Existence of Two Heme B Centers in Cytochrome b_{561} from Bovine Adrenal Chromaffin Vesicles as Revealed by a New Purification Procedure and EPR Spectroscopy*

(Received for publication, May 14, 1997, and in revised form, June 24, 1997)

Motonari Tsubaki‡§, Masato Nakayama‡, Eisaku Okuyama‡, Yoshiyuki Ichikawa‡, and Hiroshi Hori‡

From the ‡Department of Life Science, Faculty of Science, Himeji Institute of Technology, Kamigori-cho, Akou-gun, Hyogo 678-12, the §Department of Biochemistry, Kagawa Medical University, Miki-cho, Kita-gun, Kagawa 761-07, and the ¶Department of Biophysical Engineering, Faculty of Engineering Science, Osaka University, Toyonaka, Osaka 560, Japan

We have established a new purification procedure of cytochrome b_{561} from bovine adrenomedullary chromaffin vesicles. The heme content analysis of the purified sample indicated the presence of 1.7 molecules of heme B/cytochrome b_{561} molecule. EPR spectroscopy of the purified enzyme in oxidized state showed that there were three types of low spin heme species. Two of them showed usual EPR signals at $g_z = 3.14$ and $g_z = 2.84$ arising from the same heme and were interchangeable depending on pH. The other species showed a highly anisotropic low spin signal at $g_z = 3.70$, with a lower redox potential than the others, and a temperature-sensitive character. These properties are very similar to those of the mitochondrial low potential cytochrome b (b_5 or b_{566}) of the mitochondrial complex III, indicating that the $g_z = 3.70$ species is derived from a heme component different from the one that shows the usual low spin EPR signals. Based on our new structural model, these two heme B prosthetic groups are likely to be located on both sides of the membranes in close contact with the ascorbic acid- and semidehydroascorbic acid-binding sites, respectively, to facilitate the electron transfer across the membranes. This molecular architecture may provide a structural basis for the transmembrane electron transfer catalyzed by this hemoprotein.

Cytochrome b_{561} is believed to play a key role in electron transfer across the chromaffin vesicle membranes required for noradrenaline biosynthesis inside these specialized organelles of the secretory cells (1). The mechanism of this process remains still unclear. The cytochrome is a highly hydrophobic hemoprotein with a molecular mass of ~28 kDa and contains six or five transmembrane α-helices (2, 3). Its amino acid sequence shows no apparent homology with any other membrane-bound cytochromes so far known (2). The cytochrome is characterized by a rather high redox midpoint potential (4) and an asymmetric absorption peak in the α-band with a maximum at 561 nm and a shoulder at approximately 558 nm (5). Apps et al. (6) revealed the presence of two potentiometrically different forms (midpoint potentials, 170 and 70 mV, respectively) of cytochrome b_{561} and reported the high and low potential components to have identical absorption spectra. Burbaev et al. (7) reported that the intact chromaffin vesicle membranes from bovine adrenal medullae showed three different EPR signals of ferric cytochrome b_{561}. A typical g_z signal of a low spin cytochrome observed at $g_z = 3$ comprised a high potential component with $g_z = 3.14$ and a low potential one with $g_z = 3.11$. In addition, a highly temperature-sensitive heme signal at $g_z = 3.7$ was observed. The latter signal was fully retained in the preparation of vesicle membranes with cytochrome b_{561} reduced by 50% but disappeared upon full reduction of the cytochrome by ascorbic acid. The properties of the signal were strikingly similar to those of the mitochondrial low potential cytochrome b heme (b_5 or b_{566}) (8, 9).

Despite these pieces of evidence, it is widely accepted that purified cytochrome b_{561} contains only one heme B per molecule (10–12). Apps et al. used the pyridine hemochrome method and Western blotting for quantitation of heme and apoprotein, respectively. They found a heme B/cytochrome stoichiometry of 0.92 (6). The sigmoid shape in the Nernst plot of redox titration was, therefore, explained by negative cooperativity in oligomeric cytochrome b_{561} (6).

