Structure and Regulation of the SSA4 HSP70 Gene of Saccharomyces cerevisiae*

William R. Boorstein§ and Elizabeth A. Craig¶

From the §Molecular and Cellular Biology Program and the ¶Department of Physiological Chemistry, University of Wisconsin, Madison, Wisconsin 53706

SSA4 is the only one of five heat-inducible HSP70 genes in Saccharomyces cerevisiae whose expression is restricted to conditions of stress. Comparison of the nucleotide sequences of the SSA4 gene with other HSP70 genes indicates that it diverged from its most closely related yeast homologues hundreds of millions of years ago. However, a high degree of identity has been maintained between Ssa4p and other yeast 70-kDa heat-shock proteins at the amino acid level suggesting, in light of its distinct pattern of regulation, that it performs an important function. A 44-base pair region of the SSA4 promoter containing an extended match to the conserved eukaryotic heat-shock element (HSE) is necessary and sufficient to mediate heat-inducible regulation. HSE\textsubscript{SSA4} is capable of promoting only a low level of transcription under nonstress conditions. We present evidence in support of a revised definition of the functional HSE in S. cerevisiae, similar to the recently proposed modular Drosophila HSE. Elevated expression of several heat-shock proteins in an ssa1 ssa2 double-mutant strain has previously been reported. The SSA4 promoter is activated in this strain. The increase in expression of SSA4 caused by deletion of these closely related genes is mediated via the same upstream activating sequences that activate transcription in response to heat shock. Activation of HSE-mediated transcription by disruption of constitutively expressed HSP70 genes supports an autoregulatory model of control of the heat-shock response.

Cells exposed to a variety of environmental stresses, including elevated temperature, respond by rapidly synthesizing a small set of evolutionarily conserved proteins, known as the heat-shock proteins (HSFs). This heat-shock or stress response is a universal biological phenomenon (reviewed in Craig, 1985). Stress induction of HSPs is regulated primarily at the level of transcription. The mechanism by which heat-shock genes are activated has also been highly conserved (reviewed in Bienz and Pelham, 1987). Identification of related heat-shock elements (HSEs) in many eukaryotic species, including yeast, plants, and mammals, has led to the derivation of the HSE consensus sequence, CNGAANNTTC-NNG, where N is any nucleotide (Pelham, 1985). Recently, the definition of HSEs in Drosophila has been revised, based on the effects of site-directed mutations (Amin et al., 1988; Xiao and Lis, 1988). Functionally defined Drosophila HSEs can be viewed as modular, consisting of at least three repeats of the sequence GAA in alternating orientation and separated from each other by two nucleotides. HSEs are specific binding sites for the heat-shock transcription factor, HSF (Topol et al., 1985; Perisic et al., 1989; Wiederrecht et al., 1987; Wu et al., 1987). Transcriptional activation of heat-shock genes occurs by a posttranslational mechanism believed to involve phosphorylation of HSF (Sorger et al., 1987; Sorger and Pelham, 1988; Zimerino and Wu, 1987). Studies of Drosophila suggest that HSF/HSE-mediated control acts at an early step in transcriptional elongation (Rougivie and Lis, 1988).

The 70-kDa heat-shock proteins (hsp70s) are among the most highly conserved of all proteins. Species as distantly related as archeobacter and human contain related genes (Craig, 1985). In S. cerevisiae, a large multigene family encodes eight hsp70s that are both expressed and localized differentially within the cell. These HSP70 genes have been divided into four subfamilies based on conservation at the amino acid level (reviewed in Lindquist and Craig, 1988). Genetic analyses suggest that members of the subfamilies are functionally related as well (reviewed in Craig, 1989). SSA4, the subject of this study, is one of four members of the most complex group, the SSA subfamily. While none of the individual SSA genes are required for viability, this subfamily is essential (Werner-Washburne et al., 1987). SSA1 and SSA2 are the only two members of the SSA subfamily that are expressed at detectable levels in cells under nonstressed growth conditions. ssa1 ssa2 double mutants are temperature-sensitive for growth but viable at 30 °C. ssa1 ssa2 ssa4 cells are inviable, indicating that the SSA4 gene can partially compensate for the ssa1 ssa2 defects (Werner-Washburne et al., 1987).

SSA4 is the only classic HSP70 gene in yeast; it is expressed at extremely low levels under normal conditions and is rapidly and dramatically induced following heat-shock treatment. The previously analyzed SSA1 and SSA3 genes are also heat-inducible; however, they differ from SSA4 in that SSA1 is expressed at high basal levels and SSA3 is induced under conditions of lowered intracellular cAMP (such as starvation) (Werner-Washburne et al., 1989). Heat-shock activation of

* This work was funded by United States Public Health Service grants from the National Institutes of Health (to E. A. C.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† The nucleotide sequence(s) reported in this paper has been submitted to the GenBank®/EMBL Data Bank with accession number(s) J05657.

§ Supported by a United States Public Health Service training grant in molecular and cellular biology. Present address: Howard Hughes Medical Institute, Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125.

