Dissociation of Import of the Rieske Iron-Sulfur Protein into Saccharomyces cerevisiae Mitochondria from Proteolytic Processing of the Presequence*

(Received for publication, May 6, 1996, and in revised form, July 23, 1996)

Jürgen H. Nett and Bernard L. Trumpower‡
From the Department of Biochemistry, Dartmouth Medical School, Hanover, New Hampshire 03755

The correlation between the import of the Rieske iron-sulfur protein into the mitochondrial matrix and processing of the precursor protein by matrix processing peptidase was investigated using high concentrations of metal chelators and iron-sulfur protein in which the recognition site for the matrix processing peptidase was destroyed by site-directed mutagenesis. High concentrations of EDTA and o-phenanthroline inhibit import of iron-sulfur protein into the matrix. The non-chelating structural isomers m-phenanthroline and p-phenanthroline inhibit import similar to o-phenanthroline, indicating that inhibition of import is mainly independent of the metal chelating ability of the compounds.

Iron-sulfur protein in which the recognition site for the matrix processing peptidase had been destroyed by a point mutation was efficiently imported into the matrix space. Import of this mutant iron-sulfur protein was inhibited by the same concentrations of EDTA and o-phenanthroline which inhibit import of the wild-type protein. These results indicate that import of the iron-sulfur protein into the mitochondrial matrix is independent of proteolytic processing of the presequence, and that o-phenanthroline together with EDTA inhibits import of iron-sulfur protein into the matrix space of mitochondria by inhibiting a step other than proteolysis of the presequence.

The Rieske iron-sulfur protein is an essential subunit of mitochondrial cytochrome bc₁ complexes and, like the majority of mitochondrial proteins, is encoded by a nuclear gene and synthesized on cytoplasmic ribosomes. The iron-sulfur protein is then post-translationally imported into the mitochondria where it is inserted into the bc₁ complex in the inner mitochondrial membrane (1).

During import and assembly of the iron-sulfur protein into Neurospora crassa (1) and Saccharomyces cerevisiae (2–4) mitochondria, a 30-amino acid amino-terminal targeting presequence is removed in two steps. A matrix processing peptidase (MPP) first removes a 22-amino acid peptide from the presequence of the precursor iron-sulfur protein (p-ISP) to form intermediate iron-sulfur protein (i-ISP). A mitochondrial intermediate peptidase (MIP) then removes an octapeptide from i-ISP to generate mature length iron-sulfur protein (m-ISP).

Intermediate reports have shown that these proteases, when extracted from mitochondria, are inhibited by metal chelators EDTA and ortho-phenanthroline (5–7). In vitro import studies with yeast mitochondria have also suggested that MPP and MIP are inhibited by different concentrations of these chelators (2–4). In the present study we show that one of the main effects of high concentrations of EDTA and o-phenanthroline is the inhibition of import itself. At the concentrations where MPP in yeast mitochondria is supposedly inhibited, no import of precursor protein beyond the inner mitochondrial membrane occurs. We also show that import into the matrix space and processing of the precursor to the intermediate are two independent steps in the in vitro import process.

EXPERIMENTAL PROCEDURES

Materials—Reagents for in vitro transcription and translation of proteins were from Promega. The in vitro translation product was labeled using Tran35S-label from ICN. EDTA was from Fisher, o-phenanthroline from Sigma, m-phenanthroline from Aldrich, and p-phenanthroline from ICN.

Isolation of Mitochondria—Yeast strain W303-1A was grown in YPGal (1% yeast extract, 2% peptone, 2% galactose) medium to an optical density at 600 nm of 2–4. Mitochondria were isolated and frozen as described (8). Immediately before use, mitochondria were thawed at room temperature and divided into 0.2-ml aliquots. To each aliquot 1 ml of ice-cold buffer containing 0.6 M mannitol, 20 mM Hepes-KOH, pH 7.4, 0.1% bovine serum albumin, 0.5 mM Mg acetate was added and mitochondria were reisolated and resuspended in 0.3 ml of 0.6 M sorbitol, 3 mM MgATP, 20 mM Hepes, pH 7.4. The 50-μl “mitoplast” sample was withdrawn and kept at 4°C. They were then resuspended in an appropriate volume of the same buffer.

