The complete nucleotide sequence has been determined for three newly cloned evolutionary variants from two different independently generated evolutionary series (1100 and 2100 series) of simian virus 40 (SV40). These naturally arising variants, designated ev-1110, ev-2102, and ev-2114, were isolated after five high multiplicity serial passages. The structure of the variants consists of a monomeric unit tandemly repeated four times (ev-2102 and ev-2114) or six times (ev-1110) in the variant genome; the variants have four or six copies, respectively, of the viral origin signal for DNA replication. The DNA content in the three variants is vastly different in that the genome of variant ev-2114 contains only rearranged viral sequences, while variant ev-2102 contains a substitution with monkey DNA sequences consisting of a nearly complete dimeric unit of Alu family sequences as well as less repetitive sequences and variant ev-1110 contains monkey DNA sequences derived solely from repetitive α-component DNA. Recombination events, cellular sequences, and structural features of these and other naturally arising SV40 variants are compared.

The undiluted serial passage of SV40 in permissive monkey kidney cells results in the generation of evolutionary variants whose genomes represent the net result of recombination events that have occurred either among viral DNA sequences with the subsequent duplication and/or deletion of segments of the wild type SV40 genome or between viral and host DNA with the subsequent incorporation of host DNA and loss of additional viral sequences (for review see Ref. 1). We previously reported the structure of three variants, ev-1114, ev-1117, and ev-1119, from the 3rd serial passage (2, 3) which contain viral sequence rearrangements including two copies of the SV40 origin (ori) of replication and two viral-viral recombinant joints per variant genome, two variants from the 13th passage, ev-1101 and ev-1103 (4, 5), which are host-substituted variants each containing two unique viral-host junctions and five or nine copies of ori, respectively, and a variant from the 45th passage, ev-1104 (5, 6), which contains host DNA, six copies of ori arranged as inverted repeats, and six unique viral-host recombinant junctions. The host DNA in ev-1103 and ev-1104 consists of both repetitive α-component (7) and low reiteration frequency monkey DNA while only low reiteration frequency host DNA has recombined with viral DNA in ev-1101.

To compare recombination events in independently derived variants, we serially passed a second evolutionary series (2100 series) distinct from the variants isolated from the 1100 series. Since the initial recombination events are probably obscured by multiple recombination events in late passage variants, we isolated variants from the 5th undiluted serial passage in order to analyze recombination events that occur earlier in the evolution of SV40 variants.

One of these naturally arising variants, ev-2114, is missing the early region of SV40 as the result of recombination events which have generated two viral-viral recombinant junctions between the SV40 late region and the noncoding regulatory region located in HindIII-DIII restriction fragment Hin C which includes the origin for viral DNA replication. The other variants, ev-2102 and ev-1110, have approximately equal amounts of viral and host DNA with two viral-host recombinant junctions.

The present study is the first report of the incorporation into an evolutionary variant of SV40 of a monkey sequence that shares homology with the Alu family of dispersed repetitive sequences found in human and monkey DNA (8). Dhruva et al. (9) have also identified a monkey Alu sequence in a SV40-viable deletion mutant that acquired the monkey DNA insertion during transfection of monkey kidney cells with the viral mutant DNA. In both SV40 derivatives a conserved replication origin-like sequence is included in the monkey Alu family insert.

In contrast to other host-substituted variants of SV40 which contain only part of the 172-bp HindIII-cleaved repeat unit of α-component monkey DNA (5, 10, 11), variant ev-1110 contains a 334-bp monkey sequence homologous to nearly two tandem repeat copies of α-component DNA.

From our previous studies, the minimum Hin A sequence retained in naturally arising evolutionary variants was 31 bp. However, the sequence analysis of newly isolated ev-2114 shows that only 4 bp of Hin A sequence remain and 3 of the 4 bp are part of the recognition site for the HindIII enzyme.

This study discusses the structure of these and other SV40 variants including the nucleotide sequence analysis of the recombinant events.