¶ The abbreviations used are: HSP, heat-shock protein; hsp70, 70-kDa heat-shock protein; HSE, heat-shock element; HSF, heat-shock transcription factor; UAS, upstream activation sequence; ORF, open reading frame; bp, base pair; kb, kilobase pair; ATF, activating transcription factor.

W. R. Boorstein and E. A. Craig, unpublished observations.
the SSA1 and SSA3 promoters is dependent upon upstream activating sequences (UAS) similar to the HSEs of higher eukaryotes (Boorstein and Craig, 1990b; Slater and Craig, 1987). HSEs are also involved in mediating basal expression of SSA1 and enhancing the level of expression of SSA3 under conditions of lowered cAMP. The role of HSEs in promoting transcription under nonstress conditions is consistent with evidence demonstrating that yeast HSF is bound to HSEs under normal, as well as stressed conditions (Jakobsen and Pelham, 1988; Sorger and Pelham, 1987).

Here we present the initial characterization of the SSA4 gene and its transcriptional regulation. We define the promoter element that mediates heat-inducible regulation of SSA4 and compare its activity with that of HSEs from SSA1 and SSA3, which contribute both to heat induction and to high expression levels under nonstressed conditions. We have also analyzed SSA4-promoter activity in mutant strains lacking constitutively expressed, closely related homologues, SSA1 and SSA2. We evaluate the modular ISE concept, defined by experiments in Drosophila, in light of the data presented here and recent analyses of heat-inducible S. cerevisiae promoters.

Materials and Methods

S. cerevisiae Strains—DS10 (MAT a, his3-11, his3-18, leu2-3, leu2-112, lys1, lys2, trpl1, ura3-52) was utilized in all experiments presented here unless specifically noted. DS16 is isogenic to DS10 and contains disrupted alleles of SSA1 and SSA2 (ssal::HIS3 and ssal::LEU2) (Craig and Jacobsen, 1984; Werner-Washburne et al., 1987).

Plasmid Constructions—An SSA4/lacZ translational fusion (Fig. 1A) was constructed in a derivative of the promoter cloning vector pHT102 (Tu and Casadaban, 1990). The EcoRI to SacI fragment of pHT102 was replaced with the EcoRI to Smal fragment of the Echerichia coli unc operon from pAF65 (Bruskow et al., 1983) ligated to the Smal to SacI fragment of pSK100 (Casadaban et al., 1983) to generate the translational lacZ fusion vector pWB201. pWB201 includes an extended polylinker (5'-AGCATTCCCGGGGATCCGT-3') immediately upstream of lacZ, as well as unc operon sequences, to facilitate construction of promoter deletions by using an upstream buffer of nonessential vector sequences and an Xhol site to provide constant vector sequences upstream of the SSA4 deletion endpoints. An Spnl linker (5'-pGGGAATTC-3') was cloned into the Smal site of the polylinker of pWB201. The 856-bp pSSA4H NlaIII fragment (Fig. 2B) was subsequently inserted into this Spnl site. The central four base pairs of the polylinker site in the polynucleotide stretch of pSSA4H was then used to generate the correct reading frame (pWB209). The SSA4/lacZ fusion junction was verified by DNA sequence analysis. Subsequently, an Spnl linker (5'-pGGGAATTC-3') was inserted into the SphI site at position −594 (indicated in Fig. 2B) to provide a unique restriction site for the construction of deletion derivatives. The EcoRI site upstream of the SSA4 sequences was engineered with mung bean exonuclease, creating Xhol cleavage sites.

Deletion derivatives of the SSA4/lacZ fusion plasmid, pWB213, were created by cleavage with Spnl followed by Bal31 exonuclease treatment for various time intervals, creation of blunt ends, ligation of Xhol linkers (5'-pCTCTGAGGGG-3'), Xhol cleavage, and unimolecular reclosure, joining the Xhol linker at the SSA4 deletion end point. Common Xhol sites in the SSA4 promoter and Xhol sites of pWB213A−594 were created by inserting an Xhol linker into the Spnl site and recircularizing as described above, without exonuclease treatment. The precise position of pWB213A−594 Δ−234, and Δ−174 deletion end points were determined by DNA sequence analysis. The remaining deletion end points were mapped to within ±3 nucleotides by polyclarlamide gel electrophoresis of small restriction fragments.

A centromeric UAS cloning vector, pWB220 (Fig. 1B), was constructed by replacing the SSA4 sequences of pWB213 with CYCl promoter sequences. Specifically, the small Xhol site at SacI region of pWB213 (containing the entire SSA4 region and the amino-terminal portion of the lacZ-coding region) was replaced with the corresponding Xhol fragment of pLG069-Z (Guarente and Ptashne, 1981). The CYCl sequences in pWB220 extend from a 175-bp upstream region of the primary initiation site, through the amino-terminal codon. pWB220 also contains different linker and lacZ fusion sites from those in pWB213. pWB227 and pWB227−R were constructed by inserting a synthetic double-stranded oligonucleotide matching the 44 bp indicated in Fig. 8A, flanked by sequences necessary to generate an Xhol site and an Xhol complementary overhang, into the Xhol site of pWB220. The pWB227 and pWB227−R inserts were verified to be identical with the native SSA4 sequence. All plasmid constructions utilized standard methods (Ausubel et al., 1987).

