Expression of the Human Multidrug Resistance cDNA in Insect Cells Generates a High Activity Drug-stimulated Membrane ATPase*

(Received for publication, December 9, 1991)

Balazs Sarkadi‡, Elmer M. Price†, Richard C. Boucher§, Ursula A. Germann¶, and Gene A. Scarborough**

From the ‡National Institute of Hematology and Blood Transfusion, Budapest, Daroczi U. 24, Hungary, the Departments of †Medicine and §Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599, and the ¶National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20892

Drug-resistant tumor cells actively extrude a variety of chemotherapeutic agents by the action of the multidrug resistance (MDR1) gene product, the plasma membrane P-glycoprotein. In this report we show that the expression of the human MDR1 gene in cultured SF9 insect cells via a baculovirus vector generates a high activity vanadate-sensitive membrane ATPase. This ATPase is markedly stimulated by drugs known to interact with the P-glycoprotein, such as vinblastine and verapamil, and the ability of the various drugs to stimulate the ATPase corresponds to their previously observed affinity for this transporter. The drug-stimulated ATPase is not present in uninfected or mock-infected SF9 cells, and its appearance correlates with the appearance of the MDR1 gene product detected with a monoclonal anti-MDR protein antibody and by labeling with 8-azido-ATP. The drug-induced ATPase requires magnesium ions, does not utilize ADP or AMP as substrates, exhibits a half-maximal activation at about 0.5 mM MgATP, and its maximal activity (about 3–5 nmol/mg MDR protein/min) approaches that of the well-characterized ion transport ATPases. These results provide the first direct demonstration of a high capacity drug-stimulated ATPase activity of the human multidrug resistance protein and offer a new and simple assay for the investigation of functional interactions of various drugs with this clinically important enzyme.

A major obstacle in the efficient chemotherapy of human malignancies is the development of a simultaneous resistance to a variety of structurally unrelated cytotoxic drugs. The emergence of this multidrug resistance is frequently associated with the expression of a membrane protein which most probably actively extrudes these drugs from the resistant tumor cells (1–5). This 130–170-kDa membrane transport protein (its actual molecular weight depends on the state of glycosylation) has been termed the multidrug resistance (MDR) protein or P-glycoprotein. This transporter is encoded by the MDR1 gene, and the expression of the MDR1 cDNA in drug-sensitive cells has been demonstrated to confer a multidrug resistance phenotype (8–12). The MDR protein shares significant sequence homology with several bacterial transporters (13) and with mammalian proteins such as the cystic fibrosis transmembrane conductance regulator (for reviews see Refs. 4–7). The MDR protein consists of 1280 amino acids and has been proposed to contain 12 membrane-spanning hydrophobic domains, two nucleotide-binding domains, and specific N-linked glycosylation sites (4–12). Certain aspects of this proposed transmembrane topology and a tissue-specific, variable glycosylation which probably does not affect the multidrug transporter function have been confirmed by biochemical approaches (14–16).

It has been demonstrated that drug efflux associated with elevated P-glycoprotein is an energy-dependent process (1–3, 16, 18–20, 24). The activity of the multidrug transporter in drug-resistant cells is associated with rapid cellular ATP depletion when ATP resynthesis is inhibited (25). Membrane vesicles containing the protein exhibit an ATP-dependent drug uptake (22, 23). The protein binds ATP, and mutagenesis of the proposed nucleotide-binding domains has been shown to result in a failure of the expressed protein to confer drug resistance (4, 7, 26). All these data collectively suggest that the MDR gene product is a membrane ATPase which functions as an active drug transporter. However, no definitive data are as yet available indicating that the MDR protein exhibits a high capacity, drug-specific ATPase activity. In one report relevant in this regard, a purified P-glycoprotein preparation was reported to exhibit an ATPase activity (27), but the extremely low specific activity (a maximal activity of 1–3 nmol/mg MDR protein/min) could not account for the high levels of ATP consumption and drug transport catalyzed by this protein in tumor cell membranes. In this report we demonstrate that the expression of the MDR1 gene in SF9 (Spodoptera frugiperda ovarian) insect cells results in the appearance of a drug-stimulated ATPase activity with a high specific activity approaching that of the ion-transporting ATPases.

