Choriocarcinoma Cells Increase the Number of Differentiating Human Cytotrophoblasts through an in Vitro Interaction*

(Received for publication, July 9, 1990)

Abraham Hochberg, Colin Sibley, Mary Pixley, Yoel Sadovsky, Brian Strauss, and Irving Boime

From the Departments of Pharmacology and Obstetrics and Gynecology, Washington University School of Medicine, St. Louis, Missouri 63110

The human placenta arises from the zygote through single cell intermediates called cytotrophoblasts that in turn give rise to a syncytiotrophoblast. In culture, mononucleated cytotrophoblasts exhibit little, if any, cell division but are converted to multinucleated cells. Choriocarcinoma, the malignant tumor of placenta trophoblast, comprises a mixed population of dividing cellular intermediates that resemble cytotrophoblasts but are less differentiated. Because the choriocarcinoma intermediates arise from dividing cells, the tumor may contain one or more cell types in abundance not present in the population of isolated placental cells. To study placental differentiation through cell-cell interaction, choriocarcinoma cell lines were co-cultured with placenta-derived cytotrophoblasts, and placental hormone biosynthesis, as a marker of differentiation, was examined. We reasoned that intermediates formed by the tumor might interact with and complement those intermediates in the placenta-derived cytotrophoblast population. Co-culturing either the JAr or JEG choriocarcinoma cell lines with cytotrophoblasts elevated the synthesis of the chorionic gonadotropin \(\alpha \) and \(\beta \) subunits 10–20 fold, and human placental lactogen 5-fold. The effect was specific for these trophoblast-derived cells, since comparable quantities of Chinese hamster ovary or HeLa cells did not affect the placental cytotrophoblast culture. Further experiments suggested that the source of enhanced synthesis was the cytotrophoblasts. We propose that an interaction between cytotrophoblasts and choriocarcinoma cells occurs, which results in an increased number of differentiating cytotrophoblasts. Such co-cultures may represent a model system for examining choriocarcinoma cell interaction with normal cells, a process known to occur in vivo. The data are also consistent with the hypothesis that the regulated chorionic gonadotropin production in the placenta is determined by interaction among trophoblast cells at different stages of differentiation.

Organogenesis is generally understood as a process in which induction of differentiation occurs through an interaction among cells. Such an interaction occurs in the development of the human placenta. During pregnancy human placental trophoblasts differentiate through a multistep process (1–4).

* This work is supported by a grant from the Monsanto Co. The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked "advertisement" in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.

† On leave from the Institute of Life Sciences, Dept. of Biochemistry, Hebrew University, Jerusalem, Israel.

‡ Present address: Dept. of Child Health, University of Manchester, St. Mary's Hospital, Manchester M13 0SH, United Kingdom.

Mononucleated cytotrophoblast cells, which are mitotically active, fuse to form a mitotically inactive, multinucleated syncytiotrophoblast. Morphological data suggest that there exist transitional or intermediate trophoblasts in this pathway (1–5). Human trophoblast in the placenta elaborates at least two major protein hormones, chorionic gonadotropin (CG) and placental lactogen (hPL) (5). CG consists of two nonidentical subunits (\(\alpha \) and \(\beta \)), and hPL is a single chain polypeptide, which shares greater than 90% homology with human growth hormone. Their temporal appearance in maternal serum during pregnancy is different; CG peaks in the first trimester, while hPL reaches maximal levels at term. It has been proposed that the extent of trophoblast differentiation is responsible for their stage-specific expression (5).

In culture, mononucleated cytotrophoblasts exhibit little, if any, cell division but are converted to multinucleated cells. An induction of CG and hPL parallels these morphological changes (5). Early in culture, when the cytotrophoblasts are mononucleated, only the CG\(\alpha \) subunit is detected (6, 7). After a lag of several hours, CG\(\beta \) synthesis initiates; it is at this time that fusion is seen. Thus, we proposed that the CG\(\beta \) levels in vivo are sustained by a pool of differentiating cytotrophoblasts and that the presence of these cells maintains an intermediate cell population synthesizing CG (5, 6). The expression of hPL is associated with a more advanced stage of differentiation, and in culture, hPL can be detected after multinucleated structures are formed (8).

