Tetraphenylboron Causes Ca2+ Release in Isolated Sarcoplasmic Reticulum and in Skinned Muscle Fibers*

(Received for publication, August 13, 1982)

Varda Shoshan†
From the Department of Biology, Ben Gurion University, Beer Sheva, Israel

David H. MacLennan§
From the Banting and Best Department of Medical Research, Charles H. Best Institute, University of Toronto, Toronto, Ontario, Canada M5G 1L6

Donald S. Wood†
From the H. Houston Merritt Clinic Research Center, Department of Neurology, Columbia University, New York, New York 10032

The lipophilic anion tetraphenylboron (TPB-) but not the lipophilic cation tetraphenylarsenium (TPA+) inhibited ATP-dependent Ca2+ accumulation by isolated sarcoplasmic reticulum. TPB- did not inhibit ATP hydrolysis but did induce Ca2+ release from preloaded vesicles. It did not appear to disrupt lipid bilayers or to act as a Ca2+ ionophore since it had no effect on the Ca2+ content of phospholipid vesicles. TPB- also induced Ca2+ release from sarcoplasmic reticulum in chemically skinned muscle fibers causing tension development. In contrast to other Ca2+-releasing agents such as caffeine, proton ionophores, or quercetin, the rise to peak tension was slow and tension was sustained, suggesting that Ca2+ release channels, once opened by TPB-, were held open as long as the compound was present in the membrane. Ca2+ uptake was re-established upon removal of TPB- or addition of TPA+. TPB- or TPA- would probably distribute within the membrane, altering surface charges on both sides of the membrane. The fact that only a negatively charged ion brought about opening of Ca2+ release channels suggests that specific surface charges control Ca2+ release channels in sarcoplasmic reticulum. Although we have not been able to prove that TPB- acts exclusively on physiologically relevant Ca2+ release channels, we have shown that TPB- does not release Ca2+ from proteoliposomes reconstituted with the Ca2+ + Mg2+ ATPase. Thus TPB- does not induce Ca2+ release through channels formed by the ATPase molecule.

The release and reuptake of Ca2+ by the sarcoplasmic reticulum are responsible for the contraction and relaxation, respectively, of skeletal and cardiac muscle (1). These processes have been studied in isolated sarcoplasmic reticulum with differing degrees of success. The molecular mechanism for Ca2+ uptake is understood in general terms (2, 3), and the initial rate of Ca2+ transport is sufficient to account for muscle relaxation (4). The process of Ca2+ release, however, is only beginning to be understood (5).

Ca2+ release under physiological conditions occurs at rates 100- to 1000-fold faster than the rate of Ca2+ uptake (6). These rates suggest that Ca2+ is released through an open channel rather than through an enzymatic process. The key questions in Ca2+ release, then, are concerned with the nature of the Ca2+ release channel and with how opening of the channel is controlled.

Control of the Ca2+ release channel has been difficult to study in partially resolved systems, perhaps because key elements in the control system are lost upon disruption of the integrated sarcotubular network. Skinned muscle fibers (7, 8) represent a partially resolved system. Ca2+ release is no longer triggered by electrical stimulation because the sarcolemna is either physically removed or chemically disrupted, although the T-system remains. Sarcoplasmic reticulum vesicles represent a still further resolved system. This membrane system is reduced to vesicular form, and the system and sarcosomal elements are largely purified away. Ca2+ release from sarcoplasmic reticulum has generally been more difficult to obtain in vesicles than in skinned fibers. The differences in the response of these two systems may be a reflection of loss of elements of the T-system during purification of sarcoplasmic reticulum or of the fact that continuity of structure is destroyed when sarcoplasmic reticulum is fragmented.