DNA Sequence Determination and Analysis—Appropriate regions of the SSA4H plasmid were subcloned into M13mp vectors and sequenced by the dideoxy chain termination method (as described in Ausubel et al., 1987). Sequence was obtained across all restriction sites used for cloning and on both DNA strands. DNA and protein sequence analyses were performed with University of Wisconsin Genetics Computing Group programs (Devereux et al., 1984).

mRNA Analysis—mRNA was isolated by rigorous vortexing of S. cerevisiae cells expressing SSA4 alleles. Tris (50 mM), diethylpyrocarbonate (DEPC) treated, in the presence of glass beads, 0.5% sodium dodecyl sulfte, phenol, and chloroform. Lysis was followed by multiple phenol/chloroform extractions and ethanol precipitation as described (Ellwood and Craig, 1984). Yields were determined by

![Fig. 1. Plasmids utilized to identify sequences controlling SSA4 expression.](https://example.com/fig1)

A. pWB213, the plasmid containing the SSA4/lacZ hybrid gene (used to construct the 5' deletion series plasmids).
B. The centromeric UAS cloning vector pWB220, a derivative of pWB213. pWB220 and pWB213 differ only in the region between lacZ and ARS1 sequences. Genes and other functional plasmid sequences labeled in bold type; the localization size, and orientation of genes are indicated by curved arrows. The two large unshaded arcs in each plasmid represent sequences of pBR322 origin. Lightly stippled arcs represent sequences from the E. coli unc operon. SSA4 sequences are represented by solid black arcs. Restriction enzyme recognition sites used in plasmid constructions are labeled. The entire nucleotide sequence of these vectors is known with the exception of approximately 400 nucleotides at each end of the CEN11 sequence. RI, EcoRI; Sa, SalI, Sp, SphII; X, Xhol.

Yeast Growth and Enzyme Assays—Transformants freshly selected on minimal medium lacking tryptophan were inoculated into YPD medium (Sherman et al., 1982) and grown (∼20 h) to an A600nm = 0.4 ± 0.05. The culture was then divided and one portion was transferred to a prewarmed flask at 39 °C while the remainder was retained at 23 °C. Samples were collected 1 h (or indicated times) following temperature upshift. Stationary phase cells were collected after 4.5-
Structure and Regulation of a Yeast Heat-shock Gene

5 days of growth at 23 °C. Cells were collected in siliconized 1.5-ml microcentrifuge tubes; cell pellets were rapidly frozen in a -70 °C bath and were stored at this temperature. Optimization of growth conditions by using rich medium resulted in lower basal and higher heat-shocked levels of expression than observed in defined, plasmid-selective, medium (data not shown). Plasmid stability was routinely assessed as follows: an aliquot of cells was plated on rich medium and the fraction of resultant colonies that contained the TRPI marker was determined following replica plating to the medium lacking tryptophan. More than 80% of the cells retained plasmid at the time of sample collection.

β-Galactosidase activity was determined by microfluorometric assay utilizing the substrate 4-methylumbelliferyl-β-D-galactoside (to be described in detail elsewhere). Briefly, cells were suspended and permeabilized in 1 ml of Z buffer (Miller, 1972) with 0.05% sodium dodecyl sulfate, 50 mM β-mercaptoethanol, 1 mM phenylmethylsulfonyl fluoride, vortexed vigorously, diluted to yield fluorogenic product in the linear detection range of the fluorimeter, and incubated with 1 mM 4-methylumbelliferyl-β-D-galactoside for 15-120 min at room temperature. The reactions were performed in a final volume of 200 μl in 96-well microtiter plates. Fluorescence of samples with extremely low β-galactosidase levels was enhanced by the addition of 50 μl of 1 M Na2CO3 after 2 h of incubation. Fluorescence was determined using a Titertek Fluoroskan I fluorimeter. β-Galactosidase activities are presented as Δ2-t/(Δt-1 × A0.50 × u × s) × C × N, where Δ2-t is the increase in fluorescence between times 1 and 2, t2-1 is the time in minutes, between the two fluorescence readings, A0.50 is a measure of cell density at the time of cell collection, u is the volume of the culture assayed, in milliliters, and s is correction factor for plasmid stability that is equal to the fraction of cells retaining the plasmid at the time of collection. The arbitrary fluorescence units were converted to Miller units (Miller, 1972) by the empirically derived constant, C = 5.7 x 10^2. N is a normalization factor determined by assay of a known standard quantity of β-galactosidase to control for differences in temperature and pH which affect β-galactosidase activity and fluorescence of methylumbelliferone, respectively. Selected samples were permeabilized as described above and were assayed in parallel with the substrate o-nitrophenyl-β-D-galactopyranoside, as described (Slater and Craig, 1987); results of the two assays were similar, with the exception of the low activity samples that were below the accurate detection limits of the O-nitrophenyl-β-D-galactopyranoside assay. Data presented are averages from two to six determinations of at least two independent transformants. Individual determinations were almost always within 20% of the averages shown here. Occasionally, high or low values were obtained. In these cases, samples from all treatments of a single culture were similarly affected (i.e. basal, heat-shock, and stationary phase); thus, patterns of induction were highly reproducible.

