Half-site reactivity in the malate thiokinase reaction was studied by measuring the reaction of enzyme-bound ligands in a series of single turnover experiments. A dimeric (αβ)2 enzyme form containing [14C] succinyl-CoA on one αβ subunit pair and [3H]sucyclin-CoA on the adjacent αβ subunit pair was prepared. Reaction of this enzyme species with ATP or inorganic phosphate resulted in the release of half of the bound succinyl-CoA. The succinyl-CoA released comprised a 50-50 mixture of [14C]- and [3H]sucyclin-CoA. Likewise, enzyme containing [32P]phosphate on one αβ subunit pair and nonradioactive phosphate on the adjacent αβ subunit pair reacted with ADP releasing half of the bound phosphate as a 50-50 mixture of radioactive and nonradioactive phosphate. These results serve to exclude an alternating site mechanism for the malate thiokinase reaction and support a random reaction of liganded subunits.

In addition, it has been shown that enzyme containing 1 phosphate/αβ, dimer is inactive toward phosphate transfer. However, succinyl-CoA served to activate this enzyme species for phosphate transfer. These results can be explained in terms of subunit asymmetry. The simplest model is one in which subunit asymmetry is induced upon ligand binding.

Malate thiokinase (EC 6.3.1.9) catalyzes reversible ATP-dependent acyl-CoA formation with a number of dicarboxylic acids as substrates (1). The physiological substrate is L-malate (2, 3), although succinate can substitute equally well for L-malate in terms of both Vmax and Km (1). The enzyme as isolated exists as a tetramer of αβ dimers, (αβ)4; however, evidence has been presented that the catalytically active form of the enzyme is a dimer of dimers, (αβ)2 (4). The malate thiokinase reaction is similar to the succinate thiokinase reaction in that a phosphorylated enzyme (5-6) and succinyl phosphate have been implicated as reaction intermediates (8-13).

Most recently we have found that an acyl-CoA product of the reaction, succinyl-CoA, can form a tight noncovalent complex with the enzyme in which 1 succinyl-CoA is bound/αβ subunit (14). The enzyme form containing bound succinyl-CoA reacts with ATP resulting in the release of half of the bound succinyl-CoA with the concomitant phosphorylation of half of the available phosphorylation sites. This observation

provided as the basis for the suggestion that the malate thiokinase reaction exhibits half-of-the-sites reactivity when containing bound acyl-CoA (14).

Additional evidence for the existence of half-of-the-sites reactivity in the malate thiokinase reaction came from studies utilizing the active site-directed reagent methoxy carbonyl-succinyl-CoA disulfide (15). This reagent reacts specifically with a thiol group at the acyl-CoA site of the enzyme. When all of the acyl-CoA sites are blocked the enzyme can still be phosphorylated by ATP and dephosphorylated by reaction with ADP. However, only half of the total phosphorylation sites are reactive (16).

In the present study a series of single turnover experiments have been conducted to further probe half-site-reactivity in the malate thiokinase reaction. The results of this study serve to exclude an alternating site reaction mechanism.

EXPERIMENTAL PROCEDURES

Malate thiokinase was purified from cells of *Pseudomonas MA* grown on methylamine as previously described (4). Cells were disrupted in a bead beater rather than in a French pressure cell. The purified enzyme, which exhibited a specific activity of 4.5-5.0 units/mg, was judged to be greater than 90% pure by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate (17). The enzyme was routinely dialyzed against 20 mM Tes buffer, pH 7.4, prior to use.

Single turnover experiments were conducted by incubation of the appropriate enzyme form with radiolabeled substrate, followed by separation of the enzyme from free ligands by molecular sieve chromatography as previously described (14). In general, a 150-μl aliquot was chromatographed on a 1 ml column of Bio-Rad P-10 (100-200 mesh) according to the method of Penefsky (18). Controls were routinely run in which substrate alone was chromatographed under identical conditions. The separation of enzyme and free substrate was such that less than 0.1% of the free substrate co-eluted with the enzyme. The enzyme effluent from the P-10 column was analyzed for protein by the method of Bradford (19), and for enzyme-bound ligands by either determination of radioactive content by scintillation counting or of nonradioactive ligand by specific fluorometric assays. The specific activity of each of the enzyme forms isolated was found to be identical with that of the native enzyme.