MATERIALS AND METHODS

1. The abbreviation used is: bp, base pairs.
2. Portions of this paper (including "Materials and Methods," part of "Results," and Figs. 1-8) are presented in miniprint at the end of this paper. Miniprint is easily read with the aid of a standard magnifying glass. Full size photocopies are available from the Journal of Biological Chemistry, 9650 Rockville Pike, Bethesda, MD 20814. Request Document No. 83M-1121, cite the authors, and include a check or money order for $6.00 per set of photocopies. Full size photocopies are also included in the microfilm edition of the Journal that is available from Waverley Press.

* This research was supported by Grant CA-28250 from the National Cancer Institute, Department of Health and Human Services. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† Recipient of Research Career Development Award CA-00449 from the National Cancer Institute.
RESULTS AND DISCUSSION

We have isolated and characterized three naturally arising evolutionary variants, ev-2114, ev-2102, and ev-1110, to learn additional information about recombination events in SV40-infected animal cells. All three variants were isolated from the 5th undiluted serial passage in order to compare variants from the same early passage of independently generated evolutionary series (1100 and 2100), to avoid the complexities of multiple recombination events seen in the late passage variants, and to separate independently generated recombination events from those that are the result of a particular recombination event being studied repeatedly as it is passed along through the evolution of progeny variants.

Recombinant ev-2114 was apparently generated when two large deletions removed the early region (Hin H, I, B, and all but 4 bp of Hin A) and part of the late region (Hin D and E, part of Hin C, and all but 36 bp of Hin K), with the result that the 346-bp noncoding segment of SV40 Hin C (plus 4 bp of Hin A) was joined to a 736-bp segment of late region (Hin F, J, and a portion of Hin K and G) (see Figs. 1 and 4 for comparison of wild type and variant maps). This recombinant segment was then copied to form four tandem repeats that comprise the variant genome. It is of interest to compare recombinant ev-2114 from the 5th passage to three variants isolated from the 3rd passage of evolutionary series 1100 (ev-1114, ev-1117, ev-1119 (3, 4)) which also contain no host sequences. The rearrangement of viral sequences in the 3rd passage variants reflects one deletion and one duplication per variant genome and each variant has two copies of the ori signal for viral DNA replication. In the five variants from two independently generated evolutionary series, there are a total of five recombinant joints that contain Hin C sequence and although the site of recombination in each variant has occurred within a 230-bp stretch of Hin C, in every instance recombination has occurred at a different nucleotide position in the Hin C sequence. Similarly a different Hin A nucleotide residue occurs at the recombinant sites involving Hin A sequences. This data strongly points up the lack of any site specificity in the viral-viral recombination events taking place in SV40-infected monkey kidney cells as also previously noted (3, 22).