RESULTS

Characterization of the SSA4 Gene and Encoded Transcripts—The SSA4 gene was isolated on a 9-kb genomic clone.3 We constructed a restriction map of the pSSA4H genomic insert and localized the SSA4 coding region by DNA hybridization analysis utilizing fragments of the related SSA1 gene as probes (Fig. 2A and data not shown). The nucleotide sequence of the coding region, as well as 1.2 kb of flanking DNA upstream of the gene, was determined (Fig. 2B). A single large open reading frame with similarity to SSA1 was identified. This SSA4 ORF has the potential of encoding a protein of 642 amino acids with a predicted molecular mass of 69,650 Da and an isoelectric point of 4.86. These values are consistent with previous estimates based on polyacrylamide gel electrophoresis analysis of the SSA4 protein, Ssa4p (Werner-Washburne et al., 1987).

While Ssa4p is closely related to hsp70s and noninducible cognates of distantly related species (68-75% identity to Drosophila and human homologues), it is most closely related to the yeast hsp70 Ssa1p and Ssa2p, which are 97% identical. Ssa4p and Ssa1p are each 642 amino acids in length, although optimal alignment involves the introduction of at least three

3 J. C. A. Bardwell and E. A. Craig, unpublished data.

FIG. 2. Restriction map and nucleotide sequence of SSA4 and flanking genomic DNA. A, restriction map of the 9.0-kb SSA4 HindIII fragment, SSA4H. The SSA4 protein-coding region and the upstream open reading frame are represented by arrows. The filled region of the map indicates the part of the clone whose DNA sequence...
The amino acid translation of the incomplete ORF upstream of Ssa4p are 89% identical with Ssalp, while the carboxyl-terminal 117 amino acids share only 50% identity. However, two short highly conserved domains are present within the C-terminal region, the eight extreme terminal amino acids of Ssa4p are identical to those of Drosophila hsp70s, as well as to those of Ssalp. 85% of the amino acids between these two conserved domains (610 through 636) are glycine, alanine, and proline, including six glycine-alanine repeats; therefore, this region is likely to be highly flexible.

The nucleotide sequence similarity is strictly limited to the coding region (Fig. 4), in which the genes share 87% identity. The high degree of divergence between SSA4 and SSA1 based on silent (synonymous) substitutions (182%, calculated and corrected for multiple substitution events by the method of Perler et al. (1980)) indicates that these genes are likely to have arisen from a duplication event a minimum of 100 million years ago. The relatively low divergence, 13%, based on replacement (nonsynonymous) substitutions indicates that a high level of selective pressure has maintained the similarity in the coding potential of these two genes.

An additional open reading frame of at least 494 nucleotides was identified on the same strand as SSA4 (Fig. 2, and data not shown). This ORF begins 5' to the region included in Fig. 2B and terminates 889 bp upstream of the SSA4 coding domain. The upstream ORF is predicted to encode a protein by the TESTCODE algorithm, an empirically derived method based primarily on the periodic compositional bias of coding sequences (Fickett, 1982). The ORF sequence is not closely

![Graphical representation](http://www.jbc.org/)

Fig. 4. Comparison of SSA4 to SSA1 DNA sequences. A, graphic matrix comparison of the entire SSA4 and SSA1 protein-coding regions plus flanking DNA (Matzei and Lenk, 1981). Wide bars on the axes indicate the positions of the coding regions; initiation and termination codons are labeled. Each dot represents a match of 11 of 24 adjacent nucleotides between the two sequences. **B**, alignment of SSA4 and SSA1 nucleotide sequences flanking the initiation (top) and termination (bottom) codons. Vertical lines indicate identity between nucleotides at corresponding positions in the two genes. Coding portions of the genes are in bold type. Numbers indicate positions, as in Fig. 2B, for SSA4 and, as in Slater and Craig (1987), for SSA1.
related to entries in GenBank, EMBL, and NBRF data bases.

Mapping the 5' Termini of SSA4 mRNA and Identification of Putative SSA4 Transcriptional Regulatory Sequences—The 5' ends of SSA4 transcripts were mapped to the gene by primer extension and S1 nuclease techniques (Fig. 5). Heat-induced transcripts from the native gene mapped to a five-nucleotide region. The HSP70-related open reading frame begins at the first AUG downstream of this putative initiation site. The region flanking this AUG matches the S. cerevisiae translational initiation consensus sequence in 8 of 10 positions (Cigan and Donahue, 1987). The length, 53 nucleotides, and the adenine-rich content of the predicted 5' untranslated SSA4 mRNA leader are typical of yeast genes transcribed by RNA polymerase II.