Unless otherwise stated incubation of enzyme (generally 3-6 μM) and substrate was for 1 min at 4 °C in 20 mM Tes buffer, pH 7.4. [sucyclin-14C]Succinyl-CoA was prepared as previously described (14), and purified by ion exchange chromatography. 2-Tritiated succinic acid was prepared from 2-tritiated α-ketoglutarate by the method of Zaman and Akhtar (20). The latter compound was prepared by the method of Rose (21).

[14C]Succinic acid, [1,4-14C]sucyclin anhydride, [3H]CoA, T0, [γ-32P]ATP, and [32P]P, were purchased from New England Nuclear. Succinate thiokinase from *Escherichia coli* was a generous gift of Dr. J. Nishimura, University of Texas Health Science Center at San Antonio.

Succinyl-CoA was measured fluorometrically by coupling the succinate thiokinase reaction with the hexokinase and glucose-6-phosphate dehydrogenase. The abbreviation used is: Tes, N-{tris[hydroxymethyl]methyl-2-amino}ethanesulfonic acid.

*This research was supported in part by Grant AM 13843 from the National Institutes of Health and Grant 1391 from the Robert A. Welch Foundation, Houston, TX. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† To whom correspondence should be addressed.
phate dehydrogenase reactions. Reaction mixtures (0.5 ml) contained 0.1 mM ADP, 0.1 mM glucose, 0.1 mM NADP, 0.2 mM MgCl₂, 10 mM potassium phosphate buffer, pH 7.4, and an excess of the three enzymes. The reaction was initiated by the addition of either succinyl-CoA or succinate thiokinase and the increase in fluorescence was measured at an excitation wavelength at 340 nm and an emission wavelength of 460 nm. The fluorometer was standardized with either NADPH or succinyl-CoA.

Succinic acid was measured in a similar fashion by coupling the succinate thiokinase reaction to the pyruvate kinase and lactate dehydrogenase reactions.

ATP, ADP, and Pᵢ, were identified by thin layer chromatography on polyethylenimine cellulose sheets (Baker-flex cellulose PE-F). Two solvent systems were employed: 0.5 M LiCl, 0.2 M HCOOH (1:1 v/v) or 0.52 M NaH₂PO₄, pH 3.5.

RESULTS

In order to study in more detail the mechanism of half-site-reactivity in the malate thiokinase reaction a series of single turnover experiments were conducted. In the first experiment shown in Table I malate thiokinase was incubated with [succinyl-¹⁴C]succinyl-CoA and then separated from free succinyl-CoA by gel filtration. The resultant enzyme, which is a dimer of αβ subunits (αβββ), contained bound [¹⁴C]succinyl-CoA/αβ subunit (E·(succinyl-CoA)₂). Reaction of E·(succinyl-CoA) with ATP resulted in the release of half of the bound succinyl-CoA with the concomitant phosphorylation of one of the two potential phosphorylation sites yielding E·P·(succinyl-CoA) (step 2, Table I). The phosphorylated subunit was permitted to react with [¹⁴C]succinate plus CoA, completing a full turnover at this site, and resulting in the regeneration of enzyme containing bound succinyl-CoA at each site. However, the site containing newly formed succinyl-CoA contains tritiated succinyl-CoA, while the other site contains [¹⁴C]succinyl-CoA (step 3, Table I). Control experiments confirmed that free succinic acid does not bind to either free enzyme, or enzyme containing bound succinyl-CoA, nor does it exchange with bound succinyl-CoA. Initiation of a second turnover by the addition of ATP resulted again in the release of half of the bound succinyl-CoA. However, the remaining enzyme-bound succinyl-CoA comprised a 50-50 mixture of [¹⁴C]- and [¹⁴C]succinyl-CoA. These results are consistent with a half-of-the-sites reactivity mechanism in which both sites have an equal probability for reaction.

In order to confirm these experiments a second set of single turnover experiments was conducted in which the enzyme was initially phosphorylated by ATP yielding E·(P)₂ (step 1, Table II). This enzyme form was reacted with [¹⁴C]succinate plus CoA producing enzyme in which both sites contained bound [¹⁴C]succinyl-CoA, E·(succinyl-CoA)₂. The formation of E·(succinyl-CoA)₂ presumably occurs via the intermediate formation of E·P·succinyl-CoA and yielded inorganic phosphate as a product identified by thin layer chromatography. E·(succinyl-CoA)₂ was reacted with ATP to yield E·P·succinyl-CoA which was then reacted with tritiated succinate plus CoA. This reaction sequence yielded E·(succinyl-CoA)₂ in which the newly formed succinyl-CoA contained tritium and the previously bound succinyl-CoA contained ¹⁴C. Reaction of this species with ATP resulted in a loss of 50% of the bound tritiated succinyl-CoA and 50% of the bound [¹⁴C]succinyl-CoA (step 5, Table II), thus confirming the results shown in Table I.