There is some evidence that sarcoplasmic reticulum vesicles are heterogeneous with regard to their ability to release Ca2+. Weber and Herz (9) first noted that caffeine, which releases Ca2+ readily from sarcoplasmic reticulum in skinned fibers, will induce some Ca2+ release from heavy, but not from light sarcoplasmic reticulum. These observations have recently been confirmed and extended by Ohnishi (10). Campbell and Shamos (11) found that sodium dantrolene, a reagent that affects cellular Ca2+ concentrations in vivo (12), would inhibit the passive release of Ca2+ from heavy vesicles, which are

† This research was supported by Grant B/34 from the Israel-United States Binational Science Foundation, by grants from the Muscular Dystrophy Association, by a grant from the Muscular Dystrophy Association of Canada, and by Grant NS11766 from the National Institutes of Health. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Recipient of a Muscular Dystrophy Association of Canada Post-doctoral Fellowship in support of this work.

§ To whom reprint requests should be addressed.

†† Supported by a Senior Investigatorship from the New York Heart Association of America.

1 The abbreviations used are: T, transverse tubular; EGTA, ethylene glycol bis(β-aminoethyl ether)-N,N,N',N'-tetraacetic acid; TPB-, tetraphenylboron; TPA+, tetraphenylarsenium; TNP+, trinitrophenol.
believed to originate in the junctional regions of sarcoplasmic reticulum (13). Also, Miyamoto and Racker (14) found a more rapid ruthenium red-sensitive Ca^{2+} release in heavy fractions of sarcoplasmic reticulum than in lighter fractions. Ca^{2+} is not released from partially disrupted sarcoplasmic systems by electrical depolarization, but other stimuli for Ca^{2+} release have been found and theories for control of Ca^{2+} release have been developed. The theory of Ca^{2+}-induced Ca^{2+} release (15, 16) developed from studies of skinned fibers. It was proposed that a small amount of Ca^{2+}, entering the cell during depolarization of surface and T system membranes, could trigger the release of Ca^{2+} from the sarcoplasmic reticulum or surface charge (28). We now report that tetraphenylboron but not tetraphenylarsonium can stimulate Ca^{2+} potential or surface charge (28). We now report that tetraphenylboron but not tetraphenylarsonium can stimulate Ca^{2+} potential or surface charge (28). We now report that tetraphenylboron but not tetraphenylarsonium can stimulate Ca^{2+} potential or surface charge (28).

The membrane is so permeable to Na^+, K^+, and H^+ that it is offset a transmembrane pH gradient of the magnitude measured across the membrane (22, 23), could release Ca^{2+}. These studies suggested that a pH gradient (or a membrane potential) across the sarcoplasmic reticulum membrane may be a controlling element for Ca^{2+} release. These conclusions may, however, have to be re-evaluated in light of a recent finding that the T system in skinched fibers might have the capacity to form a membrane potential (27). If so, then the effect of H^+ ionophores or of elevated pH might be on the T system that is present in the skinched fibers. We have asked whether a proton gradient and/or an associated membrane potential could be a controlling influence on Ca^{2+} uptake (24). This evidence signifies the negative logarithm of free Ca^{2+} in molar units). Ca^{2+} and Ca^{2+} release solution was the wash solution (signified by PM) according to Avron (29). Conditions for Ca^{2+} uptake were as described in Ref. 35 and were assayed by the Millipore filtration method (36).