Choriocarcinoma, the malignant tumor of trophoblast cells, comprises a mixed population of cellular intermediates that are in different stages of differentiation (9–13). There are clusters of cytotrophoblast-like cells and a minor population of multinucleated cells that are apparently immature syncytiotrophic elements. In contrast to cytotrophoblasts, JAr cells divide in culture. Both in culture and in vivo, choriocarcinoma cells apparently undergo a cell-cell fusion and differentiate into cells synthesizing CG; this occurs in less than 10% of the cells.† Compared with cultured cytotrophoblasts, the extent of JAr cell differentiation is limited. Based on this point and the inability of cytotrophoblasts to divide in culture, we reasoned that if they were co-cultured with choriocarcinoma cells, the intermediates formed by the tumor might interact with and complement those intermediates in the cytotrophoblast population. Together, the two sets of cells would overcome the deficiency of the individual populations and allow the identification of trophoblast intermediates in the differentiation pathway. Here we show that co-cultures of JAr and JEG choriocarcinoma cell lines enhance the formation of CG- and hPL-producing cellular intermediates from quiescent pla
purified from human term placenta by a modification of the procedure of Kliman et al. Briefly, 100-200 g of minced placenta, scraped free of blood vessels and connective tissue, were incubated in 500 ml of sterile Hank’s buffered salt solution containing 25 mM Hepes (pH 7.4), 0.1 mM CaCl₂, and streptomycin (100 μg/ml). Cytotrophoblast cells were purified from human term placenta by a modification of the procedure of Kliman et al. The solution was filtered and trypsin activity inhibited by the addition of newborn calf serum (20% final concentration). Cytotrophoblast cells were incubated in 0.5 ml of sterile Hank’s buffered salt solution containing 25 mM Hepes (pH 7.4), 0.1 mM CaCl₂, 0.8 mM MgSO₄, penicillin, and streptomycin to which 500 mg of trypsin (Sigma) and 70 mg of DNase (Sigma) were added. After incubation for 30 min at 37°C, the solution was filtered and trypsin activity inhibited by the addition of newborn calf serum (20% final concentration). Cytotrophoblast cells were obtained by centrifugation for 30 min at 3000 rpm through a discontinuous Percoll gradient (5-70%) prepared in Hanks’ buffered salt solution. The cells were washed with Hanks’ buffered salt solution and then plated in Medium 199, as described above. From a separate set of cultures, choriocarcinoma cell lines harvested 72 h after plating were added to the cytotrophoblasts in a ratio of 1:10 and mixed in 6-well dishes.

Protein Synthesis and Immunoprecipitation of CG Subunits and hPL—Cells were labeled in Medium 199 minus cysteine containing 10% dialyzed calf serum and 25 μCi/ml [³⁵S]cysteine (Amersham Corp. or ICN) for 24 h. The medium was then removed, and labeled CG subunits and hPL were immunoprecipitated and resolved in sodium dodecyl sulfate gels (14). The hPL antiserum was generously supplied by Dr. Stuart Handwerger (Department of Pediatrics, University of Cincinnati).

To measure specific activity of incorporation into total protein, the cells were washed twice with phosphate-buffered saline and incubated at 37°C for at least 10 min in distilled H₂O, before they were scraped from the plate and frozen at -20°C. After thawing, an aliquot of this lysate was taken for protein determination using the Bio-Rad protein assay dye reagent (catalog no. 500-0006). [³⁵S]Cysteine incorporation was determined in a second aliquot by trichloroacetic acid precipitation.

Immunocytochemistry—Cells cultured in 6-well (35-mm) dishes were washed twice with phosphate-buffered saline and fixed for 10 min with 0.1 M KPO₄ buffer containing 15% picric acid and 2% formaldehyde (pH 7.3). The cells were stained with the same rabbit polyclonal antiserum against CGα and CGβ used for immunoprecipitation. Staining was visualized with the Vectastain ABC peroxidase kit (Vector Laboratories) (6). Dilutions of the primary antiserum (in 1% bovine serum albumin in phosphate-buffered saline, pH 7.5) at 1:800 and above were used, and nonspecific staining was assessed using a rabbit polyclonal antiserum to atrial peptide (kindly supplied by Dr. M. Wilkins, Department of Clinical Pharmacology, Hamer-smith Hospital, London).