The sequence TATAAA, which matches the functionally defined TATA element (Chen and Struhl, 1988), is present 75 bp upstream of the putative transcriptional initiation site(s). Interestingly, several occurrences of sequences that have been shown to act as preferred initiation sites in CYC1, PH05, and other yeast promoters, TC(G/A)A and RRRYRR (where R and Y are purine and pyrimidine nucleotides, respectively) (Hahn et al., 1985; Rudolph and Hinne, 1987), have been shown to act as preferred initiation sites in other yeast promoters, TC(G/A)A and RRRYRR (where R and Y are purine and pyrimidine nucleotides, respectively) (Hahn et al., 1985; Rudolph and Hinne, 1987),

The 5' termini of native and fusion transcripts were indistinguishable. Therefore, expression of the fusion genes corresponds to that of the native SSA4 gene.

Removal of an additional 60 bp downstream of the -234 deletion endpoint essentially abolished heat-inducible regulation, indicating that the -188 HSE-like region is critical to SSA4 heat induction. This region contains the only match to the newly extended HSE definition within 1.2 kb upstream of the SSA4 gene, as well as the closest matches to the canonical HSE 14-bp palindromic sequence. In addition, β-galactosidase activity from cells transformed with this construct was very low under optimal growth conditions at 23 °C. Activity increased 70-fold following 39 °C heat-shock treatment (Fig. 6, top line). Basal activity was only slightly (0.8 Miller units) higher in stationary phase than in exponentially growing cells at 23 °C.

Localization of Regulatory Sequences—A progressive series of deletions of SSA4 upstream sequence was constructed to delineate regions involved in transcriptional control. The deleted fusion constructs retaining sequences from at least -234 to +59 were regulated in a heat-inducible manner (Fig. 6). The largest and smallest deletion derivatives of the SSA4/ lacZ hybrid gene that gave rise to heat-inducible β-galactosidase activity were analyzed in greater detail. Both constructs exhibited a high degree of heat-shock regulation at the RNA level (Fig. 5B). Furthermore, the 5' termini of the fusion mRNAs mapped to the same nucleotides in the SSA4 sequence as did the native SSA4 transcript termini (Fig. 5B).

β-Galactosidase activity from both constructs increased dramatically within 30 min of temperature upshift, reached a maximum after 60 min, and then gradually declined (Fig. 7). Therefore, expression of the fusion genes corresponds to that of the native SSA4 gene.
inducible expression, at least from their native locations. An increase in both basal and induced levels of expression upon removal of sequences between −366 and −240 suggests elements that negatively modulate SSA4 expression may be present in this region. However, no match to the upstream repression sequence that negatively modulates SSA1 transcription was identified in the SSA4 promoter (Park and Craig, 1989).

Definition of UASHs To determine whether the sequences shown to be required for heat-shock activity of the SSA4 promoter by 5' deletion analysis were sufficient to mediate heat-inducible transcription in the absence of flanking SSA4 sequences, a short region containing the HSEs centered at −188 was tested for upstream activation sequence activity. The vector employed for these experiments, pWB220, is a derivative of the SSA4/lacZ cloning vector, pWB213 (Fig. 8). The insertion of the 44-bp HSEsA4 oligonucleotide into the UAS test vector (Fig. 8). The insertion of this HSEsssa oligonucleotide into the UAS test vector was assayed in a double-mutant strain. Insertion of the 44-bp HSEsssa oligonucleotide into the UAS test vector resulted in 185 units of β-galactosidase activity under the same growth conditions. Heat-shock activity of the HSEsSsa2 double-mutant strain was 600-fold greater than levels in wild-type isogenic strains during growth at 23 °C (Table I). To determine whether UASHs was alone sufficient to drive this abnormally high basal activity, expression driven by the UASHsCYCl hybrid promoter was assayed in cells with disrupted SSA1 and SSA2 genes. The UAS cloning vector, pWB220, yielded an extremely low basal level of β-galactosidase activity, 0.3 units, in the double-mutant strain. Insertion of the 44-bp HSEsssa oligonucleotide into the UAS cloning site of this vector resulted in 185 units of β-galactosidase activity under the same growth conditions (Table I). This confirms that the constitutive activation in the mutant strain is at the level of transcription and demonstrates that a common upstream activating sequence, UASHs, mediates heat-inducible expression in wild-type strains and high basal levels of transcription in cells lacking SSA1 and SSA2.

Neither the SSA4/lacZ fusion nor the UASHsCYCl hybrid promoter were activated to higher levels by a 39 °C heat shock in the ssa1ssa2 background, although both constructs exhibited induction in wild-type cells following heat shock. Heat-shock treatment may have failed to activate the SSA4 promoter over the high basal expression levels in ssa1ssa2 mutants because the promoter was already maximally induced. Alternatively, the prolonged activation of the stress response may have induced a steady state that was unable to readily respond to increased stress.

DISCUSSION

We have localized the heat-inducible UAS of SSA4 to a 44-bp region containing extensive similarity to sequences that...