In recombinant ev-2102, a 565-bp viral segment derived from the Hin C-Hin A region of the SV40 genome has recombined with a 664-bp segment of monkey cell DNA. This recombinant sequence is tandemly repeated four times in the variant genome and the variant has four copies of ori. By computer analysis, the 664-bp segment of monkey cell DNA in the ev-2102 monomeric unit does not share homology with host-derived DNA sequences present in the 1100 series variants or any other evolutionary variants of SV40 isolated in our laboratory (5, 6) or other laboratories (11), nor with host sequences present in monkey cell repetitive a-component DNA (7). However, the 664-bp host sequence present in ev-2102 does contain a 233-bp sequence which is homologous to the Alu family of dispersed repetitive sequences found at a frequency of about 3% in human chromosomal DNA (8). Alu-type sequences have been identified in a number of different species (8) including purified preparations of small polydisperser circular DNA from the BSC-1 line of monkey kidney cells (32) and from a library of African green monkey genomic DNA (33). Dhruva et al. (9) have identified a 157-bp segment of monkey DNA corresponding to Alu family sequences which has been inserted into the 5' leader sequence of the early region of an SV40 mutant, in1449. As shown in Fig. 7, the monkey insert of ev-2102 includes all but about 50 bp of a complete Alu sequence from the monkey genome and contains the representative features of human and primate Alu repeats (8), namely a conserved 9-bp palindromic, a dinucleotide structure consisting of 2 arms each approximately 130-bp long, an A-rich region between the 5' arm and 3' arm, a portion of the 31-bp insert in the 3' arm, and homology to human and monkey Alu repeat sequences. Unlike other reported monkey Alu-type sequences (9, 32, 33), the monkey Alu sequence insert in ev-2102 has an internal perfectly repeated 14-bp segment which although it differs by two nucleotides from the 14-bp direct repeat found in the human consensus Alu sequence, a perfect repeat has nevertheless been conserved (nucleotide residues 213-200 and 78-65 of Fig. 7). The short direct repeats which usually flank the Alu family of mobile sequences are not identifiable in ev-2102 nor is the type of homology at the recombinant junction similar to that reported for in1449. The Alu equivalent monkey DNA insert is flanked by perfectly homologous decanucleotides (enclosed by boxes in Fig. 6); however, they occur on complementary strands. There is a 5-bp viral sequence adjacent to the decanucleotide in Hin A which is inserted and repeated in the Alu-type sequence at 16 bp from the viral-host recombinant joint (Fig. 5c). The precisely defined end, characteristic of Alu-type sequences, is intact in ev-2102 and is joined to a segment of single copy or low repetition frequency monkey DNA at residue 233; the other end of the Alu-type sequence has recombined with viral Hin A sequences. To determine whether this segment of less repetitive DNA was originally joined to the Alu family sequence in the cellular genome, the less repetitive DNA segment needs to be cloned from a monkey cell library.

It is unclear whether the conservation of the Alu family sequences in different species has any structural/functional significance. The replication ori-like sequence present in the Alu family sequences (34) which shares homology with the replication origin sequences of several pappoviviruses has also been conserved in the ev-2102 Alu sequence insert (nucleotide residues 58-45 in Fig. 7). It remains to be determined if the Alu repeat sequences play a role in the initiation of DNA replication and whether the inclusion of a 233-bp segment of the Alu family of dispersed repeats in a SV40 evolutionary variant contributes to the selective replicative advantage of the variant. We plan to dissect and test the "enhancing" potential of the 664-bp segment as well as other host segments present in the fully characterized naturally arising variants of series 1100 and 2100 in terms of both replication and recombination.

Variant ev-1110 is similar to previously characterized host-substituted variants in series 1100, i.e. ev-1101 and ev-1103 (13th passage) (4, 5, 10) and ev-1104 (45th passage) (5, 6) in that the only viral sequences retained are derived from the Hin C-Hin A region of the SV40 genome and these viral sequences have recombined with monkey cell DNA. Whereas variant ev-1101 contains only nonrepetitive cell DNA, ev-1110 contains only the repetitive a-component monkey DNA, while ev-1103 and ev-1104 contain a portion of the repetitive monkey a-component DNA in addition to segments of low frequency monkey DNA which share no homology to the cellular sequence in ev-1101. Variant ev-1110 is particularly interesting because we know of no other instance where SV40 viral DNA has recombined exclusively with a-component monkey DNA. Furthermore, ev-1110 is the first variant which has incorporated a complete copy of the 172-bp repeat. In fact, ev-1110 has recombined with a concatenated 334-bp segment of the a-component sequence which is nearly two
copies of the basic 172-bp HindIII repeating unit. This is in contrast to ev-1103 whose cellular segment consists of 142 bp of the 172-bp α-component sequence inserted between a less repetitive cell sequence and a portion of the viral HindC sequence (5, 10). The 41-bp α-component sequence in ev-1104 is similarly inserted between cell and viral sequences (5), while the 66-bp α-component sequence in ev-1108 and the 156 bp of α-component sequence in CVP8/1/P2 (11) are flanked on both sides by less repetitive cell DNA and inserted between SV40 DNA sequences. Thus, the junction in ev-1110 between viral DNA and α-component DNA may reflect an initial recombinational event between the host and viral genomes in contrast to ev-1103, ev-1104, ev-1108, and CVP8/1/P2 where it seems more likely that the structures of these variants are indicative of additional recombinational events between repetitive and less repetitive cellular DNA.

