Involvement of Protein Kinase C in Phorbol Ester-induced Sensitization of HeLa Cells to cis-Diaminedichloroplatinum(II)*

(Received for publication, September 5, 1989)

Alakananda Basu¶, Beverly A. Teicher§, and John S. Lazo‡

From the 2Department of Pharmacology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261 and the §Dana-Farber Cancer Institute, Boston, Massachusetts 02115

We have investigated the effect of tumor promoting phorbol esters on the antiproliferative actions of several anticancer agents. Pretreatment of HeLa cells with 12-O-tetradecanoylphorbol 13-acetate (TPA) or phorbol 12,13-dibutyrate (PDBu) caused a significant (9-fold) increase in cellular sensitivity to cis-diaminedichloroplatinum(II) (CP). TPA also sensitized HeLa cells to melphanal (2.5-fold) but had no effect on the antiproliferative activity of bleomycin, doxorubicin, vincristine, or mitomycin C. The sensitization of HeLa cells by TPA was concentration-dependent up to 10 nM and paralleled the activation of protein kinase C by TPA measured in vitro. The maximum stimulation of protein kinase C (6-fold) was observed with 10 nM TPA. 4a-Phorbol 12,13-didecanoate neither activated protein kinase C nor sensitized HeLa cells to CP. 4-O-Methyl-TPA, which does not affect cell cycle distribution of HeLa cells, also sensitized these cells to CP by 6-fold and activated protein kinase C by 3-fold. Inhibitors of protein kinase C, such as palmitoylcarnitine and sphingosine, antagonized PDBu-induced sensitization of HeLa cells to CP. The maximum sensitization of HeLa cells to CP required prolonged pretreatment (≥24 h) with phorbol esters but could not be explained by down-regulation of protein kinase C. For example, 4-O-methyl-TPA caused no down-regulation of protein kinase C. Moreover, TPA caused substantial downregulation of protein kinase C (1% of control) in A-253 cells by 5.5-fold. Therefore, activation of protein kinase C by TPA appears to be necessary but not sufficient for cellular sensitization to CP. The sensitization of HeLa cells by TPA was associated with a concentration-and time-dependent increase in cellular platinum content. The protein synthesis inhibitor cycloheximide (10 μg/ml) blocked sensitization of HeLa cells to CP as well as the increase in platinum content caused by a 24-h pretreatment with PDBu.

The calcium- and phospholipid-dependent protein kinase (protein kinase C) plays a pivotal role in transmembrane signaling (1). It mediates a wide variety of responses produced by growth factors, hormones, and mitogens and regulates many cellular processes including cell growth, differentiation, secretion, receptor interaction, and gene expression (1). Diacylglycerol (DAG),1 transiently generated by the hydrolysis of inositol phospholipids, activates protein kinase C physiologically by decreasing its cofactor requirements (2). The enzyme consists of multiple isoforms including α, β, β′, and γ (1, 3, 4). Protein kinase C is considered to be the primary receptor for tumor promoting phorbol esters (5, 6), which stimulate the enzyme by a mechanism similar to DAG (7) and induce a rapid translocation of the cytosolic enzyme to the plasma membrane (8). Extended exposure to these phorbol esters leads to proteolytic degradation or down-regulation of protein kinase C (9).

Phorbol esters, such as 12-O-tetradecanoylphorbol 13-acetate (TPA), elicit pleiotropic responses in different cell types. They both inhibit and stimulate cellular proliferation and differentiation (10-13), alter gene expression (14, 15), and affect protein synthesis (16). They have also been reported to reduce cellular sensitivity to some anticancer agents (17-19). The increase in protein kinase C activity by phorbol esters has been reported to induce the “multiple drug-resistant” phenotype in human breast cancer cells (19). Although it is generally believed that the effects of phorbol esters are mediated by protein kinase C (14), the mechanism responsible for the reduced sensitivity to these anticancer drugs is not clear. It has been proposed that the transient protection of human KB carcinoma cells afforded by TPA against the toxic effects of etoposide, vincristine, methotrexate, and mitoxantrone was due to decreased drug accumulation (17). This implies protein kinase C level may regulate the cellular accumulation of some anticancer drugs. Others (18) have suggested that phorbol esters can affect drug sensitivity by a mechanism independent of protein kinase C. For example, the increased survival of murine cells to methotrexate caused by TPA has been linked to the effects of TPA on cell cycle progression (18).