Skinned Fiber Studies

Preparation—Skinned fibers were prepared from rabbit psoas muscle as described previously (6). Assays—In a typical experiment protocol fibers were exposed to a subjunctional level of free Ca^{2+} to permit the sarcoplasmic reticulum to accumulate Ca^{2+}. The fibers were then washed twice with wash solution (signified by w in the relevant figures) to remove EGTA and added Ca^{2+}. TPA$^+$ or TPB$^-$ was then added to the wash solution and initiation of tension was recorded. The composition of the Ca^{2+}-load solution was 170 mM Na propionate, 2.5 mM Mg propionate, 2.5 mM ATP, 10 mM imidazole, $pH 7.0, 5$ mM EGTA, $pCa 6.0$ (where pCa signifies the negative logarithm of free Ca^{2+} in molar units). Ca^{2+} and EGTA were omitted from the wash solution and Na propionate was increased to 185 mM to maintain ionic strength. Other solution components were the same. The Ca^{2+} release solution was the wash solution with the addition of TPA$^+$ or TPB$^-$, or Ca^{2+}, and EGTA buffers was started. The concentration of free Ca^{2+} in the Ca^{2+}/EGTA buffers was started with a computer program for solving the multiple equilibrium equation for Ca^{2+}, Mg^{2+}, $EGTA$, and ATP. The following apparent dissociation constants (m$^{-1}$) at $pH 7.0$ were used: Mg^{2+}/EGTA, 40; Ca^{2+}/EGTA, 1.92 \times 105; Mg/ATP 1×10^{5}; Ca^{2+}/ATP 5×10^{5} (57). All experiments were conducted at $23 \pm 1^\circ C$, pH 7.0 ± 0.2, and ionic strength 200 nm.

RESULTS

Effect of TPB$^-$ on Fragmented Sarcoplasmic Reticulum—Fig. 1 shows that the lipophilic anion TPB$^-$ was a very effective inhibitor of Ca^{2+} accumulation by isolated sarcoplasmic reticulum vesicles. The inhibition was apparent both in the absence of phosphate (A) and in the presence of 20 mM phosphate added as a permeant anion to support high levels of Ca^{2+} accumulation (B). Half-maximal inhibition of Ca^{2+} accumulation was observed at about $7 \mu M TPB^-$ in the absence of phosphate and at about $15 \mu M TPB^-$ in the presence of 20 mM phosphate.

In contrast to TPB$^-$, the lipophilic cation TPA$^+$ was not an effective inhibitor of Ca^{2+} accumulation by sarcoplasmic reticulum, either in the presence or absence of inorganic phosphate (Fig. 1). Table 1 shows that TPA$^+$ and TPB$^-$ were antagonistic. If TPA$^+$ were added first to isolated vesicles, followed 1 min later by the addition of TPB$^-$ and by ATP to start the uptake reaction, TPA$^+$ prevented the TPB$^-$-induced inhibition of Ca^{2+} uptake.
Since Ca\(^{2+}\) transport is mediated by the Ca\(^{2+}\) + Mg\(^{2+}\) ATPase, we examined the effect of TPB\(^{-}\) on ATPase activity. Fig. 2 shows that TPB\(^{-}\) was not an inhibitor of the Ca\(^{2+}\)-dependent ATPase. Indeed, the ATPase activity was slightly stimulated in the presence of TPB\(^{-}\). Stimulation of ATPase activity has previously been observed when ATP hydrolysis was uncoupled from Ca\(^{2+}\) accumulation by detergent (32) or other permeabilizing agents such as diethyl ether (39) or EGTA (39).

![Fig. 1. Tetraphenylboron but not tetraphenylarsonium inhibits Ca\(^{2+}\) uptake by sarcoplasmic reticulum in the presence and absence of P. Ca\(^{2+}\) uptake by sarcoplasmic reticulum vesicles was assayed as described under "Experimental Procedures." Sarco-
plasmic reticulum (88 pg/ml) was incubated for 2 min at room temperature in a solution containing 20 mM Tris-maleate, pH 6.8, 100 mM NaCl, 5 mM MgCl\(_2\), 5 mM ATP, 0.5 mM EGTA, 0.5 mM CaCl\(_2\) (3.0 \times 10\(^6\) cpn/μmol), and the indicated concentration of TPB\(^{-}\) or TPA\(^{+}\). In B, the assay medium also contained 20 mM P.](http://www.jbc.org/)