Import of Iron-Sulfur Protein into Mitochondria in Vitro—The in vitro import mixture contained 9% (v/v) translated precursor in rabbit reticulocyte lysate and an additional 13% (v/v) untranscribed precursor in rabbit reticulocyte lysate and an additional 13% (v/v) untranscribed lysate. It also contained 154 mM sucrose, 49 mM KCl, 7 mM Mops-KOH, pH 7.2, 2.1% bovine serum albumin, 1.4 mM MgCl₂, 1 mM ATP, 4 mM NADH, 0.5 mg of mitochondrial protein, and metal chelators as indicated in a total volume of 0.8 ml. Prior to the addition of radioactive precursor the import mixture was kept on ice for 5 min to energize the mitochondria and to allow o-phenanthroline, m-phenanthroline, and p-phenanthroline to penetrate the mitochondrial membranes. To obtain de-energized mitochondria, a sample was withdrawn before addition of precursor and incubated for 5 min on ice in the presence of 22 μM antimycin, 20 μg/ml valinomycin, and 20 μg/ml carbonyl cyanide p-trifluoromethoxyphenyl-hydrazone. Precursor was added to the samples and import was performed for 20 min at 30 °C, while the de-energized mitochondria sample was kept on ice. Import was stopped by placing the samples on ice and adding antimycin A, valinomycin, and carbonyl cyanide p-trifluoromethoxyphenylhydrazone to the concentrations indicated above.

Fractionation of Mitochondria—Before fractionation of the mitochondria, an 0.1-ml “mitoplast” sample was withdrawn from the import mixture and kept on ice. The remaining mitochondria were pelleted, resuspended in 2.6 ml of 20 mM Hepes, pH 7.4, and kept on ice for 25 min with gentle vortexing at 5-min intervals. Mitoplasts were then reisolated and resuspended in 0.3 ml of 0.6 M sorbitol, 3 mM MgATP, 20 mM Hepes, pH 7.4. A 50-μl “mitoplast” sample was withdrawn and kept...

* This work was supported by National Institutes of Health Grant GM 20379 and by a fellowship from the Deutsche Forschungsgemeinschaft (to J. N.). The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
‡ To whom correspondence should be addressed: Dept. of Biochemistry, Dartmouth Medical School, 7200 Vail, Hanover, NH 03755. Tel.: 603-650-1821; Fax: 603-650-1389.

This abbreviation is defined in Table 2.
on ice. The remaining mitoplasts were then disrupted with an Ultra
tecnicator for 5 × 10 s on output setting 1 and 50% duty with
cooling on ice for 20 s between cycles. Intact mitoplasts were removed by
centrifuging for 4 min at 16,000 × g, and 0.2 ml of the supernatant was
centrifuged at 160,000 × g for 30 min. An 0.1-ml aliquot of the resulting
supernatant was withdrawn, comprising the “matrix.” The pellet was
susceptible to protease degradation. The EDTA does not seem to completely inhibit either of the
proteases, although there is a slight inhibition of the MIP, as
judged by the ratio of m-ISP to i-ISP. Addition of 2.5 mM
-o-phenanthroline in the presence of EDTA inhibits the second
protease step catalyzed by MIP and results in accumulation of
i-ISP, but import of the protein into the matrix space still occurs.
Increasing the -o-phenanthroline concentration to 4 mM
significantly reduces the amount of protein that reaches the
matrix. At 8 mM -o-phenanthroline import of protein into the
matrix space seems to be blocked, as neither form of iron-sulfur
protein can be detected in that fraction (bottom panel, Fig. 1).
The decrease in amount of iron-sulfur protein in the matrix is
paralleled by a decrease in processing of p-ISP to i-ISP, reflective
of MPP activity.