cis-Diaminedichloroplatinum(II) (CP) is one of the most widely used antineoplastic agents, often in combination with other anticancer drugs. Its cytotoxicity is thought to be caused by covalent interactions with chromosomal DNA (20). How the drug is taken up by cells and delivered to the nucleus is not understood. Nevertheless, prenuclear events, such as passage of CP through plasma membrane, its transport to the nucleus, and effects of membrane and cytosolic components on CP, are likely to influence its ultimate biologic action (21-23). The abbreviations used are: DAG, diacylglycerol; TPA, 12-O-tetradecanoylphorbol 13-acetate; PDBu, phorbol 12,13-dibutyrate; CP, cis-diaminedichloroplatinum(II); DACH, 1,2-diaminocyclohexane platinum sulfate; EGTA, ethylenebis(oxyethylenenitrilo)tetraacetic acid; HEPES, N-2-hydroxyethylpiperazine-N'-ethanesulfonic acid; MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide; Me2SO, dimethyl sulfoxide.
23). Because tumor-promoting phorbol esters are key signal transducers, act at plasma membrane, and have been shown to reduce the cellular accumulation of some anticancer drugs, we began examining their effects on cellular sensitivity to CP.

In the present report we have shown that phorbol esters cause significant sensitization of HeLa cells to CP and we have explored the possible mechanisms responsible for the changes in cellular sensitivity to CP.

Experimental Procedures

Materials—Calf thymus histone (III-S), cycloheximide, TPA, PDBu, 4-O-methyl-TPA, diolein, d-sphingosine, palmitoyl carnitine, MITT, and melphalan were purchased from Sigma. Bleomycin and CP were obtained from Bristol-Myers Co. Doxorubicin was from Adria Laboratories Inc., Columbus, OH, and vincristine was obtained from Eli Lilly and Co. 1,2-Diaminocyclohexane platinum sulfate (DACH) was generously provided by Dr. Miles P. Hacker of the Department of Pharmacology, University of Vermont, Burlington, VT. Phosphatidylserine was from Supelco, Bellefonte, PA. [γ-32P]ATP was purchased from Amersham Corp., and DES2 was obtained from Whatman Lab Sales Inc., Hillsboro, OR. [S-methyl-RH]Bleomycin A2 was obtained from Du Pont-New England Nuclear.

Cell Culture—Human cervical carcinoma (HeLa) cells and human head and neck carcinoma (A-253) cells were maintained as monolayer cultures in Dulbecco's modified minimal essential medium (GIBCO) and McCoy's 5a medium (GIBCO), respectively, supplemented with 2 mM L-glutamine, 10% fetal bovine serum (HyClone, Logan, UT), 25 mM HEPES buffer (pH 7.4), penicillin (100 units/ml), and streptomycin (100 μg/ml) and kept in a humidified incubator at 37 °C with 95% air and 5% CO2.

Cell Survival Assay—Exponentially growing cells were plated in microtiter plates (Costar, Cambridge, MA) and incubated at 37 °C in 5% CO2. Phorbol esters dissolved in MeSO were diluted in the growth medium and were added to the plate as described in the text. Control cells received an equivalent amount of the solvent (<0.1%). Unless otherwise mentioned, cells were preincubated with the compounds for 24 h and then incubated with various concentrations of anticancer drugs. Following a 45-72-h exposure to the anticancer drug with or without phorbol esters, the number of viable cells was determined using MTT as described by Carmichael et al. (27). Control values were always calculated for each individual experiment based upon the results obtained in the absence of CP but in the presence of solvent (MeSO) or phorbol ester.

Isolation of Protein Kinase C—Protein kinase C was partially purified from HeLa cells or A-253 cells using DES2-cellulose chromatography as described previously (28). Briefly, cells were harvested and cell pellets were washed with ice-cold phosphate-buffered saline without any divalent cations. All subsequent procedures were carried out at 4 °C. Cells were homogenized in 0.1 M Tris-HCl (pH 7.5), 0.25 mM sucrose, 2 mM EDTA, 5 mM EGTA, 10 mM β-mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, and 0.01% leupeptin (buffer A). The homogenate was centrifuged at 100,000 × g for 1 h. The cytosolic fraction was subjected to DES2-cellulose chromatography and eluted with 0.1 M NaCl in 20 mM Tris-HCl (pH 7.5), 0.25 mM sucrose, 0.5 mM EDTA, 0.5 mM EGTA, and 10 mM β-mercaptoethanol. The pellet was resuspended in buffer A and membrane-bound protein kinase C was extracted from the pellet by stirring for 30 min with 0.5% Triton X-100 and centrifuged at 100,000 × g for 1 h. The resulting supernatant was subjected to DES2 chromatography as mentioned above.