RESULTS

When normal human cytotrophoblasts are cultured in vitro, the CGβ subunit appears before the CGα subunit. These events are correlated with the transition from single mononucleated cells to multinucleated structures, and little, if any, cell division is observed. In contrast, choriocarcinoma cells divide in culture. Although they are in different states of differentiation, choriocarcinoma and cytotrophoblast cells synthesize CG. To assess potential interaction between choriosarcoma cells and cytotrophoblasts, both cell populations were co-cultured. CGβ subunit synthesis was assayed as a marker of differentiation.

Cytotrophoblasts (5 × 10⁵) were co-cultured with 5 × 10⁴ JAr cells for 72 h, and the medium was supplemented with [³⁵S]cysteine for an additional 24 h (Fig. 1). Equal amounts of media were immunoprecipitated with CGδ-specific antisem, and the proteins were resolved in sodium dodecyl sulfate-polyacrylamide gels. This antisem recognizes both free CGδ subunit and CG δimer, which is indicated by co-precipitation of the α subunit. While JAr cells synthesized primarily CG δimer (lane 1), term cytotrophoblasts synthesized only little, if any, detectable CG δimer, even after 72 h in culture (lane 3). Co-culturing JAr and cytotrophoblasts enhanced CG δimer production 10- and 40-fold over the levels seen in JAr and cytotrophoblasts, respectively (lane 4). The increase of CG in the co-cultures was not a result of an increase of total protein synthesis, since [³⁵S]cysteine incorporation into total proteins of the individual and co-cultures was the same. These data show that interaction of the two cell types greatly stimulated CG production compared with the additive effect of the individual cell types. Comparable stimulation was seen in co-cultures containing cytotrophoblasts derived from first trimester tissue (data not shown).

To address if stimulated CG production was unique to the JAr line, we analyzed co-cultures of another choriosarcoma line, JEG. The ratio of these cells to the cytotrophoblasts was also 1:10. CG synthesis was increased over 10-fold in the co-cultures (lane 5) compared with the JEG cells (lane 2). Addition of comparable numbers of non-trophoblast cells such as human fibroblasts or Chinese hamster ovary (not shown) and HeLa to cytotrophoblasts in a 1:10 ratio had no effect (Fig. 2). Thus, stimulation of CG production in co-cultures was restricted to choriosarcoma cells.

To determine if the induction of CG synthesis by the mixed culture occurred in the cytotrophoblasts or JAr cells, or both, we co-cultured cytotrophoblasts with a stable line of JAr cells containing the CAT reporter gene linked to the promoter of the CGβ5 gene (15). If transcription of the
Differentiation of Human Cytotrophoblasts

1234
5

FIG. 2. Synthesis of CG in co-cultures containing cytотrophoblasts (Cyto) and HeLa cells. Approximately 5×10^5 JAr (lane 1) or HeLa (lane 2) cells were incubated either individually, together (lane 6), or with 5×10^5 cytотrophoblasts (lanes 4 and 5) in 0.5 ml of Medium 199 minus cysteine as described in Fig. 1.

JAr-Hela Cyto JAr Hela Cyto JAr Hela
+
+
+
+

FIG. 3. Expression of the CAT gene in co-cultures comprised of cytотrophoblasts (Cyto) plus JAr cells containing CAT linked to the promoter region of the CGβ gene. Twenty μg of cell extract protein was incubated with 0.05 μCi of [3H]chloramphenicol. The stably integrated CGβ CAT construct in the JAr cells contains the 5' region of the CGβ gene extending to the KpnI site (15). This corresponds to a distance of 3.5 kilobases from the CAP site. These cells are designated JAr-Kpn. Where indicated, cells were treated for 72 h with 50 μM 8-bromo-cAMP. The arrow denotes the position of acetylated chloramphenicol. The spots corresponding to the acetylated chloramphenicol were excised and counted. JAr-Kpn, 454 ± 20; cytotrophoblasts, 133 ± 30; JAr-Kpn + cytотrophoblasts, 501 ± 70; JAr-Kpn + cAMP, 4432 ± 400; cytотrophoblasts + cAMP, 149 ± 40; JAr-Kpn + cytотrophoblasts + cAMP, 4829 ± 400. These data were obtained from five independent experiments.

