25-Hydroxylation of C_{27}-Steroids and Vitamin D\textsubscript{3} by a Constitutive Cytochrome P-450 from Rat Liver Microsomes*

(Received for publication, January 10, 1983)

Stefan Andersson†, Inger Holmberg§, and Kjell Wikvall‡

From the †Department of Pharmaceutical Biochemistry, University of Uppsala, Box 578, S-751 23 Uppsala, Sweden and the §Department of Clinical Chemistry and Research Center at Huddinge University Hospital, Karolinska Institutet, Stockholm, Sweden

A constitutive cytochrome P-450 catalyzing 25-hydroxylation of C_{27}-steroids and vitamin D\textsubscript{3} was purified from rat liver microsomes. The enzyme fraction contained 16 nmol of cytochrome P-450/mg of protein and showed only one protein band with a minimum molecular weight of 51,000 upon sodium dodecyl sulfate-polyacrylamide gel electrophoresis.

The purified cytochrome P-450 catalyzed 25-hydroxylation of 5α,7α,12α-triol and vitamin D\textsubscript{3} up to 50 times more efficiently, and 25-hydroxylation of vitamin D\textsubscript{3} about 150 times more efficiently than the microsomes. The cytochrome P-450 showed no detectable 25-hydroxylase activity towards vitamin D\textsubscript{2} and was inactive in cholesterol 7α-hydroxylation as well as in 12α- and 26-hydroxylations of C_{27}-steroids. It catalyzed hydroxylations of testosterone and demethylation of ethylmorphine at the same rates as, or lower rates than, microsomes.

The 25-hydroxylation of 5β-cholane-3α,7α,12α-triol and vitamin D\textsubscript{3} with the purified cytochrome P-450 was not stimulated by addition of phospholipid or cytochrome b\textsubscript{5} to the reconstituted system. Emulgen inhibited 25-hydroxylase activity towards both substrates.

The possibility that 25-hydroxylation of C_{27}-steroids and vitamin D\textsubscript{3} is catalyzed by the same species of cytochrome P-450 is discussed.

During the last five years, several groups have reported on the purification and characterization of a number of cytochrome P-450 species from rabbit and rat liver microsomes (1-10). Most efforts have been concentrated on the purification of the major species which are induced by various xenobiotics. There are only a few reports concerning the purification of constitutive species of cytochrome P-450. The catalytic properties of the isolated cytochrome P-450 fractions have been studied with exogenous substrates and with steroid hormones, such as testosterone, androstenedione, and progesterone (6-9). Hydroxylations of these substrates in the liver generally lead to products of minor physiological importance.

Cholesterol and other C_{27}-steroids involved in the biosynthesis of bile acids as well as vitamin D\textsubscript{\textsubscript{3}} are important physiological substrates for the microsomal cytochrome P-450 system in the liver (11-15). In a previous report, we showed that a cytochrome P-450 fraction prepared from liver microsomes of untreated rats catalyzed efficient 25-hydroxylation of 5α-cholane-3α,7α,12α-triol as well as of vitamin D\textsubscript{3} (16). The fraction was not pure and showed at least two protein bands upon gel electrophoresis. Thus, it was not possible to define the species of cytochrome P-450 involved in 25-hydroxylation of the two substrates. The present communication reports the isolation from this fraction of a constitutive, apparently homogeneous cytochrome P-450 active in 25-hydroxylation of C_{27}-steroids and vitamin D\textsubscript{3}.