In the present study, we have established a new purification procedure for cytochrome b_{561} from bovine adrenal chromaffin vesicles. Heme content analysis of the purified sample showed 1.7 heme B molecules/cytochrome b_{561} molecule. We found further that the purified cytochrome in oxidized state showed three types of low spin EPR signals originating from two distinct heme components.

MATERIALS AND METHODS

Purification of Cytochrome b_{561}—Chromaffin vesicle membranes were isolated from bovine adrenal glands according to the procedure of Bartlett and Smith (13). The washed chromaffin vesicle membranes (~500 mg of protein with a concentration of ~5 mg of protein/ml) were solubilized with 1.0% (w/v) β-octyl glucoside in 20 mM Tris-HCl (pH 8.0) buffer containing 20% (v/v) glycerol and 1.0 mM sodium ascorbate with stirring at 4 °C for 1 h. The solubilized extract was centrifuged for 20 min at 19,000 rpm in a model 7800 centrifuge (Kubota, Tokyo, Japan) equipped with an RA-300 rotor. The extract was loaded onto a column of a-aminooxyacety-Sephrose 4B (2.5 cm diameter) × 14 cm) previously equilibrated with 20 mM Tris-HCl (pH 8.0) buffer containing 20% (v/v) glycerol, 1.0% (w/v) β-octyl glucoside, and 1.0 mM sodium ascorbate (buffer A). After the loading, the column was washed with buffer A extensively, until turbid fractions and reddish fractions were eluted out. The column was then treated with buffer A containing 50 mM KCl. During this wash, cytochrome b_{561} was eluted as a sharp red band. Fractions containing cytochrome b_{561} were pooled and concentrated to
Table I

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Protein content mg</th>
<th>Total cytochrome b<sub>561</sub> nmol</th>
<th>Specific content nmol/mg</th>
<th>Yield %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purified chromaffin vesicles</td>
<td>57.6</td>
<td>901.1</td>
<td>1.39</td>
<td>100</td>
</tr>
<tr>
<td>β-Octyl glucoside extract</td>
<td>508.0</td>
<td>557.0</td>
<td>1.10</td>
<td>92.8</td>
</tr>
<tr>
<td>First ω-aminooctyl-Sepharose column</td>
<td>116.5</td>
<td>404.1</td>
<td>3.47</td>
<td>67.3</td>
</tr>
<tr>
<td>Concanavalin A-Sepharose column</td>
<td>93.2</td>
<td>371.7</td>
<td>3.99</td>
<td>61.9</td>
</tr>
<tr>
<td>Second ω-aminooctyl-Sepharose column</td>
<td>6.88</td>
<td>232.4</td>
<td>33.78</td>
<td>38.7</td>
</tr>
</tbody>
</table>

Table II

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Millimolar extinction coefficient (μM<sup>-1</sup> cm<sup>-1</sup>)</th>
</tr>
</thead>
<tbody>
<tr>
<td>561</td>
<td>46.1</td>
</tr>
<tr>
<td>530</td>
<td>24.0</td>
</tr>
<tr>
<td>427</td>
<td>267.9</td>
</tr>
<tr>
<td>415</td>
<td>203.7</td>
</tr>
<tr>
<td>561–575</td>
<td>37.3</td>
</tr>
<tr>
<td>429–411</td>
<td>246.7</td>
</tr>
</tbody>
</table>

