A variety of reagents (local anesthetics, phenothia-
ines, ruthenium red, ryanodine, dicyclohexylcarbo-
diimide, R 24571) inhibit Ca\(^{2+}\)-induced Ca\(^{2+}\) release
from purified canine cardiac sarcoplasmic reticulum
(SR). Most of these compounds also increase the rate of
net Ca\(^{2+}\) uptake by cardiac SR while moderately
inhibiting Ca\(^{2+}\)-dependent ATP hydrolysis, and to-
gether these two effects produce increased coupling
ratios for ATP-dependent Ca\(^{2+}\) transport (Ca\(^{2+}\)/ATP =
2) compared to controls (Ca\(^{2+}\)/ATP = 1). We conclude
that Ca\(^{2+}\) efflux normally occurs during net Ca\(^{2+}\) up-
take by isolated cardiac SR vesicles and that this phe-
nomenon is responsible for the low coupling ratios
generally observed for cardiac SR preparations.

Blockers of sarcolemmal Ca\(^{2+}\) channels (nitrendi-
pine, diltiazem, methoxyverapamil, dantrolene), at
concentrations much greater than those effective for
sarcolemmal Ca\(^{2+}\) fluxes, do not affect either Ca\(^{2+}\) up-
take or Ca\(^{2+}\) release by cardiac SR. Furthermore, the
effects of local anesthetics and dicyclohexylcarbo-
diimide, ruthenium red, ryanodine, dicyclohexylcarbo-
diimide, diisopropylfluorophosphate, diltiazem, methoxy-
verapamil, dantrolene, noradrenaline, and D600 (dimethyl
sulfoxide) are distinct from those previously
reported for skeletal muscle SR. These results
indicate that the Ca\(^{2+}\) release "channels" in cardiac sar-
colemma or in skeletal muscle SR.

The common hydrophobic nature but structural dis-
similarity of various inhibitors of Ca\(^{2+}\) release from
cardiac SR suggested that these reagents may inter-
act with the membrane. It has been proposed that hydro-
phobic interaction with the membrane might be involved in
blocking Ca\(^{2+}\) efflux. On the other hand, half-maximal
inhibition by 80 nM ruthenium red is suggestive of a
specific ionic interaction with some component of the
Ca\(^{2+}\) efflux pathway.

Contraction and relaxation of muscle fibers are regulated by
the myoplasmic Ca\(^{2+}\) level. Contraction is triggered by the release of Ca\(^{2+}\) from an intracellular membrane system, the
SR. 1 Relaxation occurs when the Ca\(^{2+}\) is reaccumulated within
the lumen of the SR. Ca\(^{2+}\) uptake is mediated by a membran-
bound Ca\(^{2+}\) pump protein and much is known about this
process (2–5). It is generally accepted that 2 mol of Ca\(^{2+}\) are
transported inside the SR for each mole of ATP hydrolyzed
by the pump protein, even though Ca\(^{2+}\)/ATP ratios of less
than 1 are frequently measured for cardiac SR preparations
(6–10). The mechanism of Ca\(^{2+}\) release from SR is less well
understood (11, 12).

In the companion paper (13), we described a Ca\(^{2+}\)-induced
Ca\(^{2+}\) release from purified cardiac SR vesicles. This Ca\(^{2+}\)
release is triggered by submicromolar concentrations of extravesicular Ca\(^{2+}\) and inhibited by higher Ca\(^{2+}\) concentrations
and is thus similar to the Ca\(^{2+}\)-induced Ca\(^{2+}\) release which
has been described for skinned cardiac fibers (14, 15). We
concluded that this release is not mediated through the Ca\(^{2+}\)
pump protein, but proceeds through a Ca\(^{2+}\)-responsive efflux
pathway or "channel(s)." In this report, we describe the
inhibition of this Ca\(^{2+}\)-induced Ca\(^{2+}\) release by a variety of
chemical compounds. Moreover, the cardiac SR Ca\(^{2+}\) pump
efficiency (Ca\(^{2+}\)/ATP) is increased from about 1 to approxi-
mately 2 in the presence of many of these compounds.