EXPERIMENTAL PROCEDURES

Materials—5α[7α-3H]Cholesterol-3α,7α-diol, 5α[7β-3H]cholestan-3α,7α,12α-triol, and 25α-[26-2H\textsubscript{3}]hydroxyvitamin D\textsubscript{3} were synthesized as described previously (17, 18). [4-C]Cholesterol and [4-C]testosterone were obtained from the Radiochemical Centre, Amersham, England. 25α-Hydroxyvitamin D\textsubscript{3}, [26-2H\textsubscript{3}]1,25-dihydroxyvitamin D\textsubscript{3}, 1,25-dihydroxyvitamin D\textsubscript{3}, 25-hydroxyvitamin D\textsubscript{3}, and 1α-hydroxyvitamin D\textsubscript{3} were generous gifts from Dr. L. Aksnes (Department of Pediatrics, University of Bergen, Norway), Dr. I. R. Pedersen (The Institute for Nutrition Research, University of Oslo, Norway), Dr. M. Uskokovic (Hoffman-La Roche, Nutley, NJ) and Dr. J. Babcock (The Upjohn Co., Kalamazoo, MI), respectively. Vitamin D\textsubscript{3}, sodium deoxycholate, Triton X-100, α-lauroylglycerol-3-phosphocholine, and cofactors were obtained from Sigma. Vitamin D\textsubscript{3} was obtained from Merck, Darmstadt, Germany. Octylamine-Sepharose 4B, octyl-Sepharose 4B, and polyacrylamide gradient slab gels, PAA 4/30, were obtained from Pharmacia, Uppsala, Sweden. Emulgen 913 was obtained from Kao-Atlas, Tokyo and hydroxylapatite (Bio-Gel HTP) was from Bio-Rad. Hydroxylapatite was mixed with an equal amount of Whatman CF-1 cellulose powder before chromatography.

Male rats of the Sprague-Dawley strain, weighing about 200 g, were used.

Methods—Liver microsomes from untreated rats were prepared and extracted with potassium pyrophosphate buffer (1). The initial purification steps involving chromatography on octylamine-Sepharose (19) were those described by Guengerich for the preparation of cytochrome P-450 fraction A (2) with the following minor modifications. The concentration of Emulgen 913 in the buffer used to elute cytochrome P-450 from the octylamine-Sepharose column (2.5 cm) was 0.06% (w/v) instead of 0.08%. Cytochrome P-450 was eluted from the hydroxylapatite column with 80 mM phosphate buffer, pH 7.25, containing 20% (w/v) glycerol, 0.1 mM EDTA, and 0.2% (w/v) Emulgen instead of the buffer containing 90 mM phosphate. The DEAE-cellulose column in the following step was replaced by a DEAE-Sepharose CL-6B column equilibrated with 5 mM phosphate buffer, pH 7.25, containing 20% (w/v) glycerol, 0.1 mM EDTA, and 0.2% (w/v) Emulgen instead of the buffer containing 90 mM phosphate. The DEAE-cellulose column in the following step was replaced by a DEAE-Sepharose CL-6B column equilibrated with 5 mM phosphate buffer, pH 7.25, containing 20% (w/v) glycerol, 0.1 mM EDTA, and 0.2% (w/v) Emulgen.

The cytochrome P-450-containing fractions, eluted with the eluting buffer were analyzed by gel electrophoresis and pooled as described under "Results." The phosphate concentration of the resulting fraction was adjusted to 100 mM. The fraction was treated with Amberlite XAD-2 (20) and diluted with 3 volumes of 100 mM phosphate buffer, pH 7.25, containing 20% (w/v) glycerol and 1% Emulgen.