A-T-rich sequences are often found at the recombinant joints in SV40 variants (3, 5, 10) including eu-2102 and eu-2114 and at the site of A integration in Escherichia coli (35). Such a preponderance of A-T residues could increase the potential for the recombination event to occur at a given site. Based on nucleotide sequence analysis of recombinating parental DNAs contiguous to the recombinant joints in series 1100 variants, we have also postulated that the presence of short 4- to 7-bp stretches of homology between recombining DNAs could help stabilize the recombinant intermediate prior to joint formation in SV40 variants (3, 5, 22). However, in the case of ev-1110, the homology between the parental α-component sequence and parental SV40 sequence is not striking and the A-T content is about average. Perhaps the high reiteration frequency of the α-component sequence facilitates its recombination to viral DNA in the absence of rich A-T base content or patchy homology. Although several direct repeat and inverted repeat sequences (5-6 bp in length) clustered around the two viral-host recombinant joints are noted in Fig. 5, c and d, what contribution if any they make to the recombination event is unknown. Nucleotide sequence analysis of the viral-host junctions reveals no single recognition sequence for recombination in either host or viral DNA. Indeed, analysis of both viral-viral and viral-host junctions in variants eu-2102 and eu-2114 from a new independently generated series (2100) of evolutionary variants points out the same lack of dependence on even minimal homology for recombination to occur. Furthermore, we have seen another example of the insertion of an extra nucleotide of unknown source at the crossover point (eu-2114).

The α-component sequence in ev-1110 is compared with that in variants ev-1103, ev-1104, ev-1108, CVP8/1/P2 (10) and with the known α-component monkey sequence (7) (see Fig. 8). It should be noted that because of the single common core nucleotide at the site of recombination between viral and host DNA, it is not known precisely whether the monomeric unit of ev-1110 consists of 334 bp or 335 bp of α-component DNA. The ev-1110 sequence differs by a few nucleotides from the α-component sequence present in the other four variants and in monkey cell DNA. As compared to monkey cell α-component DNA, there are five single base changes in the ev-1110 sequence. The observed divergence could be representative of different classes of α-component sequence present in the cell (as suggested by McCutchan et al. (10)) in which case each of the five variants has recombined with a different class of α-component sequence. However, since four of the variants were isolated from the same evolutionary series 1100 and nucleotide sequence analyses suggest that ev-1104 and ev-1108 are derived in part from ev-1103 or from a common ancestral molecule (5), divergence seen in the α-component sequence may have occurred after the evolutionary predecessor was formed.

One approach to understanding the functional significance of regulatory sequence signals is to study the incorporation and/or retention of a given sequence in naturally arising variants which become the dominant species presumably because they have a selective advantage over other defectives and wild type helper virus during high multiplicity passage. For example, the 142-bp segment of α-component DNA present in ev-1103 (passage 13) is covalently joined at nucleotide 133 (refer to numbering of α-component DNA in Fig. 8) to a segment of less highly repetitive monkey DNA. At the 40th undiluted serial passage (same 1100 series), we cloned variant ev-1108 which has retained the segment of low reiteration frequency monkey DNA covalently linked to α-component DNA at nucleotide 133 but has lost 76 bp of the 142-bp α-component segment. Five passages later, we find that ev-1104 (passage 45) still retains the low frequency monkey DNA segment covalently joined to nucleotide 133 of α-component DNA but only 41 bp of α-component are retained. It remains to be tested, but probably the presence of α-component DNA in ev-1110 reflects the high reiteration frequency of α-component DNA rather than some selective advantage the sequence might confer on serially propagated variants. The data suggests that if the incorporation of a particular cellular sequence contributes to the selective advantage of the variant, that advantage most likely is contained in the segment of low frequency monkey DNA presumably retained intact from the 13th to 45th passage while at most only a 41-bp segment of the α-component sequence might have anything to contribute. It is interesting that the A-T base content of the retained segment of low frequency DNA is extremely high (83%).