Protein Kinase C Assay—The enzyme activity was determined by measuring the incorporation of 32P from [γ-32P]ATP into histone III-S (28). The reaction mixture (200 μl) contained the enzyme preparation (1–3 μg of protein), 20 mM Tris-HCl (pH 7.5), 400 μg of histone, 15 μM [γ-32P]ATP, 10 mM magnesium acetate, and 0.5 mM CaCl2 with or without 20 μg/ml phosphatidylserine, and 2 μg/ml DAG. Free Ca2+ concentration was calculated to be 0.4 μM by the method of Fujimoto and Berridge (29). Calcium-dependent protein kinase C activity was determined by subtracting the activity determined in the absence of phosphatidylserine and DAG from that in the presence of phosphatidylserine and DAG. In the presence of either Ca2+ or phospholipid alone the enzyme activity was less than 5% of the activity when both were present. To determine the activation of protein kinase C by phorbol esters in the in vitro assay, we used 100 nM phorbol esters (as indicated in the text) and 0.5 mM EGTA instead of DAG and CaCl2. All reactions were incubated at 30 °C for 10 min and terminated with 1 ml of ice-cold 25% trichloroacetic acid. The assay was linear with regard to both time and amount of protein. The precipitated protein was washed 4 times with 25% trichloroacetic acid and counted in a liquid scintillation counter. Protein was determined by the method of Bradford (30) using bovine serum albumin as a standard.

One unit of protein kinase C activity is defined as that amount of enzyme which catalyzes the transfer of 1 pmol of phosphate from ATP to histone per min at 30 °C.

Assessment of Cellular Platinum Content—Cells in logarithmic phase of growth were pretreated for 24 h with varying concentrations of TPA. CP (0.75 μM) was then added and cells were incubated for an additional 24 h. In other studies, cells were pretreated with 100 nM PDBu or MeSO (0.05%) for 1–24 h in the presence or absence of 10 μg/ml cycloheximide. Cells were then exposed to 10 μM CP for 2 h. In all experiments, cells were washed twice with ice-cold phosphate-buffered saline, harvested using a solution of 0.05% trypsin and 0.5% trichloroacetic acid. The assay was linear with regard to both time and amount of protein. The precipitated protein was washed 4 times with 25% trichloroacetic acid and counted in a liquid scintillation counter. Protein was determined by the method of Bradford (30) using bovine serum albumin as a standard.

RESULTS

The Effect of TPA on the Antiproliferative Activity of Anticancer Agents—We investigated the effect of TPA on the antiproliferative activity of cis-diaminedichloroplatinum(II) (CP) in human cervical carcinoma (HeLa) and human head and neck carcinoma (A-253) cells. In the absence of CP (10 nM), HeLa and A-253 cells exhibited similar concentration response profiles to CP (Fig. 1). The survival curve of HeLa cells seen with CP was shifted to the left by a 24-h pretreatment with 100 nM TPA, lowering the concentrations of CP required to inhibit cellular proliferation by 50% (IC50) and 90% (IC90) approximately 9- and 6-fold, respectively (Fig. 1A). In contrast, TPA pretreatment (100 nM) had no effect on the sensitivity of A-253 cells to CP (Fig. 1B).
The effect of duration of exposure to PDBu on the sensitivity of HeLa cells to CP

<table>
<thead>
<tr>
<th>Addition of PDBu</th>
<th>Wash</th>
<th>Length of exposure to CP</th>
<th>Sensitization*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>h</td>
<td>h</td>
</tr>
<tr>
<td>−0.25</td>
<td>+</td>
<td>72</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>−2.0</td>
<td>+</td>
<td>72</td>
<td>1.7 ± 0.1</td>
</tr>
<tr>
<td>−6.0</td>
<td>+</td>
<td>72</td>
<td>1.9 ± 0.04</td>
</tr>
<tr>
<td>−24.0</td>
<td>+</td>
<td>72</td>
<td>3.9 ± 0.3</td>
</tr>
<tr>
<td>−24.0</td>
<td>−</td>
<td>72</td>
<td>8.9 ± 0.4</td>
</tr>
<tr>
<td>−1.0</td>
<td>−</td>
<td>2</td>
<td>1.5 ± 0.4</td>
</tr>
<tr>
<td>−24.0</td>
<td>−</td>
<td>2</td>
<td>4.9 ± 1.2</td>
</tr>
</tbody>
</table>

*The *-fold sensitization was calculated as the ratio of IC50 of HeLa cells for CP in the presence of solvent Me2SO to that in the presence of PDBu (100 nM).