* This work was supported by Swedish Medical Research Council Projects 05X-218 and 05X-3141. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The trivial names used are: cholical acid, 3α,7α,12α-trihydroxy-5β-cholanoic acid; deoxycholic acid, 3α,12α-dihydroxy-5β-cholanoic acid.
mm EDTA. Sodium cholate was added to a final concentration of 0.7% (w/v) and the fraction was then applied to an octyl-Sepharose column (1.2 x 8 cm) equilibrated with 100 mM phosphate buffer, pH 7.25, containing 20% glycerol, 1 mM EDTA, and 0.7% sodium cholate. The column was washed with the equilibrating buffer containing 0.46% sodium cholate, and cytochrome P-450 was eluted with the equilibrating buffer containing 0.37% sodium cholate and 0.2% Emulgen at a flow rate of 0.5 ml/min. The cytochrome P-450-containing fractions were pooled, diluted with 2 volumes of 20% glycerol, and applied to a small hydroxylapatite column (2 x 3 cm) equilibrated with 10 mM phosphate buffer, pH 7.25, containing 20% glycerol and 0.1 mM EDTA. The column was washed with the equilibrating buffer until no absorption at 276 nm (due to Emulgen) was detected. Cytochrome P-450 was then eluted with 500 mM phosphate in the buffer. The resulting cytochrome P-450 was dialyzed against 50 mM phosphate buffer, pH 7.25, containing 20% glycerol and 0.1 mM EDTA.

A major phenobarbital-inducible form of cytochrome P-450 (fraction C) was isolated from phenobarbital-treated rats as described by West et al. (21).

Cytochromes P-450_{ma} and P-450_{ms}, from rabbit liver microsomes were prepared as described by Haugen and Coon (1) and Coon et al. (20).

NADPH-cytochrome P-450 reductase was prepared from phenobarbital-treated rats as described by Yasukochi and Masters (22) and had a specific activity of 50 units/mg of protein.

Cytochrome b₅, which was obtained in the octylamine-Sepharose chromatography step (23), was further purified to electrophoretical homogeneity as described by Strittmatter et al. (24).

Cytochrome P-450_a, cytochrome b₅, and protein were determined as described by Omura and Sato (25), Spatz and Strittmatter (26) and Lowry et al. (27).

Optical spectra were measured as described by Haugen and Coon (1) using a Shimadzu multipurpose recording spectrophotometer.

Gel electrophoresis was performed in the presence of sodium decyl sulfate with Pharmacia gradient slab gels, PAA 4/30, as described previously (12).

5β-Cholestane-3α,7α-diol, 5β-cholestan-3α,7α,12α-triol, vitamin D₃, 1α-hydroxyvitamin D₃ and vitamin D₂, 125 nmol in 10-25 μl of acetone, were incubated for 10 min with 0.1 nmol of cytochrome P-450, 2.0 units of NADPH-cytochrome P-450 reductase, and 1-2 μmol of NADPH in a total volume of 1 ml of 150 mM potassium phosphate buffer, pH 7.4, containing 20% glycerol and 0.1 mM EDTA (5β-cholestan-3α,7α-diol and 5β-cholestan-3α,7α,12α-triol) or 1.5 ml of 50 mM Tris/acetate buffer, pH 7.4, (vitamin D₃, 1α-hydroxyvitamin D₃ and vitamin D₂). The incubation procedure was as described previously (12).

To the incubations with vitamin D₃ and vitamin D₂ [26-³H]25-hydroxyvitamin D₃ and D₂ was added as internal standard immediately after termination. In the incubations with 1α-hydroxyvitamin D₃ [26-³H]1,25-dihydroxyvitamin D₃ and D₂ was added as internal standard. The incubation mixtures were extracted with chloroform/methanol (2:1) (v/v) and purified by preparative high performance liquid chromatography. 25-Hydroxyvitamin D₃ was analyzed by mass fragmentography as described previously (18). 25-Hydroxyvitamin D₂ was analyzed in the same way as 25-hydroxyvitamin D₃ with the exception that the ion at m/e 598 corresponding to the t-butyldimethylsilyl/trimethylsilyl derivative of 25-hydroxyvitamin D₂ was used. The mass fragmentographic analysis of 1,25-dihydroxyvitamin D₂ was performed as described previously (28).

Incubations and analyses of incubation mixtures with cholesterol, testosterone, and ethylnorphine were performed as described previously (29).