Finally, it is worth noting that in comparing all variants isolated to date (series 1100 and 2100), the HindIII site at the Hin A/C junction is always preserved as if it is supplying some as yet unidentified cis-acting function. The 45th passage variant ev-1104 has multiple A/C junctions per monomer unit (6/monomer) whose Hin A content varies in size from 31 to 65 bp (5). That this sequence is not required to initiate replication was first demonstrated by Lai and Nathans (36) who constructed a variable deletion mutant, dl-1002, from which the entire Hin A segment has been deleted leaving Hin C joined to Hin H (see Fig. 4 for reference to wild type SV40 map) but which still can replicate in the presence of a helper virus. We also constructed a mutant which is missing 28 bp of Hin A immediately adjacent to the A/C junction and it replicates normally (6). A study by Lee and Nathans (37) indicates that this Hin A region does not play a role in encapsidation. Sequence analysis of newly isolated ev-2114 shows that only 4 bp of Hin A sequence remain and 3 of the 4 bp are part of the recognition site for the HindIII enzyme. It seems clear that Hin A sequences are indeed dispensable. It remains to be seen whether an evolutionary variant will be isolated that has lost the HindIII site at the Hin A/C junction but retained the adjacent sequence signal for initiating DNA replication.

Acknowledgments—We thank Dr. Kenneth Manly for writing the computer program used to search for sequence homologies and Marcia Held and Bonnie Becque for typing the manuscript.

REFERENCES
Structure of SV40 Variants ev-2114, ev-2102, and ev-1110

Supplementary Material to
Recombination in SV40 Infected Cells: Structure of Naturally Arising Variants ev-2114, ev-2102 and ev-1110

Lowell Shelden, Anthony Calzato and Mary Woodworth-Willis

Materials and Methods

Cell-Culture and Virus Propagation. The small plaque strain 7% of simian virus 40 (SV40) was grown in the BSC-1 line of African green monkey kidney cells in 24-Well cell-culture dishes and Eagle's Minimum Essential Medium (MEM) containing 10% fetal calf serum. The cells were infected with virus at a multiplicity of 0.01. Individual plaque forming units (PFU) were isolated by deluting the virus stock 1:10 with MEM-i and infecting 9 cm dishes of BSC-1 cells. Plaque purified virus was used in all experiments. The plaque purified virus was grown in BSC-1 cell monolayers infected at a ratio of 1:100 in Eagle's MEM supplemented with 10% fetal calf serum and antibiotic (10 mg/ml) extracted with an equal volume of phenol containing 1/200 volume 0.1% Triton (pH 8.0) and precipitated with ethanol. Recombinant DNA bands were cut out and reinserted into an appropriate growing media. The DNA was purified by adsorption to and elution from a heterogeneous column using the described methods.

Restriction endonuclease analyses were performed on New England Nuclear BioMax.

Restriction endonuclease digestions were performed with

Results

Screening for host-substituted variants. Evolutionary variants from parents three, four, five and six were screened for host-substituted sequences as follows. DNA was prepared by the Hirt procedure (13) from white plaque infected with plaque-purified variant stocks was digested with