RESULTS

Purification of Cytochrome b₅₆₁—Table I shows a summary of a typical purification of the cytochrome using 50 bovine adrenal chromaffin vesicles as starting materials. The procedure as described in detail under “Materials and Methods” was shown to be reproducible. Just after turbid fractions were eluted out, a part of cytochrome b₅₆₁ was also eluted from the 1st ω-aminooctyl-Sepharose 4B column during a wash with buffer A. SDS-PAGE analysis showed that the fraction contained many protein bands with higher molecular weights, in addition to cytochrome b₅₆₁, indicating that cytochrome b₅₆₁ was not fully dissipated even in 1% β-octyl glucoside or cytochrome b₅₆₁ might interact strongly with other membrane proteins in chromaffin vesicles. Before loading onto the second ω-aminooctyl-Sepharose 4B column, the crude cytochrome b₅₆₁ sample was passed through a concanavalin A-Sepharose column to remove contaminating dopamine β-monooxygenase. Upon loading on the second ω-aminooctyl-Sepharose 4B column, cytochrome b₅₆₁ was adsorbed in the column as a red band. Washing the column with the equilibrating buffer caused a gradual elution of cytochrome b₅₆₁. The sample at this stage showed a single protein band on SDS-PAGE with an apparent molecular weight of 27,700 and was considered as pure cytochrome b₅₆₁.

Heme Content Analysis—The purified cytochrome b₅₆₁ was analyzed with visible absorption spectroscopy and on SDS-PAGE. The pyridine hemochrome analysis of the purified sample in the aqueous alkaline condition showed α, β, and Soret absorption maxima at 556.5, 524.5, and 418.5 nm, respectively, confirming presence of heme B as the prosthetic group (5). The purified cytochrome b₅₆₁ contained 61.4 nmol of heme B/mg protein (the mean value of 6 measurements with S.D. = 2.14). This corresponds to 1.70 molecules of heme B/cytochrome b₅₆₁ molecule, assuming the molecular weight as 27,700. It was essential to oxidize cytochrome b₅₆₁ before the pyridine hemochrome analysis; otherwise significant destruction of heme B was observed upon treatment of the cytochrome in the aqueous alkaline solution.

EPR Analyses—Visible absorption spectra of the purified cytochrome b₅₆₁ in various redox levels are shown in Fig. 1 (upper panel). In almost (93%) oxidized state at pH 8.0 (Fig. 1, upper panel, trace C), three types of low spin species were observed in the EPR spectra at 15 K (Fig. 1, center panel, trace...
C): a highly anisotropic species with g_z value at 3.70 and two typical low spin species (one with $g_z = 3.14$ and the other with $g_z = 2.84$, $g_y = 2.24$, and $g_x = 1.66$).

The two typical low spin signals ($g_z = 3.14$ and 2.84) showed a significant pH dependence and were found to be interconvertible. Upon lowering the pH to 6.8, the $g_z = 2.84$ signal was completely gone in the EPR spectrum at 15 K (Fig. 2A). On the other hand, at pH 8.8, the intensity of the $g_z = 2.84$ signal became much stronger than that of the $g_z = 3.14$ signal (spectra not shown). The apparent pK_a of this transition was estimated at approximately 8.2. The g_y and g_x components of the $g_z = 3.14$ species could be clearly seen at ≈ 2.1 and 1.49, respectively (Fig. 2A), as reported previously for the oxidized chromaffin vesicles (pH 7.2). Although Burbaev et al. reported that the $g_z = 3.12$ species comprised a high potential component with $g_z = 3.14$ and a low potential one with $g_z = 3.11$ (7), our present data showed only one species. The g values of both the $g_z = 3.14$ and $g_z = 2.84$ species are very similar to those of microsomal cytochrome b_5 ($g_z = 3.05$, $g_y = 2.22$, and $g_x = 1.41$) (16), chloroplast cytochrome b_{590} ($g_z = 2.84$, $g_y = 2.27$, and $g_x = 1.54$) (17), and cytochrome b of bo-type ubiquinol oxidase ($g_z = 2.98$, $g_y = 2.26$, and $g_x = 1.45$) (18), all of which are known to have bimidazole ligands.