EXPERIMENTAL PROCEDURES

Materials—Cardiac SR was isolated from canine ventricles as
previously described (16) and stored in liquid N\(_{2}\). Norit A (decoloriz-
ing carbon) was obtained from Fisher. Ruthenium red, proacine-(HC), trilu-
perazine, and chlorpromazine were obtained from Sigma. [\(^{32}\)P]ATP
was purchased from ICN Pharmaceuticals, Inc. (Irvine, CA). Other
drugs were obtained from the following sources: SKF 525-A, Smith Kline
and French Laboratories (Philadelphia, PA); ryanozine, S.P.
Penick Corp. (Lyndhurst, NJ); R 24571, Janssen Pharmaceutica
(Beerse, Belgium); DCCD, Eastman; D600, Knoll Pharmaceutical
(Whippany, NJ); diltiazem, Marion Laboratories (Kansas City, MO);
nitrendipine, Miles Laboratories (West Haven, CT); dantrolene,
Norwich-Eaton Pharmaceuticals (Norwich, NY). The structures of
the drugs used in this study are presented in Fig. 1. All other reagents
were as described in the preceding report (13).

Triluoperazine, DCCD, D600, dantrolene, and nitrendipine stock
solutions were prepared in ethanol such that the final ethanol con-
centration in the assay medium was 1% or less. R 24571 was dissolved
in Me\(_2\)SO such that the final ethanol concentration in the assay was 0.5%
or less. These levels of ethanol and Me\(_2\)SO have no effect on either
Ca\(^{2+}\) uptake or Ca\(^{2+}\) release. DCCD and dantrolene solutions were
used within 5 h of preparation. SKF 525-A, ruthenium red, proacine,
chlorpromazine, ryanodine, and diltiazem stock solutions were pre-
pared in H\(_2\)O. Triluoperazine, chlorpromazine, and nitrendipine were
protected from light.

Assays—Enzymic assays were as previously described (13). Net
Ca\(^{2+}\) uptake and release (in the presence of 1 mM ATP, 75 mM P\(_{i}\), and an
ATP-regenerating system) were observed at 37 \(^\circ\)C by dual
wavelength spectrophotometry using the metallochromic indicator
antipyrilazo III. Ca\(^{2+}\) loading by control and SKF 525-A-treated
samples were also assayed by using "Ca and a Millipore filtration
technique. Ca\(^{2+}\) efflux from passively loaded SR vesicles (in the
absence of ATP and P\(_{i}\)) was measured at 25 \(^\circ\)C. Briefly, SR vesicles
were loaded with \(^{48}\)CaCl\(_{2}\) by incubation for 1 h at 0 \(^\circ\)C. Efflux was
initiated by a 91-fold dilution into warm medium containing 1 mM

* This work was supported by Grant AM 14632 from the National
Institutes of Health. A preliminary report of this research was pre-
sented at the 74th Annual Meeting of the American Society of
Biological Chemists, San Francisco, CA (1). The costs of publication
of this article were defrayed in part by the payment of page charges.
This article must therefore be hereby marked "advertisement" in
accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

‡ Present address, Calcium Regulation Department, Norwich Eta-
on Pharmaceuticals, Inc., Norwich, NY 1815.

§ Postdoctoral Fellow of the Muscular Dystrophy Association of
America. Present address, Department of Physiology, New Jersey
Medical School, 100 Bergen Street, Newark, NJ 07103.

1 The abbreviations used are: SR, sarcoplasmic reticulum; SKF
525-A, \(\beta\)-diethylaminodipropylpropylacetate-\(\text{HCl}\); R 24571, 1-
[bis(\(\beta\)-chlorophenyl)methyl]-3-[2,4, 6-
dichloro-\(\beta\), \(\beta\)-dichlorobenz-
yloxy]phenethyl]imidazolium chloride; DCCD, dicyclohexylcarbo-
diimide; D600, methoxyverapamil; Me\(_2\)SO, dimethyl sulfoxide; IC\(_{50}\),
concentration producing 50% inhibition.
ionized Ca2+ and the drug to be tested. At intervals, samples were removed and filtered. The first order rate constant of the rapid Ca2+ efflux (first 35 s) was determined by linear regression analysis of a semilog plot of 45Ca counts/min trapped on the filters versus time.