RESULTS

A summary of the purification of cytochrome P-450 from liver microsomes of untreated rats is shown in Table I. Chromatography of solubilized microsomal cytochrome P-450 on octylamine-Sepharose, hydroxylapatite, and DEAE-Sepharose resulted in the isolation of cytochrome P-450 fraction A of similar purity as described previously (16). Upon gel electrophoresis, this fraction showed one major protein band and one minor band of lower molecular weight. The eluted fractions from the DEAE-Sepharose column which were enriched with respect to the major band were pooled and applied to octyl-Sepharose chromatography. This chromatographic step removed the contaminating protein of lower molecular weight. The specific content of cytochrome P-450 increased from 0.8 nmol/mg of protein in the microsomes to 15.6 nmol/mg of protein in the purified cytochrome. The purified cytochrome P-450 represented 2% of the total microsomal cytochrome P-450.

Fig. 1 shows the results of gel electrophoresis experiments with the purified cytochrome P-450. The purified cytochrome

<table>
<thead>
<tr>
<th>Protein</th>
<th>Cytochrome P-450 (specific content)</th>
<th>Cytochrome P-450 (yield)</th>
</tr>
</thead>
<tbody>
<tr>
<td>mg</td>
<td>nmol/mg protein</td>
<td>%</td>
</tr>
<tr>
<td>Microsomes</td>
<td>3200</td>
<td>0.8</td>
</tr>
<tr>
<td>Octylamine-Sepharose</td>
<td>208</td>
<td>3.8</td>
</tr>
<tr>
<td>Hydroxylapatite</td>
<td>32</td>
<td>6.7</td>
</tr>
<tr>
<td>DEAE-Sepharose</td>
<td>10.5</td>
<td>11.0</td>
</tr>
<tr>
<td>Octyl-Sepharose</td>
<td>3.4</td>
<td>15.6</td>
</tr>
</tbody>
</table>

Fig. 1. Polyacrylamide gel electrophoresis of purified cytochrome P-450 from liver microsomes. Electrophoresis was performed on Pharmacia gradient slab gels. The protein samples were pretreated with sodium dodecyl sulfate and mercaptoethanol at 100 °C for 2 min and submitted to polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. Migration was from top to bottom. A, purified cytochrome P-450 from untreated rats, 5 μg (1); and 1 μg (2); mixture of phosphorylase b (M_r = 94,000), albumin (M_r = 67,000), ovalbumin (M_r = 43,000), carbonic anhydrase (M_r = 30,000), trypsin inhibitor (M_r = 20,100), and α-lactalbumin (M_r = 14,400), 3 μg of each (3). B, phenobarbital-induced cytochrome P-450 from rat liver, 2 μg (1); mixture of cytochrome P-450_{ma} and cytochrome P-450_{ms} from rabbit liver, 2 μg of each (2); purified cytochrome P-450 from untreated rats, 2 μg (3). C, purified cytochrome P-450 from untreated rats, 1 μg (1); phenobarbital-induced cytochrome P-450 from rat liver, 1 μg (2).
showed only one protein band with an apparent $M_r = 51,000$. The electrophoretic mobility differed from that of the phenobarbital-induced cytochrome P-450 from rat liver ($M_r = 50,000$) as well as from that of cytochrome P-450, $M_r = 48,000$, and P-450, $M_r = 53,000$, from rabbit liver microsomes.

Fig. 2 shows the spectral properties of the purified cytochrome P-450. The fraction showed absorbance maxima in the oxidized state at 418, 540, and 570 nm, and in the reduced state at 416 and 550 nm. The absorbance maximum for the reduced carbon monoxide complex was at 452 nm.