We compared the ability of TPA (16 nM) pretreatment (24 h) to alter the sensitivity of HeLa cells to several other anticancer agents (Fig. 3). TPA had little effect on the antiproliferative activity of mitomycin C, doxorubicin, bleomycin, and vincristine in HeLa cells. TPA, however, increased the antiproliferative activity of melphalan by approximately 2- to 3-fold. Interestingly, TPA lowered the IC50 of HeLa cells for the CP analogue DACH only 1.5-fold compared to the 9-fold change with CP, indicating the possible importance of the free amino moieties in CP for the sensitization.

Effect of TPA Analogues on the Antiproliferative Activity of CP—In an effort to understand whether TPA-induced sensitization of HeLa cells to CP was associated with its known ability to interfere with cell cycle progression, we examined the effect of 4-O-methyl-TPA on CP sensitivity. This non-tumor promoting but hyperplasigenic phorbol ester, which has previously been shown to lack any effect on HeLa cell cycle parameters (33), caused a concentration-dependent enhancement of CP sensitivity (Fig. 2). The concentration of 4-O-methyl-TPA required to induce maximum sensitization was...
considerably higher (100 nM) than that required with TPA. These data demonstrate that TPA-induced sensitization to CP is not linked to perturbation of cell cycle parameters because even 1 μM 4-O-methyl-TPA does not induce any alteration in cell cycle distribution of HeLa cells (33). The biologically inactive phorbol ester 4α-phorbol 12,13-didecanoate, was ineffective in sensitizing HeLa cells to CP even at 500 nM (Fig. 2).

Relationship between Protein Kinase C Activation and CP Sensitization—To establish whether protein kinase C activation is linked to the enhancement of antiproliferative activity of CP, we measured protein kinase C activity in vitro in the presence of varying concentrations of TPA (Fig. 4). The maximum stimulation of protein kinase C was achieved with 10 nM TPA. Thus, the concentration dependences for the increase in protein kinase C activity and the decrease in IC50 by TPA were similar (Fig. 2 versus Fig. 4).

We also compared the ability of TPA analogues to activate protein kinase C and sensitize HeLa cells to CP. As shown in Table II, PDBu (100 nM) was as effective as TPA (100 nM) in stimulating protein kinase C (6-fold) and sensitizing HeLa cells to CP (9-fold). 4-O-Methyl-TPA (100 nM) caused a 6-fold sensitization to CP and also enhanced protein kinase C activity 3-fold. 4α-Phorbol 12,13-didecanoate was incapable of stimulating protein kinase C as well as sensitizing HeLa cells to CP. Thus, our results suggest that sensitization to CP is related to stimulation of protein kinase C activity. Protein kinase C from A-253 cells, however, was also stimulated considerably higher (100 nM) by TPA (5.5-fold) in the in vitro assay, although the sensitivity of these cells to CP was unaffected by TPA (Table II; Fig. 1B).

Effect of Protein Kinase C Inhibitors on Cellular Sensitivity to CP— We examined the ability of protein kinase C inhibitors such as sphingosine (34), palmitoylcarnitine (35), and staurosporine (36) to reverse TPA-induced sensitization of HeLa cells to CP. Both palmitoylcarnitine (10 μM) (Fig. 5A) and sphingosine (10 μM) (Fig. 5D) antagonized TPA-induced sensitization of HeLa cells to CP. Staurosporine (100 nM) had little effect in phorbol ester-induced sensitization of HeLa cells to CP (data not shown). At the concentrations used in our study all the inhibitors by themselves reduced cellular proliferation and caused a modest increase in cellular sensitivity to CP (Fig. 5).

Relationship between Protein Kinase C Down-regulation and CP Sensitization—Since long-term exposure of cells to TPA is known to down-regulate protein kinase C, we examined whether depletion of protein kinase C was related to CP sensitization. As shown in Table III, exposure of HeLa cells to TPA (100 nM) for 24 h caused significant down regulation of protein kinase C (5% of control). In contrast, PDBu (100 nM) led to only a 25% down-regulation of protein kinase C. 4-O-Methyl-TPA (100 nM) caused no down-regulation of protein kinase C. Therefore, there was no correlation between protein kinase C down-regulation and the ability of a phorbol ester to sensitize HeLa cells to CP.