endogenous JAr CGβ gene was activated, the CGβ promoter linked to CAT should behave similarly, resulting in increased CAT activity in the JAr component of the mixed culture (Fig. 3). The CAT activity in co-cultures (lane 3) was no greater than that in the JAr-Kpn cells alone (lane 1). (The relatively low level of noninduced CAT activity was presumably due to the observation that only a fraction of the JAr cell population expresses the CGβ gene, as discussed in Ref. 15.) To test that the CG promoter was still responsive to stimulation in the mixed culture, 50 μM cAMP was added to JAr, cytотrophoblasts, and to co-cultures. Cyclic AMP is a potent activator of CG biosynthesis in both JAr cells and cytотrophoblasts (17–19). The nucleotide increased CAT activity about 10-fold both in JAr-Kpn cells (lane 4) as shown previously (16, 21) and in the mixed culture (compare lane 6 with lane 3). As expected, individual cultures of cytотrophoblasts exhibited no CAT activity (lanes 2 and 5). These data show that in the co-cultures CGβ promoter linked to CAT was still responsive. However, while the Kpn-CAT construct may lack element(s) that are required for the induction of the host β gene seen in the co-cultures, the data suggest the cytотrophoblasts are the source for the enhanced synthesis of hCG.

hPL is expressed in the syncytiotrophoblast in vivo (see Refs. 5 and 9, and references therein) and is not detected in JAr or JEG choriocarcinoma cell lines. Since hPL production occurs in highly differentiated trophoblasts, we examined its expression in the co-cultures. Immunoprecipitation of secreted 35S-labeled protein from the choriocarcinoma cells and co-cultures showed that the amount of hPL synthesized in the co-cultures was five ($n = 7$) times greater than in cytотrophoblasts. As expected, no synthesis was observed in JAr cells alone (Fig. 4, lane 1), and thus the data imply that the

3 I. Boime, unpublished observations.
FIG. 5. Immunocytochemistry of JAr cells, cytrophoblasts (Cyto), and co-cultures. The cells were grown for 96 h, fixed, and stained using a rabbit polyclonal antibody against CGβ diluted 1:1600. Diaminobenzidine was used as chromogen, and staining is seen here as darker areas (magnification, ×10). Each is a representative staining pattern of the entire field. Panel A, JAr cells; panel B, cytrophoblasts; panel C, JAr + cytrophoblast cells.

increased synthesis of hPL occurred in the cytrophoblasts. However, we cannot exclude the possibility that a component in the cytrophoblasts activates the hPL gene in the JAr cells. Based on these data and the above experiment, we conclude that JAr cells enhance the expression of differentiation markers in the cytrophoblasts.

Expression of CG in co-cultures was analyzed by immunohistochemical staining. CGβ subunit-specific antisera together with the Vectastain ABC peroxidase kit were used to stain the cells (Fig. 5). Only a few JAr cells stained (panel A, arrow). The cytrophoblast cells, which begin to fuse after 24–48 h, formed multinucleated islands at 96 h, which stained markedly for CGα (data not shown) but faintly for CGβ (panel B, arrow). CGβ staining is much more pronounced (primarily in multinucleated structures) when cytrophoblasts are incubated for 120 h. Staining for CGβ was much greater in the co-cultures (panel C) than in JAr or cytrophoblasts. In

FIG. 6. Determination of the optimal ratio of cytrophoblasts and JAr cells for maximal CG synthesis. A constant amount of cytrophoblasts (5 × 10⁶) was co-plated with a decreasing amount of JAr cells. Lanes 1 and 2 show the amount of CG synthesized in the individual cultures of JAr cells and cytrophoblasts, respectively. Lanes 3–7 correspond to the following ratios of JAr to cytrophoblasts: 1:5, 1:10, 1:20, 1:50, 1:100.

FIG. 7. Time course of CGα (A) and CG dimer (B) synthesis by JAr and JEG choriocarcinoma cell lines, cytrophoblasts, and co-cultures (JAr-C and JEG-C). Protein in the medium was immunoprecipitated with either CGα-specific (A) or CGβ-specific antisera (B). The bands corresponding to α and β subunits of CG were excised and counted. Synthesis of dimer is expressed as the sum of counts/min in the CGα + β regions.
In placenta, cytotrophoblasts can divide and proceed through a multistep differentiation resulting in the synthesis of CG, hPL, and other placenta-specific proteins. Based on several studies examining the morphological and biochemical changes of trophoblast in culture and \textit{in vivo} (5-8, 20), we propose that differentiation of cytotrophoblast cells is associated with the following steps (Fig. 8). Stem cells continually pass through the cell cycle and divide, or enter the G₀ phase and are committed to differentiate (step 1). At this point, cytotrophoblast cells, which are still at the single cell stage, express CGα. At a subsequent stage (step 2) while undergoing morphological differentiation, expression of the CGβ gene is initiated. Multinucleated cells are then formed (step 3), leading to maximal production of CGα and -β subunits and the appearance of hPL. Because hPL is expressed exclusively in the syncytiotrophoblast layer of the placental villus, a structure not seen in the culture, its synthesis is rate-limiting for maximum expression of hPL (step 4).