ATPase values at 37 °C were determined spectrophotometrically or by measuring production of 32P, in assays containing [32P]ATP (2000 cpm/nmol). For this procedure, 100-μl aliquots were withdrawn from the standard uptake/release assay medium (13) at 9-s intervals and rapidly mixed with 500 μl of ice-cold 0.1 M H\textsubscript{2}PO\textsubscript{4} containing 25 mg of Norit A/ml to adsorb nucleotides. After centrifugation at 1800 \times g for 10 min at 4 °C, radioactivity remaining in the supernatants was determined by scintillation counting and the rate of 32P+ production was determined by linear regression analysis. All ATPase determinations in the presence of trifluoperazine, chlorpromazine, and R 24571 were done isotopically. ATPase values for the control and in the presence of SKF 525-A were determined by both the spectrophotometric and isotopic procedures. "Basal" values determined in 4 mM EGTA (0.11–0.13 μmol of ATP/mg of protein/min for control samples; less in the presence of some drugs) were subtracted from total values to yield Ca2+-dependent ATPase. "Leaky vesicle ATPase" was determined in the presence of Triton X-100/μl. Basal ATPase is reduced and Ca2+-dependent ATP hydrolysis is approximately doubled in the presence of the detergent. This assay is a more accurate reflection of enzyme turnover, unencumbered by a tight Ca2+ permeability barrier.

To estimate endogenous calmodulin levels, cardiac SR (300 μl) was heated at 90 °C for 25 min and then sedimented at 1800 \times g for 15 min. The supernatant was withdrawn and added to an erythrocyte Ca2+/Ca2+-dependent ATPase assay (17). Stimulation of activity by cardiac SR extracts was compared with that obtained by various concentrations of authentic calmodulin purified from bovine brain (18).

RESULTS

Isolated vesicles of canine cardiac SR exhibit Ca2+-induced Ca2+ release (13). A typical assay is illustrated in Fig. 2A, where the SR was preloaded with three additions of CaCl\textsubscript{2}. Following a fourth addition of CaCl\textsubscript{2} to the control sample (trace 1), net Ca2+ uptake ceases and net Ca2+ release begins. The rate and extent of Ca2+ release depend on the extravascular ionized Ca2+ concentration after the SR vesicles accumulate Ca2+ to a trigger capacity (13). Maximum Ca2+ release occurs at 1–2 μM extravascular Ca2+. After 2–3 min of Ca2+ release, Ca2+ reuptake by the SR occurs.

When the local anesthetic SKF 525-A is present throughout
TABLE I

<table>
<thead>
<tr>
<th>Addition*</th>
<th>Ca²⁺ loading</th>
<th>Ca²⁺-ATPase</th>
<th>Ca²⁺/ATP</th>
<th>“Leaky vesicle Ca²⁺-ATPase”</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>0.96</td>
<td>1.16</td>
<td>0.8</td>
<td>1.84</td>
<td>100</td>
</tr>
<tr>
<td>SKF 525-A, 120 μM</td>
<td>2.09 (9)</td>
<td>0.94 (5)</td>
<td>2.1</td>
<td>1.53 (3)</td>
<td>83.2</td>
</tr>
<tr>
<td>Trifluoperazine, 40 μM</td>
<td>1.84 (7)</td>
<td>0.87 (2)</td>
<td>2.1</td>
<td>1.31 (2)</td>
<td>71.2</td>
</tr>
<tr>
<td>Ruthenium red, 12 μM</td>
<td>1.65 (8)</td>
<td>0.82 (3)</td>
<td>2.0</td>
<td>1.71 (2)</td>
<td>92.9</td>
</tr>
<tr>
<td>Chlorpromazine, 160 μM</td>
<td>1.35 (5)</td>
<td>0.63 (2)</td>
<td>2.1</td>
<td>1.00 (1)</td>
<td>54.3</td>
</tr>
<tr>
<td>Propranolol, 8 μM</td>
<td>1.12 (6)</td>
<td>0.98 (3)</td>
<td>1.1</td>
<td>1.68 (2)</td>
<td>91.3</td>
</tr>
<tr>
<td>R 24571, 110 μM</td>
<td>0.90 (7)</td>
<td>0.70 (1)</td>
<td>1.4</td>
<td>1.21 (1)</td>
<td>65.8</td>
</tr>
<tr>
<td>None</td>
<td>1.01</td>
<td>0.90</td>
<td>1.1</td>
<td>2.10</td>
<td>100</td>
</tr>
<tr>
<td>Ryanodine, 400 μM</td>
<td>1.33 (5)</td>
<td>0.70 (2)</td>
<td>1.9</td>
<td>1.59 (1)</td>
<td>90.5</td>
</tr>
<tr>
<td>DCCD, 160 μM</td>
<td>0.63 (3)</td>
<td>0.57 (1)</td>
<td>1.1</td>
<td>0.72 (1)</td>
<td>34.3</td>
</tr>
</tbody>
</table>