Fig. 1. a) Restriction endonuclease map of the number repeat unit of ev-2114 DNA. This map shows the 1094 base repeat unit that is tandemly repeated in the ev-2114 genome four times. The various restriction endonuclease cleavage sites are marked by different letters. b) Restriction endonuclease fragments used for DNA sequencing. The extent and polarity of sequence data obtained from restriction fragments are indicated by horizontal arrows. c) Diagrammatic representation of the 5315/6261 restriction map of monomeric unit of ev-2114. The position of the ev-2114 recombinant junction at nt 1570/2410 and the ev-1110 recombinant junction at nt 1675/2676 is indicated by vertical arrow. The results of the physical mapping of ev-2102 are summarized in Fig. 2a. The restriction endonuclease map of ev-2102 is consistent with the additional intragenic recombination event seen in ev-2114. The restriction endonuclease sites are marked by different letters. d) Computer Analysis of Host DNA Sequences Present in Variant DNAs. A computer program called Faster was used on a CDC 1604 computer to compare the DNA sequences present in the variant DNA described in this paper to the 1094 base repeat unit of ev-2114 and ev-1110 (14, 15, published data). To monkey repetitive v-component DNA (17). Host DNA is defined as that DNA which by computer analysis is not SV40 DNA.

Screening for host-substituted variants. Evolutionary variants from parents three, four, five and six were screened for host-substituted sequences as follows. DNA was prepared by the Hirt procedure (13) from white plaque infected with plaque-purified variant stocks was digested with

Fig. 2. a) Restriction endonuclease map of the 1274 bp monomer repeat unit of ev-2102 DNA. b) The wave and polarity of DNA sequence data obtained from recombination fragments is depicted by horizontal arrows. c) Diagrammatic representation of viral and host-derived DNA content of the ev-2102 monomeric unit. Viral sequences are marked by a bold linear cellular sequences by a wavy line. The location of recombinant junctions between the viral segment (nt 2163-3402) and cellular segment is indicated by vertical arrow.

Downloaded from http://www.jbc.org/ by guest on September 23, 2017
The results of restriction enzyme analysis of eu-3116 are summarized in the physical map shown in Fig. 3a. Digestion of eu-3116 DNA with Eco RI or Hind IIId generates a single 14.5-kb fragment. By electron microscopy, the size of the variant DNA is approximately 3500 bp. These results therefore demonstrate that the variant DNA must be 3500 bp in length.

Restriction Sequence Analysis

1. *Restriction sites* of eu-3116
 - 14320
 - Structure of SV40 Variants eu-2114, eu-2102, and eu-1110

 a. 3' to 5' orientation of restriction enzyme sites:
 - **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.
 - **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

2. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

3. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

4. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

5. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

6. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

7. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.

8. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 a. **Hin c** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin c-3' nucleotide numbers.

 b. **Hin a** sequences extend from nt 5174 to nt 5108 and are indicated by vertical arrows and 5'-Hin a-3' nucleotide numbers.
Structure of SV40 Variants eu-2114, eu-2102, and ev-1110

As depicted in Fig. 6, the monomer fragment of eu-1110 consists of a 412 bp viral segment containing a portion of the His C-His A region of SV40 which is recombined with a 318 bp segment of repetitive -component monkey DNA. The host cell DNA is inserted at nt 1504 of viral His 3 and at nt 1291 of viral His 2. The sequence at some viral-host recombinant junctions is shown in Fig. 6. For visualization of the structure of the viral-host recombinant junctions, the viral His 3 sequences are particularly important. The host sequence is inserted in eu-1110, there is a 4 bp shared sequence on either side of the viral His 3-C-His A junction and a common shared nucleotide (G) at the crossover point of the viral His 3-C-His A junction as well as one adjacent 4 bp sequence in common to both recombinant parental DNAs. The host sequence in eu-1110 which is entirely derived from -component monkey DNA is given in Fig. 8.
Recombination in simian virus 40-infected cells. Structure of naturally arising variants ev-2114, ev-2102, and ev-1110.
L Sheflin, A Celeste and M Woodworth-Gutai

Access the most updated version of this article at http://www.jbc.org/content/258/23/14315

Alerts:
- When this article is cited
- When a correction for this article is posted

[Click here](http://www.jbc.org/content/258/23/14315.full.html#ref-list-1) to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/258/23/14315.full.html#ref-list-1