In the experiments described in Tables I and II reaction of phosphoenzyme with labeled succinate plus CoA was assumed to yield enzyme-bound succinyl-CoA as judged by the incorporation of radiolabel into the enzyme. In order to confirm this E·P·succinyl-CoA was formed by reaction of E·(succinyl-CoA) with ATP, isolated, and incubated with tritiated succinate plus CoA. This should yield E·(succinyl-CoA)₂ in which half of the bound succinyl-CoA is tritiated. After separation from free ligands, the enzyme was acidified to pH 2.0 by the addition of 10% trichloroacetic acid. Released succinyl-CoA was assayed fluorometrically, and correlated with the estimated enzyme-bound succinyl-CoA determined by the radioactive content of the enzyme. Results of this experiment showed that the enzyme contained 1 succinyl-CoA/αβ subunit as determined fluorometrically, and 0.5 succinyl-CoA/αβ subunit as determined by the radioactive content of the enzyme. This experiment demonstrates first that reaction of E·P·succinyl-CoA with succinate plus CoA leads to the formation of enzyme-bound succinyl-CoA, and secondly that enzyme-bound succinyl-CoA does not exchange with free succinate in the presence of CoA.

It has been shown that fully phosphorylated enzyme (E·P₃) reacts with succinate plus CoA to yield E·(succinyl-CoA) (14), presumably via the formation of E·P·succinyl phosphate.

Table I

<table>
<thead>
<tr>
<th>Reaction step</th>
<th>Bound ligand</th>
<th>Phosphate</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>O.O</td>
<td>0.98</td>
</tr>
<tr>
<td>2. [¹⁴C]succinyl-CoA·CO→[¹⁴C]succinyl-CoA</td>
<td>ATP</td>
<td>0.54</td>
</tr>
<tr>
<td>3.</td>
<td>P·O·[¹⁴C]succinyl-CoA</td>
<td>[¹⁴C]succinate + CoA</td>
</tr>
<tr>
<td>4. [¹⁴C]succinyl-CoA·CO→[¹⁴C]succinyl-CoA</td>
<td>ATP</td>
<td>P·CC·succinyl-CoA</td>
</tr>
</tbody>
</table>

Malate Thiokinase: Random Site Reaction Mechanism

3795

Downloaded from http://www.jbc.org/ by guest on October 15, 2017
and then E-Psuccinyl-CoA as intermediates. The intermediate, E-Psuccinyl-CoA, then reacts with succinate and CoA at the second site via similar intermediates. In order to test this hypothesis we made use of the known lability of succinyl phosphate. When E-P2 is reacted with succinate alone, and fortuitously isolated dimeric enzyme contains only one phosphate (E-P) appears at the second site via similar intermediates. In order to test product (Table II).

The same general experimental procedure described in the legend to Table I was employed. Malate thiolkinase (30 μM in αβ subunits) was initially incubated with 1 mM ATP (step 1). A parallel experiment was conducted in which [γ-32P]ATP was used in order to assess the extent of phosphorylation of the enzyme. Isolated E-(P0) was then reacted with 1 mM [14C]succinate (specific activity 3.15 x 10^4 cpm/nmol) and 0.1 mM CoA (step 2). The product E-([succinyl-CoA]) was reacted with 5 mM ATP yielding E-P-succinyl-CoA (step 3), which after isolation was reacted with 1.0 mM [3H]succinate (specific activity 3.1 x 10^5 cpm/nmol) and 0.1 mM CoA (step 4). The enzyme product from step 4 contained 1 bound succinyl-CoA/αβ subunit of which the newly formed [14C]succinyl-CoA comprised half of the total succinyl-CoA while the previously bound [14C]succinyl-CoA comprised the other half. In the last step (step 5), the enzyme was again treated with 5 mM ATP, and after separation of the enzyme from free ligands, enzyme-bound succinyl-CoA was determined.