*Drug concentrations are the minimum which are maximally effective both in inhibiting net Ca²⁺ release when added at the onset of release and in enhancing Ca²⁺ uptake when present prior to Ca²⁺ loading of the SR. The effect on Ca²⁺ loading does not appear to be dependent on the extrasynaptic Ca²⁺ concentration since linear rates of uptake are observed over a range of external Ca²⁺ both in the presence and absence of inhibitors (e.g., see Fig. 2). Enhanced Ca²⁺ loading occurs even though Ca²⁺-dependent ATP hydrolysis is reduced (Table I). The net result is an increase in the coupling ratios (Ca²⁺/ATP) for ATP-dependent Ca²⁺ transport. For SKF 525-A, these findings were confirmed by measuring Ca²⁺ loading and ATP hydrolysis by spectrophotometric and isotopic methods (see "Experimental Procedures"). Some compounds which significantly inhibit the turnover of the Ca²⁺-dependent ATPase enzyme such as R 24571 and DCCD (Table I) fail to increase the rate of Ca²⁺ loading. But, only DCCD, the most effective inhibitor of Ca²⁺-dependent ATPase (at the concentrations used in this study), fails to increase the Ca²⁺ pumping efficiency. The other compounds listed in Table I are more effective inhibitors of Ca²⁺ efflux than they are of Ca²⁺ pump turnover and therefore increase Ca²⁺/ATP ratios by blocking Ca²⁺ efflux which normally occurs during net Ca²⁺ uptake. In the presence of most Ca²⁺ efflux inhibitors, the Ca²⁺/ATP ratios are increased from approximately 1 to about 2.

Representative of four classes of sarcolemmal Ca²⁺ channel blockers were also tested. None of these compounds (2 μM nitrendipine, 10 μM diltiazem, 20 μM dantrolene, or 75 μM D600, see Fig. 1 for structures) has any effect on Ca²⁺ uptake or release by cardiac SR vesicles. In the presence of these compounds, Ca²⁺ uptake parallels control samples and the rate and extent of Ca²⁺-induced Ca²⁺ release are likewise indistinguishable from control samples (data not shown).

Compounds which inhibit Ca²⁺ release from actively loaded SR also inhibit Ca²⁺ efflux from passively loaded SR vesicles (Table II). The rate constants for efflux in the presence of SKF 525-A, ruthenium red, trifluoperazine, and DCCD are similar to that previously observed for Ca²⁺-independent Ca²⁺ efflux (13). It appears that the same concentrations of these compounds which are maximally effective in inhibiting Ca²⁺-induced Ca²⁺ release from actively loaded SR (see legend to Table I)
The first order rate constants for the rapid initial phase of Ca$_2^+$ efflux coincident with dilution of the SR to initiate efflux. The data are the first order rate constants for the rapid initial phase of Ca$_2^+$ efflux (first 35 s). Values are for a single experiment except for the control and ryanodine data which are the mean ± S.D. from two experiments.