2 M. Tsubaki, M. Nakayama, and H. Hori, unpublished result.
In the present study we have established a new purification procedure that enabled us to prepare a large quantity of highly purified cytochrome b₅₆₁ from bovine chromaffin vesicles. The heme content analysis of the purified cytochrome b₅₆₁ showed 1.7 molecules of heme B/molecule. This number is in marked contrast to the previously reported value of 1.0 molecule of heme B/cytochrome b₅₆₁ molecule (6, 10–12). It is very likely that previous purification procedures suffered a significant loss of heme B prosthetic group from the cytochrome. We noticed that previous purification procedures suffered a significant loss of heme B/cytochrome (1.7 molecules of heme B/molecule). This number is in marked contrast to the previous observation on oxidized chromaffin vesicle preparations (7).

The nature of this species is not clear at this stage. There was another type of EPR signal at g_z = 3.70 in the partially (43%) oxidized spectrum. These observations indicate that the redox potential of the g_z = 3.70 species is lower than those of the usual low spin species (g_z = 3.14 and 2.84 species).

The high spin heme signal (g ~ 6.1) represents merely a minor population of cytochrome b₅₆₁ based on spin contents. The nature of this species is not clear at this stage. There was another type of EPR signal at g = 4.3. It is likely a product of the heme decomposition.

DISCUSSION

In the present study we have established a new purification procedure that enabled us to prepare a large quantity of highly purified cytochrome b₅₆₁ from bovine chromaffin vesicles. The heme content analysis of the purified cytochrome b₅₆₁ showed 1.7 molecules of heme B/molecule. This number is in marked contrast to the previously reported value of 1.0 molecule of heme B/cytochrome b₅₆₁ molecule (6, 10–12). It is very likely that previous purification procedures suffered a significant loss of heme B prosthetic group from the cytochrome. We noticed that a part of heme B prosthetic group is particularly labile and is easily lost during the purification. Even with our new purification procedure, the heme content values of as low as 1.4 is easily lost during the purification. Even with our new purification procedure, the heme content values of as low as 1.4 is easily lost during the purification. Even with our new purification procedure, the heme content values of as low as 1.4 is easily lost during the purification.

The presence of several EPR species of cytochrome b₅₆₁ in chromaffin vesicle membranes had been reported (7) and was confirmed in the present study for the purified sample. There were three types of low spin species; two of them showed usual low spin EPR signals (g_z = 3.14 and g_z = 2.84) arising from the same heme component and were interconvertible depending on pH. A similar transition of EPR signals upon elevation of pH was reported for cytochrome b₅, in which a neutral form (g_z = 3.05, g_x = 2.22, g_y = 1.41 at pH 6.2) was converted to an alkaline form (g_z = 2.76, g_x = 2.26, g_y = 1.67 at pH 12.0) (16).

The cause of this transition is likely either due to deprotonation of one of the axial bisimidazole ligands to form an imidazolate ligation or the imidazole ligand to become strongly hydrogen-bonded from a nearby amino acid residue (19). Since the pH within chromaffin vesicles is around 5.7 (20), the g_z = 2.84 species may not participate in the physiological electron transfer reaction.

The other EPR species showed a highly anisotropic low spin signal (g_z = 3.70), a lower redox potential than the others, and a temperature-sensitive character, being very similar to cytochromes b (b₅₆₆, g_z = 3.75; b₅₆₂, g_z = 3.45) of the mitochondrial complex III (8, 9) and to chloroplast cytochrome b₅ (b₅₆₃; g_z = 3.5) (21). The g_z = 3.70 species showed only a slight pH-dependent spectral change. These properties indicate that the g_z = 3.70 species is derived from a heme component different from the one that shows the usual low spin EPR signals. Presence of two independent heme B centers is consistent with the observation of two different forms (midpoint potentials, 170 and 70 mV, respectively) of cytochrome b₅₆₁ determined by an optical potentiometric technique (6).