Mutations in the Presequence Block Processing of Iron-Sulfur
Protein—These findings can be explained in two different
ways. One possible explanation is that import into the matrix
space is coupled to the first processing step and can only take
place after the first part of the presequence has been removed.
The second possibility is that high concentrations of -o-
phenanthroline inhibit import itself, independent of any effect of
the inhibitor on MPP. This would mean that the protein is not
cleaved because it does not reach the compartment where pro-
cessing takes place.

To distinguish between these two possibilities, we mu-
tagenized the presence of the iron-sulfur protein in order to
inhibit the first processing step by destroying the protease
recognition site. Since the cleavage site for MPP is usually
indicated by an arginyl residue at position −2 respective to the
cleavage site (9–11), which is position −10 respective to the
amino terminus of the mature protein, we replaced the −10
arginine by lysine, alanine, or glycine as indicated in Fig. 2. All
of these mutations inhibit in vitro processing of a fusion protein
between the amino-terminal portion of the precursor of S.
cerevisiae cytochrome b$_2$ and the mouse dihydrofolate reduc-
tase protein in mitochondria of S. cerevisiae and N. crassa (12).
As shown in Fig. 3, when the −10 Arg is converted to Lys, the
mutant ISP is processed to i-ISP and m-ISP similar to the
wild-type protein. One noticeable effect of the −10 Arg → Lys

![Fig. 1. Import of iron-sulfur protein in the presence of various amounts of metal chelators. Iron-sulfur protein was imported into yeast mitochondria in the presence of the amounts of metal chelators indicated in the left column. Following import the mitochondria (Mito) were fractionated into mitoplasts (MP), matrix (Matr), and membrane (Membr) fractions, which were treated with proteinase K to determine accessibility of the labeled precursor (p), intermediate (i), and mature (m) forms of the labeled proteins. (Val), mitochondria were de-energized with valinomycin, antimycin, and carbonylcyanide p-trifluoromethoxy-
phenylhydrazone and kept on ice before addition of precursor.](image-url)
imported into mitochondria. This was previously observed upon longer exposures of these blots a very small amount of

import and processing of iron-sulfur protein. When import was

depressed. Import of the ~10 Arg → Gly mutant iron-sulfur protein

into mitochondria in the presence of various amounts of metal

chelators. The mitochondria were then fractionated and treated with

proteinase K as in Fig. 1.

The inhibitory effect of high concentrations of o-phenanthroline was dependent on its ability to chelate metals, we tested the effects of the non-chelating structural isomers m-phenanthroline and p-phenanthroline on import and processing of iron-sulfur protein. When import was performed in the presence of 10 mM EDTA and 2.5 mM m-phenanthroline or p-phenanthroline, there was no significant difference compared to import performed in the presence of 10 mM EDTA alone (Fig. 1, second panel, and Fig. 5, first and third panels). As expected for the non-chelating isomers, the second protease was not inhibited and maturation of the preprotein occurred normally. When the concentration of m- or p-phenanthroline was raised to 8 mM, however, only trace amounts of p-, i-, and m-ISP could be detected in the matrix. This indicates that import is strongly inhibited by this concentration of either m- or p-phenanthroline, despite the non-chelating nature of the compounds. Therefore, it seems likely that, in addition to metal chelation, o-phenanthroline has a secondary effect that inhibits protein import.