EXPERIMENTAL PROCEDURES

Recombinant baculovirus carrying the human MDR1 gene was generated, and SF9 (S. frugiperda) cells (Invitrogen) were infected and cultured according to the procedures described previously (28). The MDR cDNA contains a mutation from Gly to Val at amino acid position 185 (43). Recombinant virus containing the ß-galactosidase gene was provided by Invitrogen. The virus-infected SF9 cells were cultured in T150 culture flasks with about 2 × 10⁶ cells/30 ml of medium for the times indicated. The cells were harvested by scraping them into Tris-mannitol buffer (50 mM Tris, pH 7.6, with HCl, containing 300 mM mannitol and 0.5 mM phenylmethylsulfonyl flu-
For membrane preparation the cells were lysed and homoge-
nized using a glass-Teflon tissue homogenizer in TMEP (50 mm Tris,

pH 7.0, with HCl, containing 50 mm mannitol, 2 mm EGTA, 10 μg/ml
leupeptin, 8 μg/ml aprotinin, 0.5 mm phenylmethylsulfonyl flu-
ride, and 2 mm β-mercaptoethanol), and the undisrupted cells and
nuclear debris were removed by centrifugation at 50,000 × g for 10 min.
The supernatant fluid was then centrifuged for 60 min at 100,000 ×
g and the pellet containing the membranes resuspended in TMEP at
protein concentration of about 1 mg/ml. All procedures were carried
out at 4 °C, and the membranes were stored at −70 °C.

For immunoblotting, membrane suspensions were precipitated
with trichloroacetic acid (4% (w/v) final concentration), centrifuged
for 5 min at 5,000 × g, and then suspended in disaggregation buffer
(50 mm Tris, pH 6.8, with H2PO4, containing 2% SDS (w/v), 15%
glycerol (w/v), 2% β-mercaptoethanol (v/v), 1 mm EDTA, and 0.02%
(w/v) bromphenol blue). Samples were disaggregated at room temperature
for 20 min at a protein concentration of about 1 mg/ml. Electrophoresis and immunoblotting of the samples were carried out
using Bio-Rad Mini-Prep protein gels (4–15% acrylamide gradient)
in a Mini-Protein electrophoresis cell and a Mini-Trans-Blot cell, as described previously (34). Gels were run for 60 min at 110 V in a
buffer containing 25 mm Tris-glycine, pH 8.5, and 0.2% (w/v) SDS.
Electrophoretic mobility of the proteins onto polyvinylidine difluoride membranes (Bio-Rad, 0.2-μm pore size) was carried out in a Tris buffer
containing a high concentration of glycine and no methanol (0.7 M glycine, 25 mm Tris, pH 7.7) at 60 V for 1.5 h with a cooling unit.
For immunodetection of the proteins, polyvinylidine difluoride membranes with the blotted proteins were incubated in TBS-Tween solutions (100 mm NaCl and 0.1% (w/v) Tween 20 in 50 mm Tris, pH 7.4 with HCl) containing 5% (w/v) Carnation nonfat dry milk for 60 min at room temperature. Monoclonal anti-MDR protein antibody
(C219, P-glycocheck, Centocor Diagnostics) was diluted 500-fold in the TBS-Tween-milk buffer and incubated with the blots for 60 min.
The blots were then washed twice for 15 min (15 min each) in TBS-Tween solution and incubated with the second antibody solution (peroxidase-conju-
gated anti-mouse antibody, Tago Inc., diluted 5,000-fold) for 60 min.
The blots were then washed three times (15 min each) in TBS-Tween solution. Peroxidase-labeled blots were developed by the enhanced chemiluminescence method, using the Amersham Corp. kit.
Quantitative densitometry of the x-ray films from the luminograms or the
density of the complex 0.2 ml of 1% ascorbic acid (freshly
prepared) was added and the optical density read at 880 nm. The points plotted in the figures indicate the means of triplicate determinations.