The catalytic activities of the original microsomes and of the purified cytochrome P-450 from untreated rats are summarized in Table II. The hydroxylations studied were the $7a$-hydroxylation of cholesterol, the $12a$-hydroxylation of 5β-cholestan-3a,7a-diol, the 5β-cholestan-3a,7a,12a-triol, vitamin D_3, 1a-hydroxysterol, and vitamin D_2, the $6a$- and $7a$-hydroxylations of testosterone and the demethylation of ethylmorphine. The original microsomes catalyzed all these reactions with the possible exception of 25β-hydroxylation of vitamin D_3. With the methods used, no 25β-hydroxylation of vitamin D_3 could be detected. The purified cytochrome P-450 was inactive in $7a$-hydroxylation, $12a$-hydroxylation, and 25β-hydroxylation and showed very low capacity to catalyze $6a$- and $7a$-hydroxylations of testosterone. The cytochrome P-450 catalyzed efficient 25β-hydroxylation of 5β-cholestan-3a,7a-diol, 5β-cholestan-3a,7a,12a-triol, vitamin D_2, and 1a-hydroxysterol. The 25β-hydroxylation of vitamin D_3 was not detectable. It also catalyzed 28-, $6a$-, and $16a$-hydroxylations of testosterone as well as demethylation of ethylmorphine. The rate of 25β-hydroxylation of the 5β-steroids and of 1a-hydroxysterol D_2 was 20 to 50 times higher, and the rate of 25β-hydroxylation of vitamin D_2 was about 150 times higher, with the purified cytochrome P-450 than with the original microsomes. On the other hand, the testosterone hydroxylase activities and the ethylmorphine demethylase activity were lower than, or the same as, with the microsomes. The rate of 25β-hydroxylation was two to three times higher with 5β-cholestan-3a,7a,12a-triol as substrate than with 1a-hydroxysterol D_3 and five to

![FIG. 2. Absolute spectra of purified cytochrome P-450 from liver microsomes of untreated rats. The concentration of the cytochrome was 1 nmol of cytochrome P-450/ml of 100 mM potassium phosphate buffer, pH 7.4, containing 20% glycerol. ---, oxidized; --, reduced; ..., reduced CO complex.](http://www.jbc.org/)

TABLE II

<table>
<thead>
<tr>
<th>Reaction</th>
<th>Microsomes</th>
<th>Purified cytochrome P-450</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pmol/nmol</td>
<td></td>
</tr>
<tr>
<td>Cholesterol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$7a$</td>
<td>15</td>
<td><1</td>
</tr>
<tr>
<td>5β-Cholesterol-3a,7a-diol</td>
<td>85</td>
<td><1</td>
</tr>
<tr>
<td>$12a$</td>
<td>10</td>
<td>25</td>
</tr>
<tr>
<td></td>
<td>75</td>
<td>26</td>
</tr>
<tr>
<td>5β-Cholesterol-3a,7a,12a-triol</td>
<td>122</td>
<td>2,600</td>
</tr>
<tr>
<td></td>
<td>308</td>
<td><1</td>
</tr>
<tr>
<td>Vitamin D_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25β</td>
<td>2</td>
<td>335</td>
</tr>
<tr>
<td>$1a$-Hydroxysterol D_3</td>
<td>19</td>
<td>1,000</td>
</tr>
<tr>
<td></td>
<td><10</td>
<td><10</td>
</tr>
<tr>
<td>Testosterone</td>
<td></td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>1,500</td>
<td>1,050</td>
</tr>
<tr>
<td>$6a$</td>
<td>450</td>
<td>10</td>
</tr>
<tr>
<td>$7a$</td>
<td>750</td>
<td>10</td>
</tr>
<tr>
<td>$16a$</td>
<td>1,170</td>
<td>520</td>
</tr>
<tr>
<td>Demethylation of ethylmorphine</td>
<td>17,000</td>
<td>21,000</td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Components</th>
<th>pmol/nmol</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5β-cholestan-3a,7a,12a-triol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Vitamin D_3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>25β-Hydroxylation</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TABLE III