![Diagram](http://www.jbc.org/)

Fig. 6. β-Galactosidase activities from the SSA4/lacZ fusion gene and the promoter deletion derivatives. The solid black lines represent SSA4 sequences. The positions of the initiation codon, the transcription initiation site, and the deletion end points are indicated; pWB213A−234 contains 1 bp beyond that indicated identical with that in the native gene because of the addition of linker sequences. Diamonds represent partial matches to the HSE consensus, as overlined in Fig. 2B. The putative TATA element is denoted by T. The plasmid on the top line, pWB213, is the parental plasmid from which the deletions were derived as described under “Materials and Methods.” Deletion derivative plasmids, from top to bottom, are named pWB213A−594 to pWB213−61. pWB213 contains an 8-bp linker inserted at position −594 of the SSA4 DNA as described under “Materials and Methods.” pWB213 also contains 665 bp of vector sequence immediately upstream of SSA4 that are not present in the deletion derivatives. All other plasmids represented here differ from each other only in the extent of 5' noncoding SSA4 sequence included (and consequently the relative spacing of DNA sequences flanking the deletion end points and the actual junction sequences). β-Galactosidase activities from transformants growing exponentially at 23 °C and following a 1-h 39 °C heat-shock treatment are presented in Miller units.

Table I. β-Galactosidase activity

<table>
<thead>
<tr>
<th>Temperature</th>
<th>Activity (Miller units)</th>
</tr>
</thead>
<tbody>
<tr>
<td>23°C</td>
<td>0.2 0.6 3.0</td>
</tr>
<tr>
<td>39°C</td>
<td>0.2 12 100</td>
</tr>
<tr>
<td>39°C th 1h</td>
<td>0.1 10 100</td>
</tr>
<tr>
<td>39°C th 2h</td>
<td>0.1 10 100</td>
</tr>
<tr>
<td>39°C th 3h</td>
<td>0.2 11 55</td>
</tr>
<tr>
<td>39°C th 4h</td>
<td>0.7 17 24</td>
</tr>
<tr>
<td>39°C th 5h</td>
<td>0.6 15 25</td>
</tr>
<tr>
<td>39°C th 6h</td>
<td>0.2 0.4 2.0</td>
</tr>
<tr>
<td>39°C th 7h</td>
<td>0.2 0.6 3.0</td>
</tr>
<tr>
<td>39°C th 8h</td>
<td>0.3 0.3 1.0</td>
</tr>
</tbody>
</table>
regulate stress-induced transcription of heat-shock genes from distantly related eukaryotic species. These HSE_{SSA4} sequences alone mediate a very similar pattern of transcription to those regulated by the isolated HSEs of SSA3 and SSA1 (Boorstein and Craig, 1990b; Slater and Craig, 1987). Therefore, the role of HSEs in contributing to the high expression of the SSA1 and SSA3 promoters under nonstress conditions (in which the HSE-containing SSA4 promoter is not active) appears to result from differences in regions of the promoters distinct from the HSEs (Slater and Craig, 1987; Boorstein and Craig, 1990a). For example, expression of SSA3 in stationary phase is dependent upon a distinct promoter element, UAS_{SSA3}, but is further enhanced by HSE_{SSA3} (Boorstein and Craig, 1990a).

The difference in regulation between the SSA subfamily genes, resulting from different promoter composition, may provide an explanation for the maintenance of similar genes over a long period of evolutionary time; the gene products may be functionally equivalent, multiple genes being required for an appropriate pattern of expression and/or rapidity of induction under certain circumstances. However, it is possible that the amino acid differences between the proteins, perhaps in the divergent C termini, may confer distinct functions, or at least specialized abilities to perform a common function under different environmental conditions.

HSEs in Yeast.—The functional Drosophila HSE is comprised of at least three inverted GAA modules separated from each other by 2 bp (Amin et al., 1988; Xiao and Lis, 1988). The three modules need not be contiguous, a gap of precisely one module width (5 bp) is tolerated, provided the modules flanking the gap are direct repeats (i.e. oriented as if the gap contained a GAA sequence). All seven heat-shock elements that have been functionally defined from heat-inducible yeast
genes match the extended modular HSE definition derived from analysis of a Drosophila HSP70 promoter. The yeast HSEs are comprised of at least three and as many as five appropriately positioned GAA modules spanning up to four turns of the DNA helix (Table II). The functionally defined HSE of SSA4 meets the criteria of the modular HSE definition; sequences upstream of the transcribed portion of the SSA4 gene that match the canonical HSE but not the modular HSE appear to be nonfunctional. Strong matches to the modular HSE are also found upstream of heat-inducible yeast genes whose promoters have not yet been analyzed (Table II: KAR2 and ST11). Yeast HSE regions also contain as many as four appropriately positioned sequences with a single mismatch to the core consensus (GAA) (TTC) in addition to the perfect matches; one such imperfect core sequence, TTA, is present with particularly high frequency (for example SSA3; see Table II). These occurrences of imperfect GAA blocks suggest that they function as components of HSF-binding sites. In fact, in vitro binding experiments indicated that HSF contacts at least some imperfect GAA blocks (Shuey and Parker, 1986).