<table>
<thead>
<tr>
<th>TABLE I</th>
<th>Effect of TPA(^{+}) on the inhibition of Ca(^{2+}) uptake by TPB(^{-})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(^{2+}) uptake</td>
<td>% inhibition</td>
</tr>
<tr>
<td>Additions</td>
<td>Calcium uptake</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
</tr>
<tr>
<td>TPA(^{+}), 20 μM</td>
<td>15</td>
</tr>
<tr>
<td>TPA(^{+}), 50 μM</td>
<td>15</td>
</tr>
<tr>
<td>TPA(^{+}), 100 μM</td>
<td>15</td>
</tr>
<tr>
<td>TPB(^{-}), 20 μM</td>
<td>32</td>
</tr>
<tr>
<td>TPB(^{-}) + TPA(^{+}), 20 μM</td>
<td>34</td>
</tr>
<tr>
<td>TPB(^{-}) + TPA(^{+}), 50 μM</td>
<td>14</td>
</tr>
<tr>
<td>TPB(^{-}) + TPA(^{+}), 100 μM</td>
<td>12</td>
</tr>
</tbody>
</table>

![Fig. 2. Tetraphenylboron inhibits Ca\(^{2+}\) uptake but not ATPase activity. Conditions for Ca\(^{2+}\) uptake (A) and ATPase activity (B) were as described in Fig. 1A, except that, for the assay of ATPase activity, unlabeled CaCl\(_2\) was used and [γ\(^{32}\)P]ATP was added to a specific activity of 6 \times 10\(^7\) cpn/μmol. Ca\(^{2+}\)-ATPase activity was assayed as described under "Experimental Procedures." TPB\(^{-}\) concentration was 26 μM and sarcoplasmic reticulum vesicles were 67 μg/μl.](http://www.jbc.org/)

![Fig. 3. Ca\(^{2+}\) release induced by TPB\(^{-}\). Ca\(^{2+}\) release was initiated by the addition of TPB\(^{-}\) or TPA\(^{+}\), 2 min after initiation of Ca\(^{2+}\) uptake by the sarcoplasmic reticulum vesicles (87 μg/ml). At the indicated times, samples were assayed for Ca\(^{2+}\) content as described under "Experimental Procedures." Conditions for Ca\(^{2+}\) uptake were as described in Fig. 1A. Control activity (100%), 152 nmol of Ca\(^{2+}\)/mg of protein. ○—○ and ■—■ indicate the presence of TPB\(^{-}\) at 26 and 92 μM, respectively; ○—○ indicates the presence of 92 μM TPA\(^{+}\).](http://www.jbc.org/)
release from calcium phosphate-loaded vesicles (Fig. 4). Again, both the rate and the extent of Ca\(^{2+}\) release were dependent on the TPB\(^-\) concentration. Since our preparation contained both light and heavy vesicles, we did not distinguish in this experiment whether release was from the light or the heavy fraction.

Since it was important to establish whether TPB\(^-\) was causing Ca\(^{2+}\) release through an ionophoric activity or through an effect on the integrity of phospholipid bilayers, we tested its effect on the content of Ca\(^{2+}\)-loaded phospholipid (asolectin) vesicles. Fig. 5 shows that TPB\(^-\) at 50 \(\mu\)M or even 100 \(\mu\)M did not cause a significant increase in the Ca\(^{2+}\) permeability of these phospholipid vesicles. By contrast, the Ca\(^{2+}\) ionophore A23187 caused a rapid release of Ca\(^{2+}\) from an aliquot of the same phospholipid vesicles.

The effect of TPB\(^-\) on Ca\(^{2+}\) release from sarcoplasmic reticulum vesicles was only slightly pH dependent over the range from 6.1 to 7.8 (Fig. 6). In this pH interval, Ca\(^{2+}\) uptake in the absence of TPB\(^-\) was optimal at about pH 6.5. When 46 \(\mu\)M TPB\(^-\) was added, Ca\(^{2+}\) was released after 2 min in all cases, although slightly more Ca\(^{2+}\) remained in the vesicles in the pH range 6.1-6.3 than in the range 6.5-7.8.