TABLE II

<table>
<thead>
<tr>
<th>Cells</th>
<th>Addition</th>
<th>Sensitization to CP<sup>a</sup></th>
<th>Stimulation of protein kinase C activity<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>HeLa</td>
<td>TPA</td>
<td>9.14 ± 1.20</td>
<td>6.78 ± 0.55</td>
</tr>
<tr>
<td></td>
<td>PDBu</td>
<td>9.33 ± 0.10</td>
<td>6.07 ± 0.85</td>
</tr>
<tr>
<td></td>
<td>4-O-Methyl-TPA</td>
<td>5.58 ± 0.11</td>
<td>2.70 ± 0.32</td>
</tr>
<tr>
<td></td>
<td>4α-PDD<sup>3</sup></td>
<td>1.12 ± 0.001</td>
<td>1.02 ± 0.01</td>
</tr>
<tr>
<td>A-253</td>
<td>TPA</td>
<td>0.95 ± 0.06</td>
<td>5.46 ± 0.16</td>
</tr>
</tbody>
</table>

^aThe -fold sensitization was calculated as the ratio of IC50 of CP in the presence of solvent MeSO to that in the presence of various phorbol esters (100 nM) as indicated in the Table. The IC50 values (mean ± S.E.) of HeLa and A-253 cells in the presence of MeSO were 1.27 ± 0.10 and 1.00 ± 0.06, respectively.

^bThe -fold stimulation of protein kinase C activity was determined as the ratio of protein kinase C activity in the presence of various phorbol esters (100 nM) to that in their absence. Protein kinase C activity (mean ± S.E.) of HeLa and A-253 cells in the absence of any phorbol esters were 35 ± 1.7 and 25.2 ± 0.2 pmol/min/mg, respectively.

³4α-PDD, 4α-phorbol 12,13-didecanoate.

TABLE III

<table>
<thead>
<tr>
<th>Cell</th>
<th>Addition</th>
<th>Protein kinase C activity<sup>4</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td></td>
<td>pmol/min</td>
</tr>
<tr>
<td>HeLa</td>
<td>MeSO</td>
<td>17.9 ± 0.30</td>
</tr>
<tr>
<td></td>
<td>TPA</td>
<td>0.95 ± 0.46</td>
</tr>
<tr>
<td></td>
<td>PDBu</td>
<td>13.3 ± 1.43</td>
</tr>
<tr>
<td></td>
<td>4-O-Methyl-TPA</td>
<td>21.1 ± 1.96</td>
</tr>
<tr>
<td>A-253</td>
<td>MeSO</td>
<td>13.9 ± 0.54</td>
</tr>
<tr>
<td></td>
<td>TPA</td>
<td>0.11 ± 0.03</td>
</tr>
</tbody>
</table>

⁴The mean ± S.D. for IC50 and protein kinase C activity were determined as described under "Experimental Procedures."
ester to sensitize HeLa cells to CP. In addition, TPA (100 nM) caused substantial down regulation of protein kinase C (less than 1% of control) in A-253 cells but did not change cellular sensitivity to CP (Fig. 1B; Table II).

Effect of Protein Synthesis Inhibitor on CP Sensitization by Phorbol Ester—To examine if new protein synthesis is required for the phorbol ester-induced sensitization of HeLa cells to CP, we tested the effect of protein synthesis inhibitor cycloheximide on CP sensitivity. Cells were treated with a concentration of cycloheximide that inhibited protein synthesis in HeLa cells by 95% (37). Cycloheximide (10 μg/ml) by itself had no effect on the antiproliferative activity of CP in HeLa cells but it completely blocked the sensitization of HeLa cells to CP caused by PDBu (Fig. 6).

Effect of Phorbol Esters on Cellular Drug Content—There are various mechanisms by which TPA might influence the cytotoxic action of CP. We examined whether TPA altered cellular platinum levels. Cells were exposed for 24 h to CP after a 24-h pretreatment with varying concentrations of TPA. As shown in Fig. 7, the increase in cell-associated platinum was concentration-dependent up to 16 nM TPA, raising the platinum level more than 2-fold. We also examined the effect of 16 nM TPA on the cellular content of bleomycin A_2, an agent to which no sensitization was seen (Fig. 3). In the presence of vehicle and 16 nM TPA, bleomycin A_2 content was 8.42 ± 0.30 and 9.20 ± 0.30 pmol/mg protein, respectively.