Direct evidence supporting an extended HSE definition in yeast comes from reevaluation of previous analysis of HSE2ssaI. An oligonucleotide containing 22 bp of the HSE2ssaI region contains three GAA blocks and is sufficient to mediate heat-inducible transcription (Table II, line 3). However, a shorter (15 bp) region that includes the identical 14-bp match with the canonical HSE, but only two of the three GAA modules, was unable to function as a UAS (Table II, line 11). Interestingly, an even shorter HSE2ssaI oligo-

Table II

<table>
<thead>
<tr>
<th>Gene</th>
<th>Function</th>
<th>Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. SSA4</td>
<td>+</td>
<td>CAACTGAGAAGATCATATCCCTAGGAATTTCAGAACCTTATGAAAGCAC</td>
</tr>
<tr>
<td>2. SSA3</td>
<td>+</td>
<td>TATTTAGGATCCCTGGAAAGATTTATAGATTACGMAAGGAC</td>
</tr>
<tr>
<td>3. SSA1-HSE2 (22-mer')</td>
<td>+</td>
<td>TACCTGCTTTTGAATTTTCTAGAACGTCG</td>
</tr>
<tr>
<td>4. SSA1-HSE3</td>
<td>B</td>
<td>TGAAACTTTCGACAATCTTGAAGA</td>
</tr>
<tr>
<td>5. HSP82</td>
<td>H, M</td>
<td>AGTTCGACAGCAATTTTATGAATTTCATGAAAGCCGTCG</td>
</tr>
<tr>
<td>6. PGK</td>
<td>M</td>
<td>ATCAGGATTTTCGAAGCCGGAAAGGCTTGAAC</td>
</tr>
<tr>
<td>7. UBI4</td>
<td>M</td>
<td>GTTTCAGAATCTTTCGAAGAATATAATGTTGAAC</td>
</tr>
<tr>
<td>8. Consensus</td>
<td></td>
<td>Frequent: TA cg TA cg Rare: RY wy RY ac RY wy</td>
</tr>
<tr>
<td>9. KAR2</td>
<td>ND</td>
<td>ATAGAACCTTGCGAAGATTTCAC</td>
</tr>
<tr>
<td>10. ST11</td>
<td>ND</td>
<td>ATCCTGCTTTTGAATTTCATGAAAGC</td>
</tr>
<tr>
<td>11. SSA1-HSE2 (15-mer')</td>
<td>-</td>
<td>TTAGCTGAGAAGATCATATCCCTAGGAATTTCAGAACCTTATGAAAGC</td>
</tr>
<tr>
<td>12. SSA1-HSE2+ (9-mer')</td>
<td>+</td>
<td>TACCTGCTTTTGAATTTTCTAGAACGTCG</td>
</tr>
</tbody>
</table>

* or – sequence is or is not sufficient to function as a heat-inducible UAS, respectively; M, sequence has been shown to function in heat-inducible regulation by mutational analysis; B, sequence is known to act as a protein-binding site, and in particular as a site of HSF binding in the case of lines 3 and 4; ND, function of HSE-like region of these heat-inducible promoters has not been determined.

HSE region sequences are shown, including all GAA modules, in alternating orientation and separated by two nucleotides (allowing for a gap of one module). Provided GAA elements flanking the gap are positioned as if the gap contained a GAA sequence) according to the HSE definition of Amin et al. (1988). All sequences are from within 400 bp upstream of the initiation codons. Plus strands are shown. Exact matches and single mismatches to the consensus core sequence (GAA and TTC) are double- and single-underlined, respectively. Lines 1-12: large uppercase characters represent the full extent of native sequences tested for UASns activity; line 2: smaller uppercase characters represent native SSA3 sequence beyond the region shown to be sufficient for UASns function; lines 11 and 12: lowercase characters represent vector sequences flanking the SSA1-HSE2 sequences in the UAS test constructs.

SSA1-HSE2 22-mer, 15-mer, and 9-mer are from pZJHSE2-26, pZJHSE2-19, pZJHSE2-12, respectively.

Two example consensus sequences, each consisting of three adjacent exact GAA modules, illustrate the sequence bias at positions between GAA blocks. Nucleotides that occur frequently are indicated on the upper line, whereas nucleotides that occur rarely, if at all, are shown on the lower line. Consensus sequences were derived from the plus strand of functionally defined HSEs (lines 1-7 only). Consensus nucleotides upstream of exact GAA blocks that are also downstream of exact TTC blocks (TTC..GAA) were derived only from comparably positioned nucleotides in the native sequences. Consensus nucleotides upstream of exact GAA blocks, but not between two adjacent blocks (NNNN..GAA) were derived from nucleotides found upstream of all exact GAA modules. Sequence bias at positions upstream of TTC sequences was determined as described for positions upstream of GAA sequences. No strong bias was observed in positions downstream of exact GAA or TTC modules that are not also upstream of exact core modules. For line 8, R represents G or A; Y represents C or T; W represents A or T. Uppercase letters in the consensus sequence indicate a greater degree of sequence bias than lowercase letters. The requirements for a functional HSE are discussed in the text. As indicated by the sequences in lines 1-7, arrangements of GAA and GAA-like core modules other than those shown in the consensuses allow HSE function.
celotide was able to function efficiently as a heat-inducible UAS, the vector nucleotides flanking the short SSA1 insert created appropriately oriented and positioned matches (2 of 3 bp) to the GAA module on either side of the SSA1 oligonucleotide (Table II, line 12). This result further supports the idea that partial matches to the core consensus, GAA, can contribute to HSE function in yeast.