Effect of TPB\(^-\) on Skinned Muscle Fibers—The sarcoplasmic reticulum in skinned muscle fibers is morphologically intact although connections (feet) between the sarcoplasmic reticulum and the transverse tubular system are disrupted (40). The sarcoplasmic reticulum was loaded with Ca\(^{2+}\) in a solution containing subtension concentrations of Ca\(^{2+}\) (pCa 6.6). The loading solution was then replaced with a solution containing the lipophilic ions, and Ca\(^{2+}\) release from the sarcoplasmic reticulum was monitored by measurement of the tension generated by the contractile apparatus in the presence of the released Ca\(^{2+}\).

TPB\(^-\), but not TPA\(^+\), caused tension following a period of Ca\(^{2+}\) loading in skinned fibers (Fig. 7). The characteristics of Ca\(^{2+}\) release differed significantly from Ca\(^{2+}\) release induced by caffeine, quercetin, or H\(^+\) ionophore, all of which gave a rapid transient tension. The release by TPB\(^-\) was relatively slow in developing. Tension was transient at 5 \(\mu\)M TPB\(^-\) but did not go back to base-line. At higher concentrations tension was sustained.

The upper tracing in Fig. 8 shows that TPA\(^+\) can block TPB\(^-\)-induced Ca\(^{2+}\) release from the sarcoplasmic reticulum. If the bathing solution containing TPA\(^+\) and TPB\(^-\) were
replaced by one containing only TPB- then Ca2+ was released and a sustained tension was observed. These observations suggest that TPA+ inhibition of TPB--induced Ca2+ release is reversible. The fiber in the lower tracing of Fig. 8 was first exposed to 5 mM EGTA and 2% Brij-58, a nonionic detergent that abolishes the ability of the sarcoplasmic reticulum to accumulate net quantities of Ca2+ (8). Following the Ca2+-loading procedure, 50 \mu M TPB- did not elicit a tension in the detergent-treated fiber. Mg2+, on the other hand, which can displace passively bound Ca2+ and elicit force generation in detergent-treated fibers (8), did cause a tension that was abolished by EGTA. These data show that TPB- did not stimulate tension either by an indirect effect on the contractile proteins or through release of passively bound Ca2+ but rather through stimulation of the sarcoplasmic reticulum to release actively accumulated Ca2+.

Because of its ability to release Ca2+ from the sarcoplasmic reticulum, it would be predicted that TPB- would also inhibit net Ca2+ uptake. Fig. 9 shows that TPB-, when present in the Ca2+-loading solution, reduced net Ca2+ uptake sufficiently to reduce or abolish tensions normally elicited by 15 \mu M TPB+.

Fractionation of the Ca2+ Release System—TPB- clearly releases Ca2+ from sarcoplasmic reticulum vesicles. It is not obvious whether it does so by a specific interaction with the physiologically relevant Ca2+ release channels or by interaction with other channels such as a channel for Ca2+ uptake, for anion uptake, or for monovalent cations. In order to obtain some insight into the specificity of TPB- for Ca2+ release channels, we have purified the ATPase from sarcoplasmic reticulum membranes and examined the ability of vesicles reconstituted with the partially purified and fully purified ATPase to retain, in the presence of TPB-, Ca2+ accumulated by ATP-dependent Ca2+ uptake.

Fig. 10 shows that the purified ATPase upon reconstitution into asolectin liposomes had the ability to accumulate Ca2+. The addition of TPB- did not inhibit this Ca2+ uptake (Fig. 10A) but rather caused a slight stimulation. On the other hand, when the liposomes were reconstituted with the partially purified ATPase, TPB- inhibited Ca2+ uptake. Although the experiments reported in Fig. 10, A and B, were carried out with phosphate in the lumen of the reconstituted vesicles, the presence of phosphate does not affect TPB--induced Ca2+ release (Fig. 1).

