed much more rapidly from the blood than uncentrifuged HDL (Fig. 8).

DISCUSSION

In confirmation of our earlier research in which 125I-apo-E HDL from chow-fed rats was injected into intact rats (7), we found that the labeled protein was removed slowly from peritoneal and isolated rat livers and then catabolized completely. $[^{3}H]$Cholesterol esters of these chromatographically separated HDL were taken up from the perfusate at a lower rate than 125I-apo-E, but labeled cholesterol esters in the larger, apo-E-rich HDL particles were removed more rapidly than those in the smaller, apo-E-poor ones. It seems likely, therefore, that the two types of particles are removed by the liver at a similar rate.

The fractional rates of removal of cholesterol esters and apo-E of chromatographically separated HDL by perfused livers were more rapid than those observed earlier with HDL isolated from rat blood plasma between densities of 1.085 and 1.21 g/ml, which were labeled endogenously in the cholesteryl ester moiety with ^{3}H or exogenously in the protein moiety with 125I (19). In those experiments, the major labeled protein was apoprotein A-I and much higher concentrations of HDL were routinely added to the perfusates. However, even when amounts of HDL comparable to those used in the present experiments were added, the fractional rates of removal of 125I did not approach those observed in the present studies. The reasons for the more rapid removal of the chromatographically separated HDL by the perfused liver are unclear, but it seems possible that 125I-apo-E exchanged with unlabeled apo-E secreted from the liver in VLDL and was then taken up by the liver during endocytosis of these VLDL (1). In our previous studies in which 125I-apo-E and 125I-apo-A-I HDL were injected into intact rats, removal of 125I-apo-E slightly exceeded that of 125I-apo-A-I (7), but the rates for both were similar to those of ultracentrifugally separated, radioiodinated HDL (19).

As expected from earlier work (6), apo-E-containing HDL from cholesteryl-fed rats (HDLc) were larger than those from rats fed regular chow. The removal of $[^{3}H]$cholesterol esters and 125I-apo-E from these HDL by perfused livers did not exceed that of such HDL obtained from rats fed regular chow. Others have obtained variable results in their studies of the metabolism of HDL containing apo-E. The apo-E of the HDL, that has been obtained from blood plasma of cholesterol-fed dogs by a combination of ultracentrifugation and preparative electrophoresis is rapidly removed from the blood by the liver (9, 10). Apo-E-containing HDL from chow-fed rats, obtained from ultracentrifuged HDL by chromatography on heparin-Sephrose (11), is also rapidly taken up from the blood by the liver.

![Figure 8](http://www.jbc.org/)
Fig. 8. Removal from blood plasma of intact rats of 125I-apo-E HDL, prepared from lipoproteins in serum of cholesterol-fed rats that were obtained by ultracentrifugation as described in the legend to Fig. 4A and then separated on a column of 6% agarose gel (O——O) or separated directly from uncentrifuged serum and stored at 6 °C for 72 h (□——□). Results are mean values ± S.D. for three experiments.
Metabolism of Apolipoprotein E in High Density Lipoproteins

11001

liver. By contrast, the apo-E-containing HDL obtained by preparative electrophoresis of the 1.02–1.063 g/ml ultracentrifugal fraction of plasma of rats fed cholesterol-rich chow is removed considerably more slowly from blood plasma of rats than canine apo-E HDL (9).

All HDL obtained by ultracentrifugation have lost a portion of their component apo-E. Our present experiments show apo-E in ultracentrifuged HDL, whether obtained from rats fed regular chow or cholesterol-rich chow, to be rapidly taken up from the blood by the liver, even though the apo-E-containing HDL particles contained at least 1 molecule of apo-A-I. Of considerable interest was the further observation that the apo-E that was dissociated from these particles by ultracentrifugation largely reassociated with the HDL upon simple mixing of the separated components, as shown by the profile of the eluted apo-E when the "recombined" plasma was subjected to gel chromatography. These results indicate that loss of apo-E during ultracentrifugation does not alter apo-E-containing HDL irreversibly. They also provide strong evidence that partial loss of apo-E or some other dissociable component rather than ultracentrifugation per se alters the hepatic uptake of apo-E-containing HDL particles, presumably by receptor-dependent processes (20–23). The ultracentrifugally modified HDL are distributed over the same range of size as unmodified HDL containing apo-E (see Fig. 3). This suggests that these particles remain "intact," but with an altered conformation of surface components.

Apo-E in canine apo-E-HDLs, obtained by ultracentrifugation and preparative electrophoresis, is taken up by the liver in a process that closely resembles that of chylomicron remnants (8). In these particles, apo-E is virtually the sole protein component (8). By contrast, most of the apo-E-containing HDL in our rats fed regular chow contained at least 1 molecule of apo-A-I, whether obtained directly from serum or from ultracentrifuged lipoproteins (see Table I). Thus, the presence of other proteins in HDL particles that contain apo-E does not necessarily impair hepatic uptake. Our present studies, as well as earlier ones (1, 2, 4), also suggest that recognition of apo-E by an hepatic receptor or receptors does not depend solely upon the number of apo-E molecules present on a lipoprotein particle, or upon a high concentration of apo-E at the particle surface. Discoidal complexes of rat apo-E with lecithin, that contain about 8 molecules of apo-E per particle, and apo-E-HDLs bind to liver membrane preparations from estradiol-treated rats with similarly high affinity (21). These membrane preparations express a high concentration of binding sites whose properties closely resemble those of the "LDL receptor" of cultured human fibroblasts. However, the uptake of ultracentrifugally modified HDL containing apo-E by the liver is considerably more efficient than that of such discoidal complexes (4). Interaction of apo-E with at least one hepatic receptor, perhaps a specific "remnant" receptor (22, 23) rather than the "LDL receptor" that recognizes both apo-B and apo-E, may be favored in ultracentrifugally isolated HDL containing apo-E by reduction of the concentration of the protein at the particle surface. The recognition site, which seems likely to contain a high concentration of positively charged amino acids (24, 25), evidently is better exposed under conditions of lower concentration of apo-E on the particle surface, possibly owing to reduction of protein-protein interactions. By contrast, VLDL from cholesterol-fed rats, rich in cholesteryl esters and apo-E, were found to be removed more rapidly than from liver perfusates than VLDL from rats fed regular chow. These results are consistent with earlier studies in which the proportion of apo-E in VLDL-protein was altered by mixing VLDL with VLDL-free serum in vitro (1).

Although our results suggest that apo-E-containing HDL do not constitute a unique vehicle in the rat for transport to the liver of cholesteryl esters synthesized by lecithin-cholesterol acyltransferase, they do not exclude an important role for such HDL in cholesteryl ester transport. As suggested earlier (19), arachidonate-rich cholesteryl esters of HDL may participate in the transport of cholesteryl esters to extrahepatic tissues. In view of the low concentration of LDL and the very limited cholesteryl ester transfer activity in rat plasma (26), those HDL that contain apo-E may be a major vehicle for the transport of cholesteryl to cells containing active "LDL receptors." The amount of such HDL in the rat may be sufficient to provide an effective substitute for LDL in the delivery of cholesteryl to the liver as well as extrahepatic tissues.

Acknowledgment—We are grateful to Luke Guo for use of the anti-A-I affinity column.

REFERENCES

Metabolism of apolipoprotein E in plasma high density lipoproteins from normal and cholesterol-fed rats.
F van't Hooft and R J Havel

Access the most updated version of this article at http://www.jbc.org/content/257/18/10996

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/257/18/10996.full.html#ref-list-1