The inhibitory effect of high concentrations of phenanthrolines could not be attributed to uncoupling of the mitochondria. In polarographic measurements with freshly isolated yeast mitochondria 8 mM o-phenanthroline inhibited respiration and the inhibited rate was not stimulated by ADP. This effect is apparently due to chelation of a metal by the o-phenanthroline. Under these same conditions 8 mM m-phenanthroline did not inhibit respiration nor uncouple the mitochondria, since ADP stimulated respiration in the presence of the m-phenanthroline (results not shown).
In the present study we have investigated whether import of the nuclear encoded Rieske iron-sulfur protein into mitochondria is obligatorily coupled to two-step processing of the precursor to mature protein by the mitochondrial proteases MPP and MIP. Previous results related to this question have been contradictory. With both N. crassa and S. cerevisiae mitochondria it was shown that when a mutation of the −10 Arg to Lys, Ala, or Gly is introduced into the presequence of the precursor of S. cerevisiae cytchrome b2 fused to mouse dihydrofolate reductase the protein is imported and not processed (12). It was thus concluded that this mutation inhibits processing but not import. In contrast to this result, a −10 Arg → Gly mutation in the presequence of pre-ornithine transcarbamylase blocked both import and processing of that protein into rat liver mitochondria, whereas mutation of the −10 Arg to Lys, Ala, or Asn allowed import and processing (13).

Our results (Fig. 3) clearly show that substitution of the −10 arginine with either lysine or alanine permits processing by both MPP and MIP. These results establish that a significant amount of p-ISP is present in a protease protected location in mitochondria under conditions where processing to i-ISP and m-ISP is occurring, although with a diminished rate which may be an effect on local secondary structure as suggested (13), but which must be specific to folding of this protein or its recognition by rat liver mitochondria.

We also investigated how o-phenanthroline inhibits import of the Rieske iron-sulfur protein, following reports that at higher concentrations than used to inhibit MIP, this chelator inhibits by blocking the MPP processing. How chelators inhibit formation of m-ISP was of special interest since formation of functionally active iron-sulfur protein requires insertion of an iron-sulfur cluster, which may be subject to inhibition by chelators, and earlier results of ours indicated that mutations which blocked formation of the iron-sulfur cluster by eliminating one or more of the matrix location ligands also retarded, although did not fully block, maturation of the protein (14, 15).

It was earlier shown that 2 mM o-phenanthroline inhibits MIP. Our results agree with the previous findings (Fig. 1) and add to those by showing that concentrations of o-phenanthroline (2.5 mM) which block MIP processing of wild-type p-ISP do not inhibit import of p-ISP in which processing is blocked by the −10 Arg → Gly mutation (Fig. 4). However, we also found that whereas low concentrations of m-phenanthroline and p-phenanthroline have effects on import and processing different than o-phenanthroline, at high concentrations they inhibit import and processing similar to o-phenanthroline. At 2.5 mM the two non-chelating isomers allow processing of p-ISP and formation of i-ISP and m-ISP in a protease protected matrix location (Fig. 5). However, at 8 mM the non-chelating phenanthrolines cause p-ISP to accumulate in a protease accessible location in mitochondria, which indirectly blocks processing by preventing access of the matrix localized MPP to the p-ISP. From these results we conclude that the inhibition which is seen with 8 mM o-phenanthroline is probably unrelated to its chelator activity and that at high concentrations the phenanthrolines directly inhibit a step in the import process other than proteolysis of the presequence.

REFERENCES

Fig. 5. Effects of m-phenanthroline and p-phenanthroline on import of the iron-sulfur protein. Iron-sulfur protein was imported into mitochondria in the presence of the indicated amounts of m-Phe or p-Phe. The mitochondria were then fractionated and treated with proteinase K as in the legend to Fig. 1.
Dissociation of Import of the Rieske Iron-Sulfur Protein into *Saccharomyces cerevisiae* Mitochondria from Proteolytic Processing of the Presequence

Jürgen H. Nett and Bernard L. Trumpower

doi: 10.1074/jbc.271.43.26713

Access the most updated version of this article at http://www.jbc.org/content/271/43/26713

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 15 references, 6 of which can be accessed free at http://www.jbc.org/content/271/43/26713.full.html#ref-list-1