Recently we have proposed a plausible structural model of cytochrome b₅₆₁ on the basis of comparison of the deduced amino acid sequences of seven species. In the model, a polypeptide spans the vesicle membranes six times. There are two fully conserved regions in the sequences; the first conserved sequence (69ALLVYRVFR77) is located on the extravesicular side of an α-helical segment, and the second one (120SLHSW124) is located in an intravesicular loop connecting two α-helical segments, respectively. The first and second conserved sequences are likely to form the binding sites for extravesicular ascorbic acid and intravesicular semidehydroascorbic acid, respectively (1). In addition, there are six totally conserved histidyl residues (His⁵⁴, His⁸⁸, His⁹², His¹¹⁰, His¹²², and His¹⁶¹) in the cytochrome. Thus, we have proposed that one of the two heme ions of cytochrome b₅₆₁ (extravesicular side) is coordinated with the pair, either His⁵⁴ (helix 3)-His¹²² (helix 5) or His⁸⁸ (helix 3)-His¹⁶¹ (helix 5). The pair, His⁵⁴ (helix 2)-His¹²² (end of helix-4) is likely to coordinate with another heme ion (intravesicular side).

Consideration on the EPR properties of the two heme B species suggests further that a lower redox potential of the g_z = 3.70 species is favorable for an electron acceptor from extravesicular ascorbic acid, whereas the usual low spin heme species has a higher redox potential suitable for donating an electron to intravesicular semidehydroascorbic acid. Indeed, the EPR signal of cytochrome b₅₆₁ is derived from the heme at the extravesicular side and that the usual low spin EPR signals (g_z = 3.70) of cytochrome b₅₆₁ is derived from the heme at the intravesicular side. Therefore, the two heme B centers are located on both sides of the vesicle membrane.

Fig. 2. EPR spectra of the purified cytochrome b₅₆₁ in fully oxidized state at 20 mM sodium phosphate buffer (pH 6.8) containing 20% (v/v) glycerol, 1.0% (w/v) β-octyl glucoside measured at 15 K (trace A) and 5 K (trace B) and in 20 mM Tris-HCl buffer (pH 8.0) containing 20% (v/v) glycerol, 1.0% (w/v) β-octyl glucoside measured at 5 K (trace C). Other conditions are the same as in Fig. 1.

At 5 K, the g_z = 3.70 species dominated in the low spin signal region of the fully oxidized spectra (both pH 6.8 and 8.0) (Fig. 2, B and C), being consistent with the previous observation on the oxidized chromaffin vesicle preparation (7). There was a slight pH-dependent change in the g_z value (Fig. 2, B and C). We noticed further that, at 5 K, intensity of the g_z = 3.70 signal in the partially oxidized spectrum was almost fully retained compared with the one in the 93% oxidized spectrum (Fig. 1, lower panel, traces B versus C). At 15 K, the g_z = 3.70 signal intensity in the 43% oxidized spectrum was almost fully retained as well (Fig. 1, center panel, traces B versus C). These observations indicate that the redox potential of the g_z = 3.70 species is lower than those of the usual low spin species (g_z = 3.14 and 2.84 species).

The high spin heme signal (g ≈ 6.1) represents merely a minor population of cytochrome b₅₆₁ based on spin contents. The nature of this species is not clear at this stage. There was another type of EPR signal at g = 4.3. It is likely a product of the heme decomposition.

Structure of Cytochrome b₅₆₁

the membranes in close contact with the ascorbic acid- and semidehydroascorbic acid-binding sites, respectively, to facilitate the electron transfer across the membranes. The well allocated molecular architecture provides a structural basis for the efficient transmembrane electron transfer catalyzed by this hemoprotein. Further studies are in progress to reveal the mechanism of the ascorbic acid-regenerating system in the secretory vesicles.

REFERENCES
Existence of Two Heme B Centers in Cytochrome \textit{b} 561 from Bovine Adrenal Chromaffin Vesicles as Revealed by a New Purification Procedure and EPR Spectroscopy

Motonari Tsubaki, Masato Nakayama, Eisaku Okuyama, Yoshiyuki Ichikawa and Hiroshi Hori

doi: 10.1074/jbc.272.37.23206

Access the most updated version of this article at http://www.jbc.org/content/272/37/23206

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts

This article cites 22 references, 3 of which can be accessed free at http://www.jbc.org/content/272/37/23206.full.html#ref-list-1