Table II

Effects of drugs on Ca$_2^+$ efflux from passively loaded cardiac SR vesicles

<table>
<thead>
<tr>
<th>Drug</th>
<th>IC$_{50}$</th>
<th>min$^{-1}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td></td>
<td>1.30 ± 0.00</td>
</tr>
<tr>
<td>DCCD, 180 µM</td>
<td>0.34</td>
<td></td>
</tr>
<tr>
<td>Ruthenium red, 12 µM</td>
<td>0.35</td>
<td></td>
</tr>
<tr>
<td>SKF 525-A, 120 µM</td>
<td>0.36</td>
<td></td>
</tr>
<tr>
<td>Trifluoperazine, 40 µM</td>
<td>0.41</td>
<td></td>
</tr>
<tr>
<td>Ryanodine, 400 µM</td>
<td>0.74 ± 0.07</td>
<td></td>
</tr>
<tr>
<td>Etiliazem, 10 µM</td>
<td>1.31</td>
<td></td>
</tr>
<tr>
<td>Calmodulin, 1 µM</td>
<td>1.21</td>
<td></td>
</tr>
</tbody>
</table>

*a Drug concentrations are the minimum which are maximally effective in inhibiting Ca$_2^+$ release from actively loaded SR vesicles.

The first order rate constant for the rapid initial phase of Ca$_2^+$ efflux for a control sample at 1 µM extravascular ionized Ca$_2^+$ (i.e., Ca$_2^+$-independent efflux) was 0.36 (13).

Table III

Potency of inhibitors of Ca$_2^+$ release

Compounds which inhibit Ca$_2^+$-induced Ca$_2^+$ release from cardiac SR were tested for their potency in enhancing the rate of Ca$_2^+$ loading. Various concentrations of each drug were added to the standard uptake/release medium (13) prior to addition of SR (40 µg of protein). Ca$_2^+$ uptake in a final volume of 1 ml was initiated by addition of CaCl$_2$. The loading rate (micromoles of Ca$_2^+$/mg of protein/min) of control samples without drugs was subtracted from loading rates in the presence of drugs to determine the level of loading stimulation. For each drug, 5–10 different concentrations were evaluated in each of two separate experiments and a composite curve was constructed to relate loading stimulation to drug concentration. Values presented are the drug concentrations which gave half-maximal stimulation under the assay conditions.

<table>
<thead>
<tr>
<th>Drug</th>
<th>IC$_{50}$</th>
<th>µM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ruthenium red</td>
<td>0.08</td>
<td></td>
</tr>
<tr>
<td>Trifluoperazine</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Chlorpromazine</td>
<td>53</td>
<td></td>
</tr>
<tr>
<td>SKF 525-A</td>
<td>65</td>
<td></td>
</tr>
<tr>
<td>Ryanodine</td>
<td>130</td>
<td></td>
</tr>
<tr>
<td>Procaine</td>
<td>2100</td>
<td></td>
</tr>
</tbody>
</table>

Table I can completely block the Ca$_2^+$-dependent component of Ca$_2^+$ efflux from passively loaded vesicles. On the other hand, the optimum concentration of ryanodine does not reduce Ca$_2^+$ efflux from passively loaded SR to the same extent as the other compounds. Since the determination of the rate constant for efflux from passively loaded SR includes data only from the first 35 s of efflux, this result is consistent with the observation that the maximum effect of ryanodine after ATP-dependent Ca$_2^+$ loading is not observed until about 40 s after addition of the drug (Fig. 2B). Also consistent with results from actively loaded SR, a sarcoplasmic Ca$_2^+$ channel blocker such as diltiazem has no effect on Ca$_2^+$ efflux from passively loaded SR (Table II).

The data presented thus far have been for drugs at their maximum effective concentrations, but these concentrations do not indicate the relative potency of the Ca$_2^+$ release inhibitors. The concentrations which produce 50% stimulation of Ca$_2^+$ loading are given in Table III. We assume that enhanced Ca$_2^+$ loading in the presence of the drugs reflects their efficacy in blocking unidirectional Ca$_2^+$ efflux which otherwise occurs during net Ca$_2^+$ uptake. A similar explanation was previously suggested regarding the effects of ryanodine and ruthenium red on Ca$_2^+$ uptake by canine cardiac SR (20, 21). The data are presented in terms of IC$_{50}$ rather than as inhibition constants since most of the compounds tested are hydrophobic and bind to membranes and glass. It is therefore difficult to determine the actual drug concentration in solution (e.g., see discussions in Refs. 22 and 23 regarding trifluoperazine), so that the effectiveness of a drug can depend upon assay conditions, especially membrane concentration (e.g., see Refs. 24 and 25 regarding trifluoperazine). Under the conditions of our assay, ruthenium red (IC$_{50}$ = 80 nM) is the most potent inhibitor of Ca$_2^+$ efflux and procaine is the least potent.