RESULTS AND DISCUSSION

Sf9 insect cells were infected with a recombinant baculo-

virus containing the MDR1 cDNA, constructed and charac-
terized as described (28). As controls, uninfected Sf9 cells and
cells infected with a baculovirus construct containing the β-
galactosidase gene were also examined. The cells were disrup-
ted by homogenization in a low ionic strength medium,
and after a low speed pelleting of undisrupted cells and nuclear
debris, the light membrane fraction was collected by high speed centrifugation. Fig. 1, upper panel, shows the time course of the expression of the MDR protein as detected by
immunoblotting with an anti-P-glycoprotein monoclonal antibo-
dy C219 (29). The approximately 130-kDa immunoreac-
tive protein appears in the light membrane fraction of the
MDR1 baculovirus-infected Sf9 cells after the 1st day and
reaches its maximal intensity on the 3rd day of infection. It
is not detectable in the uninfected or β-galactosidase baculo-
virus-infected cell membranes. The 130-kDa immunoreactive
protein represents an underglycosylated form of the MDR
protein, as previously observed in the Sf9 cells (28). The
expression of the MDR1 gene product at day 3 produced a
visible protein band on Coomassie Blue-stained gels (not
shown). Based on densitometric analyses of the stained gels, the
expressed MDR protein amounted to about 3% of the
total protein content in the light membrane fraction.Fig. 1,
lower panel, shows the results obtained upon photolabeling of
the light membrane fractions isolated from uninfected or
MDR1 baculovirus-infected Sf9 cells with 32P-labeled 8-azido-
ATP. The proteins were labeled in the isolated membranes,
precipitated with trichloroacetic acid, and subjected to gel electrophoresis, blotting, and autoradiography. In addition to a few endogenous azido-ATP binding proteins, the MDR1 baculovirus-infected cells, in contrast to the uninfected cells, showed substantial labeling in the 130-kDa region. The labeling in this region exactly overlapped the anti-MDR protein monoclonal antibody staining. These data indicate that the expressed MDR1 gene product in Sf9 cell membranes is capable of binding the ATP analogue, 8-azido-ATP, as has also been shown in tumor cells (21).

Fig. 2 shows the ATPase activity, measured as inorganic phosphate (P_i) liberation from 5 mM MgATP, in the light membrane fractions of ß-galactosidase baculovirus-infected (lower panel) or MDR1 baculovirus-infected (upper panel) Sf9 cells, as a function of the time after infection. Membrane ATPase activity was determined in the presence of 5 mM sodium azide, an inhibitor of F_1-F_0 ATPases, 1 mM ouabain, an inhibitor of the Na^+,K^+-ATPase, and 2 mM EGTA, an inhibitor of calcium-dependent ATPase activity. These agents have previously been shown not to interfere with P-glycoprotein-dependent drug transport (4, 23). The membranes of the uninfected cells (day 0) had an ATPase activity of about 30 nmol/mg membrane protein/min, 30-40% (about 10 nmol/mg membrane protein/min) of which was inhibited by 100 μM sodium orthovanadate. In the ß-galactosidase baculovirus-infected cells this vanadate-sensitive ATPase activity was reduced to even lower levels as the time after infection increased. In contrast, in the MDR1 baculovirus-infected cells, the activity of the vanadate-sensitive membrane ATPase increased significantly to about 1,000-fold greater than the activity previously associated with the isolated MDR protein (27). The MDR protein-dependent ATP hydrolytic capacity observed here approaches the magnitude of the ATPase activity of the P-type ATPases in a variety of different membranes (30, 31) and thus could account for the ATP consumption observed in the drug-transporting cells (25).

In addition to the ATPase inhibitors already mentioned, we have tested the effects of several other agents on the drug-stimulated ATPase activity. NaF (10 mM) and okadaic acid (200 nM), both inhibitors of several classes of phosphatases, had no inhibitory action on the drug-stimulated ATPase in MDR1 baculovirus-infected Sf9 cell membranes, while oligomycin abolished this ATPase activity at a concentration of 20 μg/ml. Detergents such as Triton X-100, deoxycholate, and CHAPS inhibited the MDR ATPase at extremely low concentrations (0.005-0.05%). CHAPS completely abolished the drug-stimulated ATPase activity at 0.1% (about 1.6 mM), which is below the critical micelle concentration (6-10 mM) for this detergent. Thus a direct interaction of the hydropho-
bic drug-binding site of the enzyme within the membrane, as proposed by Gros et al. (8) and Busche et al. (32), with the detergents may occur. This detergent inhibitory effect is the most plausible explanation for the extremely low ATPase activity (1–3 nmol/mg MDR protein/min) reported for the purified MDR protein (27), since it was isolated and assayed in the presence of CHAPS.

Fig. 4 shows the effects of several drugs reported to interact with the P-glycoprotein (see Refs. 4, 5, 23, and 24) on the vanadate-sensitive ATPase activity in the MDR1 baculovirus-infected Sf9 cell membranes. Vinblastine, trifluoperazine, and verapamil, drugs which compete for azidopine binding in the MDR1-expressing Sf9 membranes (28), activated the membrane ATPase in the 0.1–10 μM concentration range, consistent with their effect on the reversal of drug resistance and P-glycoprotein function in intact cells in this concentration range (4, 5). In contrast, 5-fluorouracil, which is not a good substrate of the MDR protein (4, 7), produced only a slight activation and only at a much higher concentration.