Fig. 6. Effect of cycloheximide on the antiproliferative activity of CP. HeLa cells were incubated with MeSO (open symbols) or 100 nM PDBu (closed symbols) for 24 h, in the presence (triangles) or absence (circles) of 10 μg/ml cycloheximide. Cells were then exposed to various concentrations of CP for additional 2 h, washed twice with medium, and cell survival was determined by the MTT assay as described under “Experimental Procedures.” This result is representative of three individual experiments. Each symbol represents the mean value of four determinations in a single experiment and the S.D. was ±10% of the mean.

Fig. 7. Effect of TPA on cellular platinum content. HeLa cells were preincubated with various concentrations of TPA for 24 h and then exposed to 0.75 μM CP for an additional 24 h. Cell-associated platinum content was measured by flameless atomic absorption spectrophotometry. Each symbol represents the mean value of three to six individual experiments and the S.D. was ±15% of the mean.

<table>
<thead>
<tr>
<th>Table IV</th>
<th>The effect of PDBu and cycloheximide on cellular platinum content</th>
</tr>
</thead>
<tbody>
<tr>
<td>PDBu pretreatment</td>
<td>ng platinum/10^6 cells*</td>
</tr>
<tr>
<td>h</td>
<td>—Cycloheximide</td>
</tr>
<tr>
<td>0</td>
<td>7.81 ± 0.55</td>
</tr>
<tr>
<td>1</td>
<td>12.09 ± 0.62</td>
</tr>
<tr>
<td>24</td>
<td>16.0 ± 0.84</td>
</tr>
</tbody>
</table>

* Each value is the mean ± S.E. of three individual experiments performed in triplicate.

Therefore, TPA did not have a marked effect on the cellular bleomycin A_2 content.

Because the magnitude of cellular sensitization to CP increased with prolonged (24 h) PDBu pretreatment, we also examined platinum content in cells pretreated with PDBu for less than 24 h. As indicated in Table IV, HeLa cells pretreated for 1 h with 100 nM PDBu followed by a 2.5-h exposure to 10 μM CP had cellular platinum level that was 160% above control values. Cells pretreated for 24 h had a level that was increased further to 200% of control. We also examined cellular platinum content when cells were coincubated with cycloheximide and PDBu. Cycloheximide inhibited the increase in cellular platinum seen with the 24-h PDBu pretreatment but did not affect the smaller increase in platinum observed with the 1-h PDBu pretreatment (Table IV).

Discussion

We have demonstrated that phorbol esters that activate protein kinase C cause a significant enhancement of the antiproliferative activity of CP in HeLa cells. This is a cell type-specific effect, being seen in HeLa but not in A-253 cells. The sensitization phenomenon was also specific for the antitumor drug tested. Pretreatment with TPA sensitized HeLa cells to both CP and melphalan, which covalently react with DNA, but not to another DNA alkylating agent, mitomycin C. Phorbol ester-pretreated HeLa cells were slightly more sensitive to DACH but not to doxorubicin, bleomycin, or vincristine.

Hofmann et al. (24) also have observed sensitization of Walker rat carcinoma cells to CP by long-term exposure to TPA, although it was rather limited (<2-fold). The authors postulated that the depletion of protein kinase C by TPA caused the sensitization of Walker cells to CP, because the observed enhancement occurred at a time when protein kinase C was down-regulated. Our data do not support this hypothesis. First, there was no correlation between the ability of a phorbol ester to down-regulate protein kinase C and to sensitize HeLa cells to CP (Table III). Second, 4-O-methyl-TPA at a concentration that does not cause any down-regulation of protein kinase C was almost as effective as TPA in inducing sensitivity to CP in HeLa cells. Finally, TPA caused substantial down-regulation of protein kinase C in A-253 cells but failed to sensitize these cells to CP.