Since several of the compounds—trifluoperazine (26–28), chlorpromazine (26–28), R 24571 (19), and SKF 525-A (29)—which inhibit Ca$_2^+$ release from cardiac SR are calmodulin antagonists, we investigated whether calmodulin might be involved in Ca$_2^+$ efflux. The endogenous calmodulin level in the SR was estimated to be 7.3 pmol/mg of protein, or about 0.3 nM in the standard uptake/release assay containing 40 µg of protein/ml. If these drugs were to inhibit Ca$_2^+$ release by interacting with endogenous calmodulin on the SR vesicles, addition of exogenous calmodulin might be expected to promote Ca$_2^+$ release and/or prevent the inhibition of release by the drugs. However, Ca$_2^+$ efflux from passively loaded SR vesicles is not stimulated by 1 µM exogenous calmodulin (Table II) and addition of 1.5 µM exogenous calmodulin at the onset of Ca$_2^+$-induced Ca$_2^+$ release from actively loaded SR (at 3 µM extravascular ionized Ca$_2^+$) has no effect on the rate or extent of release (data not shown), although reuptake of the released Ca$_2^+$ is faster in the presence of exogenous calmodulin, presumably due to enhanced Ca$_2^+$ transport activity following calmodulin-dependent phosphorylation of the cardiac SR (4, 16, 30, 31). Moreover, when 4.5 µM calmodulin (15,000 times the endogenous level) is added at the onset of Ca$_2^+$ release, the subsequent addition of 40 µM trifluoperazine is still maximally effective in immediately inhibiting Ca$_2^+$ release and producing rapid Ca$_2^+$ accumulation. Thus, we were unable to directly demonstrate an involvement of calmodulin in Ca$_2^+$ efflux.

DISCUSSION

We find that compounds of diverse structure—the local anesthetics SKF 525-A and procaine, the phenothiazines trifluoperazine and chlorpromazine, ruthenium red, ryanodine, DCCD, and the calmodulin antagonist R 24571—inhibit Ca$_2^+$ efflux from purified cardiac SR vesicles. With the exception of ryanodine which requires approximately 40 s for maximum effectiveness, these compounds immediately block both net Ca$_2^+$-induced Ca$_2^+$ release from actively loaded SR and the Ca$_2^+$-dependent component of Ca$_2^+$ efflux from passively loaded SR. This report is the first demonstration that local anesthetics, phenothiazines, DCCD, and R 24571 can block Ca$_2^+$ efflux from cardiac SR. Also, even though ryanodine and ruthenium red have previously been indirectly implicated in the inhibition of Ca$_2^+$ release from cardiac SR (20, 21, 67), this report provides direct evidence of the effects of these drugs on Ca$_2^+$ efflux from cardiac SR.

The use of Ca$_2^+$ efflux inhibitors enables us to make several conclusions regarding Ca$_2^+$ pumping into cardiac SR. Although it is generally accepted that 2 mol of Ca$_2^+$ are transported inside the SR for each mole of ATP hydrolyzed by the Ca$_2^+$ pump protein (2), Ca$_2^+$/ATP ratios of less than 1 are frequently measured for cardiac SR (6–10). Ca$_2^+$ efflux inhibitors increase the rate of Ca$_2^+$ loading by cardiac SR while...
having a moderate inhibitory effect upon Ca2+-dependent ATP hydrolysis. These two effects together produce increased coupling ratios for ATP-dependent Ca2+ transport. Of the inhibitors described in this report, only DCCD (which is also the most potent inhibitor of Ca2+-dependent ATPase at the concentrations tested) fails to increase Ca2+/ATP. Since measurements of net Ca2+ uptake reflect the differences between unidirectional Ca2+ influx and efflux rates, we conclude that in the absence of inhibitors, considerable Ca2+ efflux occurs during net Ca2+ uptake by most preparations of cardiac SR and that this phenomenon is responsible for the low coupling ratios generally observed. Under the assay conditions of this study, Ca2+/ATP ratios of approximately 2 can be achieved by loading cardiac SR in the presence of SKF 525-A, trifluoperazine, ruthenium red, chlorpromazine, or ryanodine which block Ca2+ efflux so that unidirectional Ca2+ influx is determined. In the case of SKF 525-A, for example, measured Ca2+ loading rates are approximately doubled in the presence of the drug compared to control even though Ca2+-ATPase turnover is reduced.