Choriocarcinoma cells and isolated cytotrophoblasts are in different stages of differentiation, since neither population has all the cell types seen \textit{in vivo}. JAr cells divide, but very few differentiate, and there is no formation of the multinucleated islands seen in trophoblast tumors \textit{in vivo} and in normal placenta (Fig. 5A). Those JAr cells that do differentiate express both CGα and CGβ (17, 18). However, further differentiation is limited, and hPL synthesis is not seen. Cytotrophoblasts isolated from normal placenta are committed to differentiate, and very few divide. These cells fuse and form multinucleated islands. Differentiation results in expression of CGα and then CGβ, but this is less tightly coupled than that seen in JAr cells; a greater excess of CGα compared with CGβ is observed in the cultured cytotrophoblasts (6, 17).

Differentiating cytotrophoblasts can synthesize hPL, which suggests that they are capable of further differentiation than the JAr intermediates.

Despite the limitations of using individual JAr and cultured cytotrophoblasts as models for cytotrophoblast differentiation \textit{in vivo}, they do have in common the ability to fuse and differentiate. This was an essential component for the rationale of the experiments presented. The interaction of the choriocarcinoma cells and the cytotrophoblasts is shown by several experiments. First, expression of CG subunits and hPL by the co-cultured cells was much higher than that seen in the individual cultures, and the interaction was specific for trophoblast-derived cells. Second, because differentiating cytotrophoblasts synthesize hPL while JAr cells cannot, this implies that the source of increased hormone production in the co-cultures is the cytotrophoblasts. Although the rate of cytotrophoblast differentiation appears unchanged by the added choriocarcinoma cells, more cytotrophoblasts are recruited to intermediate cells producing CGβ and hPL. If the initial fusion (step 3) is rate-limiting, the choriocarcinoma cells may activate the cytotrophoblasts at this point. However, since synthesis of the α subunit was also increased, an earlier step in the pathway may be stimulated.

The nature of the JAr-cytotrophoblast interaction is not clear. Do JAr cells produce a factor as a result of fusion with a cytotrophoblast, or does a heterokaryon form when the two cell types fuse, thereby generating a component that enhances cytotrophoblast differentiation? The component is not present in the conditioned medium of the co-cultures; addition of this media to either individual cultures of JAr cells or cytoblasts did not alter synthesis of CG (data not shown). The interaction is presumably not related to an intrinsic feature of the CGα and -β subunits, since HeLa cells, which have the capacity to synthesize these proteins (16, 17, 19), did not display the interaction seen with the choriocarcinoma cell lines. HeLa cells (referred to as ectopic CG producers) unlike choriocarcinoma cells (eutopic CG producers) are devoid of multinucleated cells. Thus the capacity to undergo cell-cell interaction is a prerequisite for the effect discussed here.

The morphological features of the mixed cultures, multinucleated islands surrounded by dividing stem cells, are often seen in sections of choriocarcinoma in patients (10-13). These tumors contain a mixture of cytoblasts and intermediate trophoblasts which produce CG. Since gestational choriocarcinoma is a neoplasm derived from the trophoblast epithel-
Differentiation of Human Cytotrophoblasts

...the co-cultures seen here may be similar to the in vivo interaction between transformed cytotrophoblasts and normal cells. Thus not only do the interactions reported here suggest complementary intermediates in trophoblast differentiation, but they could also serve as a model for choriocarcinoma in vivo.

Acknowledgments—We are grateful to Drs. Jeffrey Ross, John Russell, and Karen Seibert for their comments regarding the manuscript. We thank Carol Patterson for typing the manuscript.

REFERENCES
Choriocarcinoma cells increase the number of differentiating human cytotrophoblasts through an in vitro interaction.
A Hochberg, C Sibley, M Pixley, Y Sadovsky, B Strauss and I Boime

Access the most updated version of this article at http://www.jbc.org/content/266/13/8517

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 0 references, 0 of which can be accessed free at http://www.jbc.org/content/266/13/8517.full.html#ref-list-1