<table>
<thead>
<tr>
<th>Components</th>
<th>pmol/nmol</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cytchrome P-450</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NADPH-cytochrome P-450 reductase</td>
<td>≤1</td>
<td>≤1</td>
</tr>
<tr>
<td>Cytchrome P-450 + NADPH-cytochrome P-450 reductase</td>
<td>2,060</td>
<td>273</td>
</tr>
<tr>
<td>Cytchrome P-450 + NADPH-cytochrome P-450 reductase + phospholipid</td>
<td>1,720</td>
<td>293</td>
</tr>
<tr>
<td>Cytchrome P-450 + NADPH-cytochrome P-450 reductase + Emulgen 913</td>
<td>10</td>
<td>13</td>
</tr>
<tr>
<td>Cytchrome P-450 + NADPH-cytochrome P-450 reductase + sodium deoxycholate</td>
<td>1,370</td>
<td>193</td>
</tr>
<tr>
<td>Cytchrome P-450 + NADPH-cytochrome P-450 reductase + phospholipid + cytochrome b5</td>
<td>1,730</td>
<td>233</td>
</tr>
</tbody>
</table>

* Omission of NADPH in the reconstituted system resulted in no detectable 25-hydroxylase activity towards any of the substrates.
The reconstitution conditions for the 25-hydroxylation of 5β-cholestan-3α,7α,12α-triol and of vitamin D₃ were analyzed in a series of experiments and the results are shown in Table III. As expected, the 25-hydroxylase activity towards both substrates showed an absolute requirement for the cytochrome P-450, the NADPH-cytochrome P-450 reductase as well as for NADPH. However, addition of phospholipid was not required for 25-hydroxylation of the two substrates. Rather, it inhibited 25-hydroxylation of the C₂₇-sterol by 15 to 20%. Addition to the incubations of Emulgen 913 in a concentration of 0.06% (w/v) inhibited the 25-hydroxylase activity towards both substrates by more than 95%. Similarly, sodium deoxycholate, 60 μM, inhibited 25-hydroxylation of both substrates by about 30%. The inclusion of an equimolar amount of cytochrome b₅ in the reconstituted system had no stimulatory effect on the 25-hydroxylation of any of the substrates.

DISCUSSION

The 25-hydroxylation reactions carried out by the present constitutive cytochrome P-450 are involved in pathways leading to physiologically active products. Thus, the formation of active forms of vitamin D₃ requires a 25-hydroxylation as the initial step in the liver (30). It has also been established that 25-hydroxylated C₂₇-steroids can be converted into bile acids in vitro (31). The microsomal 25-hydroxylation appears less important than the mitochondrial 26-hydroxylation under normal conditions. However, the reaction may function as an alternative pathway for bile acid synthesis under certain pathological conditions (11, 32, 33).

Recent studies with purified cytochrome P-450 fractions from rabbit and rat liver microsomes have provided evidence for the participation of multiple species of cytochrome P-450 in 25-hydroxylation of C₂₇-steroids (34-36). Work with highly purified cytochrome P-450₅₇₄, fractions from rabbit liver microsomes has indicated that cholesterol 7α-hydroxylation as well as 12α-hydroxylation of 5β-cholestan-3α,7α,12α-triol is catalyzed by specific species of cytochrome P-450 (34, 36). However, it has previously not been possible to obtain a separation of the 12α-hydroxylase activity from the 25-hydroxylase activity. The present results, showing that a cytochrome P-450 catalyzing exclusively 25-hydroxylation of C₂₇-steroids can be obtained, provide strong evidence for the concept that 12α-hydroxylation and 25-hydroxylation of 5β-cholestan-3α,7α-diol are catalyzed by separate species of cytochrome P-450. It should be mentioned that cholesterol 7α-hydroxylation, 12α-hydroxylation, and 26-hydroxylation were catalyzed by other cytochrome P-450 fractions obtained in the purification procedure.