The stimulation of Ca2+ loading cannot be ascribed to artifacts of the assay procedure. Similar results were obtained for SKF 525-A when Ca2+ loading and ATPase were determined either by spectrophotometric methods or by isotopic procedures (see "Experimental Procedures"). Moreover, similar concentrations of SKF 525-A and procaine (32) and trifluoperazine and chlorpromazine (91) were found to inhibit Ca2+ loading by skeletal muscle SR when assayed by the same procedure in virtually identical uptake/release medium. The results can, however, be influenced by the assay medium. When cardiac SR is assayed in a CaCl\textsubscript{2}/EGTA buffered medium using high concentrations of MgATP and oxalate as a precipitating anion (15), Ca2+ loading and ATPase rates for control samples of the same SR preparations are both about 2.5-fold faster than those in Table I. Under these conditions, addition of SKF 525-A increases the loading rate only about 20\% and Ca2+/ATP increases to only 1.5 (data not shown).

Differences in SR preparation or experimental protocol may explain why inhibition of Ca2+ loading was observed with R 24571 in a previous report (33), whereas in this study no inhibition was observed (Table I).

Since Ca2+ loading is stimulated by the same compounds which inhibit Ca2+-dependent Ca2+ efflux from both actively and passively loaded SR, we conclude that the Ca2+ efflux which occurs during net Ca2+ uptake proceeds through the same or similar channels as does the Ca2+-triggered Ca2+ efflux. Conceivably, some channels might lose their Ca2+ gating property during SR vesicle isolation, by a conformational rearrangement of the channel itself or through loss of a regulatory factor. Different degrees of damage during different isolation procedures could leave more or fewer channels "open." This variation would be additive to that resulting from different proportions of the SR subpopulation possessing the presumptive channels (9, 21). Variability in the number of open Ca2+ channels could explain some of the diversity in Ca2+ loading specific activity and in coupling ratios observed for preparations of similar Ca2+ pump protein content and apparent purity.

Although several of the Ca2+ efflux inhibitors—trifluoperazine, chlorpromazine, R 24571, and SKF 525-A—can act as calmodulin antagonists (19, 26–29), we cannot conclude from our data that Ca2+ efflux from cardiac SR involves calmodulin. Exogenous calmodulin, at several thousand-fold excess over the endogenous level, has no effect on Ca2+-induced Ca2+ release or on the inhibition of Ca2+ release by trifluoperazine. Moreover, inhibition of calmodulin-independent activities by calmodulin antagonists is well documented (33–41).

It is conceivable that the calmodulin antagonists might interact with a "calmodulin-like" protein tightly associated with the Ca2+ efflux channel. Since the channel gating is sensitive to Ca2+, some portion of the channel could be a Ca2+-binding protein. For example, calmodulin antagonists apparently bind to receptor sites for sarcosomal Ca2+ channel blockers (42, 43) and certain sarcosomal Ca2+ channel blockers bind calmodulin (43–45), leading to the speculation that a calmodulin-like site is present on sarcosomal Ca2+ channels (42, 43, 46). A similar site might exist on cardiac SR Ca2+ channels.

On the other hand, inhibition of Ca2+ efflux by calmodulin antagonists, and other compounds as well, could involve their previously documented hydrophobicity and interactions with phospholipids (36, 37, 41, 47–55). The importance of hydrophobicity in otherwise similar reagents can be visualized by comparing the structure of the potent Ca2+ efflux inhibitor SKF 525-A with that of the much less potent and less hydrophobic procaine (Fig. 1). However, it is doubtful that compounds such as SKF 525-A affect Ca2+ efflux by altering the general physical properties of the SR membrane phospholipids, since a larger effect on Ca2+-dependent ATPase would be expected in that case. Also, the biochemical effects of phenothiazines have been correlated with their ability to stabilize membranes (51), but it is doubtful that this property is responsible for the inhibition of Ca2+ efflux from cardiac SR, since phenothiazines do not reduce Ca2+ efflux from skeletal muscle SR under similar conditions (91).