The above experiments demonstrate randomness in the reaction of αβ subunits containing bound succinyl-CoA—single turnover experiments initiated with E-(P0).

Table II

Demonstration of the equivalence of reactivities of αβ subunits containing bound succinyl-CoA—single turnover experiments initiated with E-(P2)

<table>
<thead>
<tr>
<th>Reaction step</th>
<th>Bound ligand</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. OO ATP</td>
<td>E-Pco-P ↓ [14C]succinate + CoA</td>
<td>ATP</td>
<td>ATP</td>
<td>ATP</td>
<td>ATP</td>
</tr>
<tr>
<td>2. E-Pco-P ↓ [14C]succinate + CoA</td>
<td>0.89</td>
<td>0.89</td>
<td><0.001</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>3. [14C]succinyl-CoA-αβ↓ ATP</td>
<td>0.84</td>
<td>0.84</td>
<td>0.45</td>
<td>0.39</td>
<td>0.45</td>
</tr>
<tr>
<td>4. [14C]succinyl-CoA-αβ↓ ATP</td>
<td>0.51</td>
<td>0.51</td>
<td>0.22</td>
<td>0.24</td>
<td>0.56</td>
</tr>
<tr>
<td>5. E-Pco-P ↓ [14C]succinate + CoA</td>
<td>0.49</td>
<td>0.49</td>
<td>0.92</td>
<td>0.92</td>
<td>0.92</td>
</tr>
</tbody>
</table>

Table III

Equivalent reactivities of αβ subunits containing bound succinyl-CoA—reaction in the reverse direction

The same general protocol as described in the legend to Table I was utilized. Enzyme containing bound succinyl-CoA (E-([succinyl-CoA]), was prepared by incubation of enzyme (30 μM in αβ subunits) with 0.1 mM [14C]succinyl-CoA (specific activity 3.15 x 10^4 cpm/nmol) (step 1). After separation from free ligands, the enzyme was incubated for 1 min at 4 °C with 5 mM inorganic phosphate (step 2). In a parallel experiment (3P), was utilized in this step and the resultant enzyme contained 0.48 mol of bound phosphate/mol αβ subunit. The enzyme was next incubated with 1 mM [3H]succinate (specific activity 6.7 x 10^4 cpm/nmol) and 0.1 mM CoA (step 3), regenerating enzyme containing succinyl-CoA at both sites, [14C]succinyl-CoA as the newly formed succinyl-CoA and [14C]succinyl-CoA as previously bound succinyl-CoA. This enzyme form was again incubated with 5 mM inorganic phosphate and after separation from free ligands, the enzyme was assayed for bound succinyl-CoA.

<table>
<thead>
<tr>
<th>Reaction step</th>
<th>Bound ligand</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. [14C]succinyl-CoA-αβ↓ P</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
<td>0.86</td>
</tr>
<tr>
<td>3. E-Pco-P ↓ [3H]succinyl-CoA</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
<td>0.51</td>
</tr>
<tr>
<td>4. E-Pco-P ↓ [3H]succinyl-CoA</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
<td>0.98</td>
</tr>
</tbody>
</table>

The above experiments demonstrate randomness in the reaction at the succinyl-CoA sites. In order to investigate randomness in the reaction at the succinyl-CoA sites, E-P2 was prepared by reaction of enzyme with [γ-32P]ATP. Incubation of E-P2 with either ADP or succinate resulted in reaction at only one of the two phosphorylation sites yielding E-P as a product (Table IV). Phosphorylation of the available site with ATP regenerated E-P2 with the newly phosphorylated site containing nonradioactive phosphate, and the previously phosphorylated site containing [32P]phosphate (a control experiment in which E-P was phosphorylated by [γ-32P]ATP confirmed phosphorylation of the enzyme). Reaction of this enzyme form with either succinate or ADP resulted in a loss of half of the bound phosphate. However, the isolated E-P form of the enzyme contained 50% of its original 32P content.
Thus, reaction of the fully phosphorylated enzyme is also random.