Hiwatashi and Ichikawa (15) have reported that a cytochrome P-450 fraction isolated from bovine liver microsomes catalyzed 25-hydroxylation of vitamin D₃ as efficiently as vitamin D₃ and 1α-hydroxyvitamin D₃. In contrast, the rat liver microsomes as well as the purified cytochrome P-450 used in the present study did not show detectable 25-hydroxylase activity towards vitamin D₃. It should be pointed out that the catalytic activity towards vitamin D₃ and 1α-hydroxyvitamin D₃ was much higher with the present cytochrome P-450 than with that reported by Hiwatashi and Ichikawa.

In consonance with the results of previous studies, the 25-hydroxylase activity towards vitamin D₃ was low in whole microsomes (16, 37). However, upon solubilization and purification of microsomal cytochrome P-450, the catalytic activity increased drastically. On the basis of yield and catalytic activity of the cytochrome P-450, it could be calculated that the purified enzyme represented about four times as much vitamin D₃ 25-hydroxylase activity than was present in microsomes. Thus, it seems that inhibitory factors of the vitamin D₃ 25-hydroxylase activity have been removed during the purification procedure.

It is generally considered that all reconstituted systems show a significant dependency of lipid or detergent for catalytic activity, provided that the level of detergent is sufficiently low in the enzyme preparations (38). However, the present cytochrome P-450 did not require phospholipid or detergent to catalyze 25-hydroxylation of 5β-cholestan-3α,7α,12α-triol or vitamin D₃. In fact, Emulgen almost fully inhibited 25-hydroxylase activity. It should be pointed out that the preparations of cytochrome P-450 used were extensively treated on hydroxylapatite columns to remove Emulgen. No definite explanation for this lack of lipid dependency can be offered at present. It is possible that these lipophilic substrates may behave in the reconstituted system in a manner similar to lipid and thus replace the lipid (38).

Cytochrome b₅ has been reported to stimulate certain hydroxylations catalyzed by purified cytochrome P-450 (39, 40). Noshiro et al. (41) have reported that antibodies to protease-solubilized cytochrome b₅ inhibit 25-hydroxylation of 5β-cholestan-3α,7α,12α-triol catalyzed by crude rat liver microsomes. However, cytochrome b₅ has been found to have no stimulatory effect on 25-hydroxylation of 5β-cholestan-3α,7α,12α-triol or vitamin D₃ catalyzed by the purified cytochrome P-450 used in the present investigation. It might be mentioned that in a separate experiment the same preparation of cytochrome b₅ was found to stimulate 1α-hydroxylation of testosterone by a phenobarbital-induced cytochrome P-450 from rat liver microsomes three times.

The C₂₇-sterol and vitamin D₃ 25-hydroxylase activities copurified and were enriched in the apparently homogeneous cytochrome P-450. Further, it is obvious that the preparation of the cytochrome P-450 with respect to 25-hydroxylation of C₂₇-steroids and vitamin D₃ were very similar. Thus, the present results indicate that the same species of cytochrome P-450 catalyzes 25-hydroxylation of C₂₇-steroids and vitamin D₃. It should be mentioned that recent work with electrophoretically homogeneous cytochrome P-450₅₇₄, fractions from rabbit liver microsomes has resulted in the separation of two subfractions with different substrate specificity towards C₂₇-steroids (34). Therefore, it can not be excluded that the present, apparently homogeneous, cytochrome P-450 fraction might contain two closely related isozymes with different substrate specificity.

Acknowledgments—The skillful technical assistance of Britt-Marie Johansson and Anita Lövgren is gratefully acknowledged.

REFERENCES

25-Hydroxylation of C27-Steroids and Vitamin D₃

Omura, T., and Sato, R. (1964) J. Biol. Chem. 239, 2379-2385

25-hydroxylation of C27-steroids and vitamin D3 by a constitutive cytochrome P-450 from rat liver microsomes.
S Andersson, I Holmberg and K Wikvall

Access the most updated version of this article at http://www.jbc.org/content/258/11/6777

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/258/11/6777.full.html#ref-list-1