A clearcut difference in the maximal activation of the ATPase in the MDR1-expressing cells by the different drugs was also observed (Fig. 4). This is probably due to the fact that the drugs which activate the ATPase also have an inhibitory action at higher concentrations. Thus, the different maximal ATPase values may represent conflicting effects of activation and inhibition by the interacting drugs. In support of this interpretation, when present in inhibitory concentrations (500 μM), trifluoperazine abolished the activation of the ATPase by 5 μM verapamil (data not shown).

Table I compiles quantitative estimates of the concentrations of several drugs required for half-maximal activation of the vanadate-sensitive ATPase and the respective increases in the maximal ATPase activity in the MDR1 baculovirus-infected Sf9 cell membranes. All of the drugs used in these experiments have been shown to interact with the MDR drug transporter, and all had a strong activating effect on the ATPase activity in concentrations corresponding to their described effects on drug binding or movement in tumor cells (4, 5, 7). There was no apparent correlation between the drug concentrations required for half-maximal activation and the maximal ATPase activities observed. It is important to note that none of the drugs presented in Table I activated ATPase activity in uninfected or β-galactosidase-infected Sf9 cell membranes.

The mechanism of ATP hydrolysis by MDR protein is unclear at present. The aspartyl-phosphate phosphorylation site, with amino acids (1/L)CSDKTGTLT(X)N, conserved from fungi to humans in the P-type ATPases (30, 31), is not found in the MDR1 amino acid sequence. However, an alternative site for covalent phosphoryl-enzyme complex formation may be present in MDR protein and other members of this family. Although the absence of the formation of a phosphorylated intermediate for the MDR protein was reported earlier (23), the large amount of MDR protein expressed in the Sf9 cells provides a useful system for re-investigating this question in efforts to gain insight into the molecular mechanism of the MDR ATPase reaction.

The data in this paper demonstrate the presence of a heretofore undetected large capacity, drug-stimulated, vanadate-sensitive membrane ATPase activity directly related to the presence of the human MDR1 gene product. This finding should facilitate future studies of the structure and molecular mechanism of the various members of this newly recognized family of transport proteins. The present discovery of a potent ATPase activity associated with the MDR protein indeed raises the expectations that functions other than a Ca⁺ channel activity may be found for another member of this family, the cystic fibrosis transmembrane conductance regulator. Moreover, the system described allows estimations of the drug affinity and ATPase capacity of various natural and site-directed MDR mutants. By measuring the characteristics of the drug-stimulated ATPase activity of mutant MDR proteins expressed in Sf9 cells, the analysis of structure-function relationships in the MDR protein can be further extended.

The relatively simple assay technique described and the availability of the Sf9 insect cell-baculovirus expression system may also provide a valuable tool for examining the functional interactions of newly developed chemotherapeutic agents with the multidrug transporter. Thus, cytotoxic drugs which do not activate the MDR ATPase or drugs which are not toxic but which activate the ATPase and compete with the therapeutic drugs can be selected and evaluated for a possible clinical application to overcome drug resistance in tumor cells.

REFERENCES

Table I

<table>
<thead>
<tr>
<th>Drug</th>
<th>Estimated concentration (μM)</th>
<th>Maximal activation*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vinblastine</td>
<td>0.5</td>
<td>3.1</td>
</tr>
<tr>
<td>Vincristine</td>
<td>0.5</td>
<td>3.0</td>
</tr>
<tr>
<td>Verapamil</td>
<td>0.5</td>
<td>5.2</td>
</tr>
<tr>
<td>Daunorubicin</td>
<td>2</td>
<td>2.1</td>
</tr>
<tr>
<td>Quinine</td>
<td>3</td>
<td>2.5</td>
</tr>
<tr>
<td>Trifluoperazine</td>
<td>5</td>
<td>4.8</td>
</tr>
<tr>
<td>Nifedipine</td>
<td>10</td>
<td>5.0</td>
</tr>
<tr>
<td>Colchicine</td>
<td>20</td>
<td>2.2</td>
</tr>
</tbody>
</table>

*Increase in activity over that in the absence of drug.
High Activity MDR ATPase