Based upon the results of our study, there appears to be a good correlation between the activation of protein kinase C as measured in vitro and the sensitization of HeLa cells to CP by phorbol esters. Unlike doxorubicin which was shown to inhibit protein kinase C activity (38), CP by itself has no effect on protein kinase C activity (25). The enhancement in antiproliferative activity of CP by various concentrations of
TPA paralleled the increase in protein kinase C activity. In addition, the ability of different phorbol esters to activate protein kinase C correlated with their ability to decrease the IC50 for CP. Furthermore, inhibitors of protein kinase C, such as palmitoylcarnitine and sphingosine, inhibited the TPA-mediated sensitization. We and others (24-26) have, however, observed sensitization of cells to CP by inhibitors themselves. Unfortunately, all known inhibitors of protein kinase C lack specificity and are known to have other pharmacological activities (24, 25, 36, 39, 40). Therefore, it is difficult to ascertain whether the mechanism of cellular sensitization to CP by these inhibitors involves protein kinase C or not.

Activation of protein kinase C appears to be necessary but not sufficient to explain the sensitization phenomenon. TPA caused significant stimulation of protein kinase C from A-253 cells but did not sensitize these cells to CP. The failure to sensitize A-253 cells may be due to lack of some important cellular component distal to the stimulation of protein kinase C.

The ability of cycloheximide to block the sensitization seen with a 24-h pretreatment is consistent with the hypothesis that the synthesis of additional protein(s) is required for maximal stimulation. At least seven different isoforms of protein kinase C have been isolated (1, 3, 4). Although the function of each isoform is not known, there appears to be tissue-specific expression of these isoforms (1). Recent results indicate that TPA can stimulate the synthesis of the γ form of protein kinase C and that this requires at least 6–24 h (15). We have found using Western blot analyses and a isoform specific monoclonal antibody to protein kinase C-γ that HeLa cells express very low amounts of protein kinase C-γ and these levels are unaffected by TPA treatment. It is conceivable that the sensitization of HeLa cells after a 24-h pretreatment may be mediated by the synthesis of some protein other than a subspecies of protein kinase C.

The sensitization of HeLa cells to CP by phorbol esters may be due to the increase in platinum content. Results from a number of laboratories indicate that resistance to CP is marked by a lower cellular content of CP (41-43). The magnitude of the increase in cellular platinum appears to depend on the concentration of TPA as well as the length of exposure to phorbol esters. The level of increase in platinum content (2-fold) is sufficient to explain the elevated sensitivity of HeLa cells. Teicher et al. (41), for example, found that human cells with a 30-fold resistance to CP had a 3-fold decrease in platinum content. This is in agreement with the results of other laboratories (42, 43). It is interesting, however, that cycloheximide could block the increase seen with a 24-h PDBu pretreatment but not a 1-h pretreatment. This is consistent with the hypothesis that new protein synthesis is essential for maximum sensitization but may indicate a difference in the mechanism responsible for the modest sensitization seen with a 1-h pretreatment and the more substantive enhancement seen after 24 h.

The mode of entry and removal of CP in malignant and normal cells is not well defined. There is indirect evidence that some alkylating agents, such as CP and melphanal, are transported into the cells via a membrane carrier whereas the cellular entry of alkylating agents, such as busulphan or mitomycin C, does not involve any carrier (21). While protein kinase C has been implicated in regulating the "multiple drug resistance" phenotype (19), there is no evidence that P-glycoprotein, which is a drug efflux pump, recognizes CP or melphanal. It is noteworthy that phorbol esters increase the sensitivity of HeLa cells to melphanal and CP but not to mitomycin C. In addition, it has been shown (44) that phorbol ester treatment restores L system amino acid transport in chronic lymphocytic leukemia. Interestingly, the enhancement in amino acid transport required prolonged treatment with TPA (16 h) and was blocked by cycloheximide. Furthermore, cells with acquired resistance to CP have been found to have a reduced amino acid transport system (45). Therefore, it may be worthwhile to examine whether the pretreatment of HeLa cells with TPA involves an altered carrier. It may also be interesting to determine if selective phosphoproteins influence CP transport and cytotoxicity. Given the low therapeutic indices currently available with antitumor agents, our observation that phorbol esters cause marked sensitization to CP is intriguing and may have potential therapeutic importance.

Acknowledgments—We thank Beth E. Reffner and Vrinda S. Khandekar for excellent technical assistance.

REFERENCES

Cellular Sensitization to cis-Platinum by Phorbol Esters

Involvement of protein kinase C in phorbol ester-induced sensitization of HeLa cells to cis-diaminedichloroplatinum(II).

A Basu, B A Teicher and J S Lazo

Access the most updated version of this article at http://www.jbc.org/content/265/15/8451

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/265/15/8451.full.html#ref-list-1