Reaction of E-P₂ with ADP results in the release of only one of the two bound phosphates. However, in the presence of added succinyl-CoA both bound phosphates are released. This observation could be interpreted to suggest that both sites of the dimeric enzyme must be occupied for reaction at the second phosphorylation site. To test this possibility, E-P-succinyl-CoA was isolated and then reacted with ADP. As shown in Table V, the presence of bound succinyl-CoA permits reaction at the second phosphorylation site. However, the release of phosphate from the enzyme is relatively slow ($t_{1/2} = -20 s$ at 4°C). This slow phosphate transfer was not due to the release of enzyme-bound succinyl-CoA as confirmed in a separate experiment. However, reaction of ADP with E-Pₐ-succinyl-CoA was rapid when succinyl-CoA was included in the reaction mixture. These results suggest that succinyl-CoA may play a dual role in catalysis. Succinyl-CoA bound on an adjacent αβ subunit increases the rate of phosphate transfer while a second molecule of succinyl-CoA presumably binds to the phosphorylated subunit and provides an additional rate acceleration for the reaction.

TABLE IV

Demonstration of equivalent reactivities of phosphorylated αβ subunits

Phosphorylated malate thiokinase was prepared by incubation of enzyme with 0.5 mM γ-32P]ATP (specific activity 2.7 × 10⁵ cpm/nmol) (step 1). After isolation, the phosphorylated enzyme was incubated with 1 mM ADP to remove half of the bound phosphate (step 2). The enzyme was then reprophosphorylated with 0.5 mM nonlabeled ATP (step 3), and after isolation reacted a second time with 1 mM ADP (step 4). The values in parentheses represent a parallel reaction in which γ-32P]ATP was used throughout the experiment.

<table>
<thead>
<tr>
<th>Reaction step</th>
<th>Radioactive phosphate (nmol/nmol αβ subunit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. \bigtriangleup</td>
<td></td>
</tr>
<tr>
<td>2. \bigtriangleup32P]ATP</td>
<td>1.02</td>
</tr>
<tr>
<td>3. \bigtriangleup</td>
<td></td>
</tr>
<tr>
<td>4. \bigtriangleup32P]ATP</td>
<td>0.49 (0.92)</td>
</tr>
<tr>
<td></td>
<td>0.24 (0.53)</td>
</tr>
</tbody>
</table>

TABLE V

Effect of bound and free succinyl-CoA on the reaction of E-P-succinyl-CoA with ADP

Malate thiokinase containing bound phosphate and bound succinyl-CoA (E-P-succinyl-CoA) was prepared by reacting γ-32P]ATP with E-(succinyl-CoA)₂ as described in the legend to Table I (steps 1 and 2). Reaction mixtures containing 4.6 mM enzyme (in terms of αβ subunits), 1 mM ADP, 2 mM MgCl₂, and 20 mM Tes buffer, pH 7.4, in a final volume of 0.1 ml were incubated at 4°C for the times indicated. The reaction was terminated by the addition of 6 ml of 20% trichloroacetic acid and lyophilized to dryness. The lyophilized material was redissolved in 10 μl of water and chromatographed on polyethylenimine cellulose using 0.5 M LiCl, 0.2 M HCOOH as the solvent system. The ATP and Pₐ spots were identified by radioautography and cut out and counted. Recovery of radioactive phosphate was >90%. In one sample 0.1 mM succinyl-CoA was included in the reaction mixture.

<table>
<thead>
<tr>
<th>Reaction time</th>
<th>Phosphate as E.P. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>s</td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>10</td>
<td>63</td>
</tr>
<tr>
<td>20</td>
<td>47</td>
</tr>
<tr>
<td>30</td>
<td>39</td>
</tr>
<tr>
<td>40</td>
<td>32</td>
</tr>
<tr>
<td>10 (+ 0.1 mM succinyl-CoA)</td>
<td><10</td>
</tr>
</tbody>
</table>

DISCUSSION

The results obtained in this study confirm and extend our proposal that the malate thiokinase reaction exhibits half-of-the-sites reactivity. We have previously demonstrated that the dimeric form of the enzyme ([αβ]₂) containing bound succinyl-CoA at each site (E-(succinyl-CoA)₂) reacts with ATP at only one of the two potential phosphorylation sites. In the present study we have also shown that fully phosphorylated enzyme E-(Pₗ)₂ reacts with ADP or with succinate at only one of the two potentially reactive sites.