The base pairs flanking highly conserved core GAA modules of an HSE are also conserved, but to a lesser extent. The bias of nucleotides between GAA blocks is indicated in line 8 of Table II for two model HSEs that each consist of three adjacent GAA repeats. The bias is strongest upstream of GAA-3’ sequences on the plus strand, particularly between two exact consensus modules (TTC-GAA). The sequence bias we observed between GAA blocks differs somewhat from that in HSE-like regions from heat-shock genes of higher eukaryotic species (Amin et al., 1988). Most notably, G was not present in the position two nucleotides upstream of GAA in any of the 16 perfect or imperfect core GAA modules in the region of functional HSEs (Table II; Amin et al., 1988). Amin et al. (1988) observed that G occurs frequently in this position of HSEs from Drosophila and other species and demonstrated its ability to contribute to HSE function in Drosophila cells.

It is clear from examination of the sequences in Table II and the analysis of HSE-containing constructs that HSEs of different yeast genes share many common features. However, the flexibility of the functional HSE sequence is also striking (Wei et al., 1986). The required degree of specificity for HSF binding appears to be achieved by a long but degenerate recognition site, rather than a short strictly conserved UAS as, for example, is the case for Gcn4-binding sites (Hill et al., 1986). Perhaps differences between sequence composition of UASsub elements allows a single transcription factor, HSF, to stimulate transcription of many genes at different relative levels in response to a common signal.

Autoregulation of the Heat-shock Response—Transcription of heat-shock genes has been proposed to be negatively regulated by heat-shock proteins. This autoregulatory hypothesis is based on studies in which blocked translation caused abnormally high levels of heat-shock gene transcription following stress exposure (McAlister and Finkelstein, 1980; DiDomenico et al., 1982; Plesset et al., 1982). We have shown that disruption of two constitutively expressed HSP70 genes causes increased transcription of the heat-inducible SSA4 gene. Because the same short UASsub element is necessary and sufficient to mediate basal expression in an ssa1ss2a strain as mediates stress-activated transcription in wild-type strains, we surmise that the general stress response is constitutively activated in the double-mutant strain. Additional mutant phenotypes of ssa1ss2a strains, including constitutive thermotolerance and active synthesis of Hsp82, support this conclusion (Craig and Jacobsen, 1984).

These results suggest that SSA proteins function in a negative feedback loop, regulating the transcription of heat-shock genes. Thus, hsp70 is critical to maintenance of the heat-shock response in the OFF (uninduced) state, and a decrease in hsp70 availability, either by disruption of the constitutively expressed HSP70 genes or the increased demand for hsp70s under conditions of stress, is sufficient to activate the response. HSF may be modulated by hsp70 directly or indirectly via proposed activities in protein folding and mediation of interactions between polypeptides (reviewed by Lindquist and Craig, 1988). Overexpression of the SSA1/HSP70 gene (from a heterologous promoter) does not appear to decrease either basal or heat-induced HSF/HSE-mediated transcription, although it does repress SSA1 promoter activity via sequences distinct from the HSEs (Stone and Craig, 1990). Therefore, it is likely that there are other components, possibly additional HSPs, in the control loop modulating the HSF activity state. In *E. coli* mutations in any of three HSP genes, grpE, dnaJ, or the HSP70 homologue, dnaK, result in \(\sigma^{32} \)-dependent increased transcription of heat-shock genes* (Tilly et al., 1983). Since DnaK can interact directly with DnaJ and GrpE (Sell, 1987; Johnson et al., 1989), analogues of the latter two proteins may interact with hsp70 in yeast to control the activation state of HSF. Perhaps the mechanism by which the primary intracellular stress stimulus is transduced, resulting in induction of the stress response, is conserved between prokaryotes and eukaryotes, although the mechanism of activating RNA polymerase on heat-shock promoters has diverged. Elucidation of the mechanisms by which HSP70 expression controls transcription of heat-shock genes will require further definition of the function of the HSP70 gene products and the means by which the stress pathway is activated.

REFERENCES

* D. Straus, W. Walter, and C. Gross, personal communication.
Structure and regulation of the SSA4 HSP70 gene of Saccharomyces cerevisiae.
W R Boorstein and E A Craig

Access the most updated version of this article at http://www.jbc.org/content/265/31/18912

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC’s e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/265/31/18912.full.html#ref-list-1