These results suggest that the Ca2+-release induced by TPB- involved channels that were still present in the partially purified ATPase (R\textsubscript{2}), but which were absent from the fully purified ATPase molecule. They also show that TPB- was not acting to convert the Ca2+ uptake channel in the ATPase into a Ca2+ release channel.

DISCUSSION

The objective of this study was to find out whether lipophilic ions, which move within biological membranes in response to membrane potential or surface charge would induce Ca2+ release from sarcoplasmic reticulum. We found that the anions, TPB- and TNP-, were effective in inducing Ca2+ release from fragmented sarcoplasmic reticulum; TPB- also induced a sustained, reversible Ca2+ release from the morphologically intact sarcoplasmic reticulum of skinned muscle fibers. These observations would suggest that TPB- moved within the sarcoplasmic reticulum membrane, achieving a distribution of charge that affected Ca2+ release channels in such a way as to assure that they would remain open.

It seems clear that TPB- acts directly on the sarcoplasmic reticulum, since Ca2+ release from isolated membranes was unambiguous. Therefore, we would predict that it has a different mechanism of action from these other releasing agents...
such as caffeine, quercetin, H+ ionophores, Ca2+, or Cl− which produce transient Ca2+ release from the morphologically intact sarcoplasmic reticulum of skinned fibers or from heavy fractions of sarcoplasmic reticulum which probably contain elements of the T system that are involved in the control of the Ca2+ release channel in the sarcoplasmic reticulum (41).

A key question concerning the mechanism of action of TPB− is whether it brings about Ca2+ release by an effect on the physiologically relevant Ca2+ release channels. Since TPB− did not increase the Ca2+ permeability of phospholipid vesicles, we believe that it did not have Ca2+ ionophoric activity and that it did not disrupt the integrity of phospholipid bilayers. We have been able to rule out the possibility that it acted through the channel for Ca2+ uptake, which is present in the Ca2+ ATPase, but we have not ruled out the possibility that it acts on other channels, for example, those for anion uptake or for H+, Na+, or K+, by making them cation selective. Obviously, the isolation of any or all of these ion channels from the sarcoplasmic reticulum would be an important step in working out not only the mechanism of TPB−-induced Ca2+ release but also the mechanism of the physiologically relevant Ca2+ release.

If TPB− were operating through the relevant Ca2+ channels, it would suggest several characteristics of the channel. The first prediction would be that the Ca2+ release channel present in all or most of the vesicles formed by fragmentation of sarcoplasmic reticulum. The second prediction would be that the opening and closing of the channel would be controlled by membrane surface charge. Chiu et al. (43) have discussed the possible mechanisms of triggering of Ca2+ release by surface potential perturbations. Since TPB− would move within membranes and orient itself with respect to surrounding charges it would greatly increase the negative charge at the membrane surfaces. When surface charge becomes more negative, the Ca2+ release channels would be held in an open position. This interpretation is supported by the fact that the effect of TPB− is antagonized by TPA− which, upon orientation in the membrane, would increase the positive membrane surface charge, tending to close the Ca2+ release channel. An hypothesis of how TPB− might act would be that it moves to the inner surface of the sarcoplasmic reticulum in response to a fixed positive charge that blocks access of internal Ca2+ to the Ca2+ release channel. The orientation of TPB− near this internal site and throughout the Ca2+ release channel would permit the channels to remain open and Ca2+ to flow outward, down its concentration gradient.

Acknowledgments—We thank Dr. Uri Pick for valuable discussions and V. K. Khanna and G. Plynton for excellent technical assistance.

REFERENCES
Tetraphenylboron causes Ca2+ release in isolated sarcoplasmic reticulum and in skinned muscle fibers.
V Shoshan, D H MacLennan and D S Wood

Access the most updated version of this article at http://www.jbc.org/content/258/5/2837

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/258/5/2837.full.html#ref-list-1