In addition, the results of this study show that the dimeric enzyme containing bound ligands on each of the adjacent subunit pairs reacts in an interesting but random fashion. Thus, either αβ subunit pair has an equal probability for reaction, but once one subunit pair has reacted the adjacent subunit becomes unreactive. This finding serves to exclude an alternating site mechanism in which one αβ subunit pair reacts in the first turnover, while the adjacent αβ subunit pair reacts in the second turnover. An alternating site mechanism has been proposed for mitochondrial ATPase (22, 23) glycerol-aldehyde-3-phosphate dehydrogenase (24), and malate dehydrogenase (25, 26). Cardon and Boyer (27) have recently pointed out the difficulties in establishing an alternating site mechanism in an enzyme reaction. However, in the present study the ability to isolate stable catalytic intermediates has permitted us to exclude an alternating site mechanism in favor of an interacting random site mechanism.

We have observed that fully phosphorylated enzyme reacts rapidly with ADP or succinate at one of the two available phosphorylated sites. The resultant enzyme which contains phosphate at one of the two available sites, although reactive in terms of repophosphorylation by ATP, is virtually inactive with respect to phosphate transfer to either succinate or ADP. The presence of succinyl-CoA bound to the enzyme greatly enhances the reactivity of the enzyme containing phosphate at one of the two available sites. Exogenously added succinyl-CoA increases the rate of reaction at the phosphorylation site even more. These data suggest that both αβ subunit pairs in the dimeric (αβ)₂ form of the enzyme must be occupied before phosphate can be transferred to an acceptor. Phosphate transfer of ADP is enhanced even further by the binding of succinyl-CoA to presumably the phosphorylated subunit. Thus, a putative intermediate in the phospho transfer reaction to ADP is succinyl-CoA-ADP-αβ subunit. Where the binding of succinyl-CoA to the phosphorylated αβ subunit pair is considerably weaker than the binding of succinyl-CoA to the nonphosphorylated αβ subunit pair.

The random reaction of the liganded αβ subunit pairs can be explained in terms of subunit asymmetry. Two models warrant considerations. The first model is one in which ligand binding induces asymmetry among subunit pairs, while the second model is one in which pre-existing asymmetry among αβ subunit pairs is inherent in the native enzyme. As illustrated in Fig. 1 both models can be used to explain the random reaction of αβ subunit pairs containing bound succinyl-CoA. In the pre-existing asymmetry model only one subunit combination can be phosphorylated. In addition, in order for this model to accommodate the experimental data obtained in this study, there must be conformational equilibration among the two asymmetrical subunits with an equilibrium constant of 1.0. In the induced asymmetry model the only assumption that need be invoked is that the conformation and hence the binding and reactivity of subunit pairs containing bound phosphate or tightly bound succinyl-CoA be different from nonliganded subunits.

A further restriction must be imposed in the pre-existing asymmetry model when trying to explain the random half-site
transfer of phosphate from fully phosphorylated enzyme to ADP. In order to account for transfer of only half of the enzyme-bound phosphate it must be postulated that either conformer equilibration does not occur with the half-phosphorylated enzyme, or that the half-phosphorylated enzyme is inactive toward phosphate transfer regardless of the subunit conformation. In the case of the induced asymmetry model no additional assumptions need be invoked to explain the lack of reactivity of the half-phosphorylated enzyme. Since the phosphorylated subunit pair is adjacent to a nonliganded substrate pair, no induced asymmetry occurs to activate the phosphorylated subunit.

Although the pre-existing asymmetry model cannot be ruled out, the experimental results obtained in this study can more simply be explained in terms of the induced asymmetry model.

REFERENCES
Additions and Corrections

Two-dimensional protein analysis at high resolution on a microscale.

Robert O. Neukirchen, Burkhard Schlosshauer, Sigrid Baars, Herbert Jäckle, and Uli Schwarz

Pages 15233-15234, References:

The authors regret the omission of the following reference:

Vol. 258 (1983) 3794-3798

Malate thiokinase. Evidence for a random site reaction mechanism.

K. K. Surendranathan and Louis B. Hersh

We suggest that subscribers photocopy these corrections and insert the photocopies at the appropriate places where the article to be corrected originally appeared. Authors are urged to introduce these corrections into any reprints they distribute. Secondary (abstract) services are urged to carry notice of these corrections as prominently as they carried the original abstracts.
Malate thiokinase. Evidence for a random site reaction mechanism.
K K Surendranathan and L B Hersch

Access the most updated version of this article at http://www.jbc.org/content/258/6/3794

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/258/6/3794.full.html#ref-list-1