Regardless of the mechanism of action, this study of the inhibition of Ca2+ efflux from isolated cardiac SR vesicles provides new information regarding the similarities and differences among the Ca2+ "channels" present in cardiac sarcolemma, cardiac SR, and skeletal muscle SR membranes. For example, representatives of four classes of sarcosomal Ca2+ channel blockers have no effect on Ca2+ efflux from cardiac SR at concentrations much higher than those effective in blocking sarcosomal Ca2+ channels (56–59). These data are consistent with previous results, obtained with different SR preparations and assay conditions, indicating that similar concentrations of verapamil, D600, dantrolene, and dihydropyridines such as nitrindipine have no effect on either Ca2+ loading or release by cardiac SR vesicles (60–65). Nitrindipine has been shown to bind very tightly (dissociation constant \(= 0.2–0.4 \text{ nM}\)) to the same subpopulation of SR vesicles which is sensitive to ryanodine and ruthenium red (21, 66). However, concentrations of nitrindipine 10,000-fold greater than the dissociation constant do not affect Ca2+ release. The failure of sarcosomal Ca2+ channel blockers to affect Ca2+ efflux from cardiac SR indicates structural diversity for the sarcosomal and SR Ca2+ channels.

The results of this study show some similarities to those obtained with skeletal muscle SR. For example, ruthenium red (68–74), DCCD (71, 75), and local anesthetics such as procaine (11, 72, 74–78) have been found to also block a Ca2+-induced Ca2+ release from "heavy" skeletal muscle SR vesicles. In addition, local anesthetics such as procaine and SKF 525-A block a spontaneous Ca2+ release from skeletal muscle SR (32) and procaine and DCCD inhibit Ca2+ release from skeletal muscle SR induced by other means (79–81). Moreover, ruthenium red can enhance the rate of Ca2+ loading by heavy skeletal muscle SR (68, 82) and increase the Ca2+/ATP coupling ratio (82). In these respects, these compounds similarly affect cardiac and skeletal muscle SR.

On the other hand, many drug effects are dissimilar for the two systems. For example, ryanodine has been reported to stimulate Ca2+ efflux from heavy skeletal muscle SR (83).
Also, chlorpromazine and trifluoperazine stimulate net Ca\(^{2+}\) release from skeletal muscle SR (25, 80, 84, 91) and trifluoperazine decreases the Ca\(^{2+}\)/ATP coupling ratio in skeletal muscle SR (24). The enhanced Ca\(^{2+}\) release in the presence of phenothiazines appears to be due to inhibition of the Ca\(^{2+}\) pump since the drugs do not affect unidirectional Ca\(^{2+}\) efflux from either actively or passively loaded skeletal muscle SR\(^{78,85}\). Finally, even though local anesthetics block spontaneous Ca\(^{2+}\) release from skeletal muscle SR, they do so in a time-dependent manner (32), whereas the inhibition of Ca\(^{2+}\) efflux from cardiac SR by these compounds is immediate.

Our data thus indicate diversity in the Ca\(^{2+}\) channels in cardiac SR, cardiac sarcosome, and skeletal muscle SR membranes. The diversity may be in the structural components of the channels themselves or in some regulatory factors which control the channel gating. In this regard, it should be noted that multiple binding sites for Ca\(^{2+}\) channel inhibitors have been suggested for both sarcosome (86-89) and skeletal muscle SR (90) membranes, and drug binding sites might be different from the actual Ca\(^{2+}\) efflux channels. As noted above, the more hydrophobic compounds might block Ca\(^{2+}\) efflux by interacting with phospholipids. Of the inhibitors of Ca\(^{2+}\) efflux from cardiac SR, ruthenium red is most likely to interact with phospholipids. The diversity may be in the structural components of the channels themselves or in some regulatory factors which control the channel gating.

REFERENCES

Inhibition of Ca2+ Release from Cardiac SR

Ther. 191, 241–251